Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed.

Directions (1-17): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers each question.

1. A value of x which satisfies the inequality $x + 3 < 2x + 7$ is
 (1) -5 (2) -10 (3) -3 (4) -4 1___

2. If $\cos x = \frac{3}{5}$ and angle x lies in the fourth quadrant, what is the value of $\tan x$?
 (1) $\frac{5}{4}$ (2) $-\frac{5}{4}$ (3) $\frac{3}{4}$ (4) $-\frac{4}{3}$ 2___

3. The fraction $\frac{(x + 2)(x - 5)}{(x - 1)(x + 3)}$ is undefined for which value of x?
 (1) -1 (2) -2 (3) -3 (4) 5 3___

4. If $\sin A < 0$, in which quadrants may angle A lie?
 (1) I, II (2) II, III (3) I, IV (4) III, IV 4___

5. The graph of the equation $\frac{x^2}{4} + \frac{y^2}{16} = 1$ is (1) a hyperbola
 (2) a parabola (3) a circle (4) an ellipse 5___

6. The numeral value of $\sin \frac{7\pi}{6}$ is
 (1) 1 (2) $\frac{1}{2}$ (3) $-\frac{\sqrt{3}}{2}$ (4) $-\frac{\sqrt{3}}{2}$ 6___

7. The solution set of the equation $2x^2 + 5x - 3 = 0$ is
 (1) $\left\{ \frac{1}{2}, -3 \right\}$ (2) $\left\{ -\frac{1}{2}, 3 \right\}$ (3) (3) (4) $\left\{ -\frac{1}{2} \right\}$ 7___

8. If triangle ABC is a right triangle and angle C is the right angle, then which is always true?
 (1) $\sin A = \cos B$ (2) $\sin A \cos B - 1$ (3) $\sin A + \cos B = 1$ (4) $\sin A = \cos B = 1$ 8___

9. Which statement about the graphs of the equations $2x + 3y = 5$ and $2x + 3y = -5$ is true?
 (1) They coincide (2) They intersect (3) They are parallel (4) They are perpendicular 9___

10. The fraction $\frac{1}{x + 1}$ is equivalent to
 (1) 1 (2) 1 (3) 1 (4) 1 10___
11. The equation $\sqrt{x} - 2 = x - 4$ is satisfied when x is equal to (1) both 3 and 6 (2) 6, only (3) 3, only (4) neither 3 nor 6 11___

12. If $2^x = 7$, what is the numerical value of 2^{2x}? (1) 49 (2) 14 (3) 5 (4) 4 12___

13. In the interval $0 < A < \frac{\pi}{2}$, which value of A satisfies the equation $\tan^2 A - \tan A = 0$? (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$ 13___

14. The range of the function $y = 2\sin x$ is (1) $y \geq 1$ (2) $x \geq 1$ (3) $-2 \leq y \leq 2$ (4) $-2 \leq x \leq 2$ 14___

15. Which is the equation of the graph shown below?
(1) $y = \sin \frac{x}{2}$ (2) $y = \cos \frac{x}{2}$ (3) $y = \frac{1}{2} \sin x$ (4) $y = \frac{1}{2} \cos x$ 15___

16. Which is equivalent to $\sin x \cot x + \sec x \cos x$? (1) 1 (2) $\cos x$ (3) $\sin x + 1$ (4) $\cos x + 1$ 16___

17. If $m \angle B = 30$ and $AB = 10$, it is possible to construct two distinct triangles when AC is (1) 10 (2) 6 (3) 5 (4) 4 17___

Directions (18-30): Write your answers in the spaces provided on the answer sheet. Unless otherwise specified, answers may be left in terms of π or in radical form.

18. What is the solution set of the equation $50(x - \frac{1}{2}) = 45x$? 18_____

19. If $y = \text{Arc} \sin \left(\frac{\sqrt{2}}{2} \right)$, what is the value of y? 19_____

20. If x varies inversely as y and $x = 8$ when $y = 3$, find x when $y = 6$. 20_____

21. When the number 56,100,000 is written in the form of 5.61×10^n, what is the value of n? 21_____

22. Solve for x: $2x + 3y = 13$
$5x - 2y = 4$ 22_____

23. Steve has $1.40 in nickels and dimes. If he has twice as many nickels as dimes, how many dimes does he have? 23_____

24. Solve for the positive value of x: $\frac{2x}{3\sqrt{2}} = \frac{3\sqrt{2}}{x}$ 24_____

25. In triangle ABC, $a = 8$, $b = 12$, and $\sin A = \frac{1}{2}$. Find the value of $\sin B$. 25_____
26. If \(f(x) = x^{1/4} - 4x^0 \), evaluate \(f(8) \) in simplest form.

27. Express \(\frac{1}{3 + \sqrt{2}} \) as a fraction with a rational denominator.

28. Using logarithms, find the value of \(\sqrt[5]{5} \) to the nearest hundredth.

29. In a circle, a central angle of 1 radian intercepts an arc of 2 centimeters. What is the length in centimeters of the radius of this circle?

30. What is the value of \(\tan 23^\circ 38' \) to four decimal places?

Part II

Answer four questions from this part. Show all work unless otherwise directed.

31. \(a \) Find, to the nearest tenth, the value(s) of \(\tan \theta \) which satisfy the equation \(\tan^2 \theta - 3 \tan \theta + 1 = 0 \). [8]

\(b \) Using the answer(s) obtained in part \(a \), find the quadrant(s) in which angle \(\theta \) may lie. [2]

32. A pendulum formula is given by the equation below:

\[t = 6.28 \sqrt{\frac{L}{32.2}} \]

Using logarithms, find \(t \) to the nearest tenth if \(L = 25.5 \). [10]

33. If the perimeter of a rectangle is 46 units and its diagonal is 17 units, find its length and width. [Only an algebraic solution will be accepted.] [5, 5]

34. \(a \) On the same set of axes, sketch the graphs of \(y = 2 \cos \frac{1}{2}x \) and \(y = \frac{1}{2} \) for values of \(x \) in the interval \(-\pi \leq x \leq \pi \). [Label each graph with its equation.] [6, 2]

\(b \) From the graphs sketched in part \(a \), find the number of values of \(x \) in the interval \(-\pi \leq x \leq \pi \) that satisfy \(2 \cos \frac{1}{2}x = \frac{1}{2} \). [2]

35. Given: obtuse angle \(x \) and \(\sin x = \frac{24}{25} \).

Find:

\(a \) \(\sin \frac{x}{2} \) [5]

\(b \) \(\sin 2x \) [5]

36. The sides of triangle \(ABC \) are \(a = 10 \), \(b = 12 \), and \(c = 18 \). Find, to the nearest degree, the measure of the largest angle of triangle \(ABC \). [10]

37. \(a \) On the same set of axes, graph the following system of inequalities:

\[y \geq x^2 - 2x - 8 \text{ and } x - y + 2 > 0 \] [8]

\(b \) Find the coordinates of a third quadrant point with integer values which satisfies the system in part \(a \). [2]