June 22, 1967

Part I

Answer all questions in this part. Each correct answer will receive 2\(\frac{1}{2} \) credits. No partial credit will be allowed. Write your answers in the spaces provided.

1. When \(x^{25} - 3 \) is divided by \(x + 2 \), there is an integral remainder. If this remainder is a positive integer, write “positive”; if it is a negative integer, write “negative.”

2. Express the product of \(3 + 2i \) and \(2i \) in the form \(a + bi \).

3. Solve for \(a \) in terms of \(b \) and \(c \):
 \[
 \frac{1}{a} = \frac{1}{b} + \frac{1}{c}
 \]

4. How many different groups of three students each may a teacher choose from among 8 students in her class?

5. Write the expression \([4 \cos 30^\circ + i \sin 30^\circ]^2\) in the form \(r (\cos \theta + i \sin \theta)\).

6. Express the repeating decimal 0.1212\ldots, in which the digits 1 and 2 are repeated endlessly, as a rational number.

7. Find the value(s) of \(x \) which will satisfy the equation \(\sqrt{2x} + 4 = x \).

8. Find the positive value of \(b \) such that the graph of \(x^2 + bx + 4 = y \) touches the \(x \)-axis in only one point.

9. Find the fourth term of the geometric progression whose first two terms are \(\frac{1}{a} \) and 1, respectively.

10. Find all the values of \(x \) which satisfy the inequality
 \[
 \frac{7}{6} + \frac{x}{2} < x - \frac{1}{3}
 \]

11. How many cars would a dealer have to have on hand in order to show a customer all of the models available from a manufacturer who builds cars in 6 body styles, with a choice of 4 engines, and equipped with either a standard or an automatic transmission?

12. The graph of \(y = f(x) \) crosses the \(x \)-axis just once between \(x = -0.9 \) and \(x = -0.8 \). If \(f(-0.9) > 0 \), \(f(-0.85) > 0 \), and \(f(-0.8) < 0 \), find to the nearest tenth a negative root of \(f(x) = 0 \).

13. Write an equation for the axis of symmetry of the graph of \(y = 10x - 2x^2 \).

14. Find the rational fractional root of \(6x^3 + x^2 + 5x - 2 = 0 \).
15. What is the least possible degree of a rational integral equation with rational coefficients, if 3 of its roots are \(-3, 2 + 3i, \) and \(4 - \sqrt{7}\)?

16. What is the sum of the roots of the equation \(3x^3 - 12x^2 + x = 0\)?

17. If \(y = x^4 - 2x^2 - 4\), find the average rate of change of \(y\) with respect to \(x\) as \(x\) varies from \(x = -1\) to \(x = 0\).

18. The tens digit of a two-digit number is 4 less than the units digit. If the units digit is represented by \(u\), express the number in terms of \(u\).

Directions (19-24): Indicate the correct completion for each of the following by writing the number 1, 2, 3, or 4 in the space provided.

19. Which defines a rational integral function of \(x\)?
 (1) \(x^{1/2} - 1\) (2) \(x^2 - 1\) (3) \(x^{-1/2} - 1\) (4) \(x^{-2} - 1\)

20. The graphs of \(y = ax + b\) and \(y = cx + d\) are distinct parallel lines if
 (1) \(a \neq c\) and \(b \neq d\) (2) \(a = c\) and \(b = d\)
 (3) \(a = c\) and \(b \neq d\) (4) \(a \neq c\) and \(b = d\)

21. Given \(\log 3x = 8\). The value of \(x\) that satisfies this equation is
 (1) 16 (2) 2 (3) 3 (4) 4

22. When drawn on the same set of axes, the points of intersection of the graphs of \(x^2 + 4y^2 = 16\) and \(xy = 1\) are located in quadrants
 (1) I and III (2) I and IV (3) II and III (4) II and IV

23. Given that \(s\) varies inversely as the square of \(t\). If a value of \(t\) is halved, then the corresponding value of \(s\) is multiplied by
 (1) \(\frac{1}{2}\) (2) 2 (3) \(\frac{1}{4}\) (4) 4

24. How many real roots does \(x^4 + 6x^2 + 3 = 0\) have?
 (1) 1 (2) 2 (3) 0 (4) 4

Part II

Answer sixteen questions from this part, 25-48. Each correct answer will receive 2½ credits. No partial credit will be allowed. Questions marked * are based upon optional topics in the syllabus. Write your answers in the space provided.

25. When drawn on the same set of axes, the graphs of \(y = x^3 - x\) and \(y = 2x + k\) are tangent to each other at a point whose abscissa is 1. Find the value of \(k\).

26. Express the complex number \(\sqrt{2} + i\sqrt{2}\) in the polar form \(r(\cos \theta + i \sin \theta)\).

27. A root of \(x^3 + x^2 - 24 = 0\) lies between 2 and 3. Find this root to the nearest integer.

28. In the equation \(x^3 - kx^2 - 5x + 10 = 0\), \(k\) is a rational number. If two roots of this equation are \(\sqrt{5}\) and 2, find the numerical value of \(k\).
29. The illumination I, received by a body from a source of light of strength S, varies directly as S and inversely as the square of the distance d between the light source and the body. If k represents the constant of variation, express I in terms of S, d and k.

30. If $f(x) = 3x^3 - 2x^2 + 1$, find $f(2) - f(3)$.

31. In the complex number, plane points P and Q represent the complex numbers i and $-1 + i$, respectively, and O represents the origin. How many degrees are there in angle POQ?

32. For what value of k will the value of the determinant \[
\begin{vmatrix}
4 & k & 3 \\
2 & 0 & 5 \\
-1 & 0 & 6
\end{vmatrix}
\] be 17?

33. Write the term of the expansion of $(a + b)^6$ in which the exponent of a is twice the exponent of b.

34. An object is moving along a straight line. Its distance s, in feet from a fixed point after t seconds, is given by the equation $s = 5t^2 + t^3$. Find the value of t when the acceleration is 19 feet per second per second.

35. A school committee of 2 members is to be formed by drawing 2 names from a box containing the names of 5 seniors, 4 juniors, and 3 sophomores. What is the probability that the committee will consist of 2 seniors?

36. Write an equation of the straight line having an x-intercept of 2 and a y-intercept of -4.

37. If the number $\frac{2 + 3i}{1 - 3i}$ is expressed in the form $a + bi$ where a and b are real numbers, what is the value of a?

38. Find the coordinates of the point of inflection of the curve whose equation is $y = x^3 - 12x + 20$.

39. The lengths of the sides of a right triangle form an arithmetic progression whose common difference is 3. Find the length of the shorter leg.

40. If $y = \log_{10}3$, find the value of 10^{2y}.

41. Point P in the first quadrant has the coordinates $(2, k)$. The line segment between P and the origin and the line segment between P and the point $(10, 0)$ are perpendicular. Find the value of k.

42. Transform the equation $r^2 = 2r \sin \theta - 4r \cos \theta$ from polar to rectangular coordinates.
Directions (43-48) For each of those chosen, write in the space provided the number preceding the expression that best completes the statement.

43. If $x < 0$, then $\sqrt{x^2}$ is equal to
(1) an imaginary number
(2) x
(3) a negative number
(4) $-x$

44. If Al is a years old and Bob is b years old, how old was Al when Bob was c years old?
(1) $a - b + c$
(2) $a - b - c$
(3) $a + b - c$
(4) $b - a + c$

45. If $\log x = 3 + \log 3$, then x equals
(1) 3^8
(2) 6
(3) 3,000
(4) 1,003

46. The circle whose equation is $(x + 1)^2 + (y + 3)^2 = 9$
is tangent to
(1) the y-axis only
(2) the x-axis only
(3) both axes
(4) neither axis

47. If the graphs of $y = 3^x$ and $y = 3^{-x}$ are drawn on the same set of axes, the graphs will intersect at a point which is on the line whose equation is
(1) $x = 0$
(2) $y = 0$
(3) $y = x$
(4) $y = -x$

48. The solution of the inequality $x^2 - x - 6 > 0$ is
(1) $-2 < x < 3$
(2) $-3 < x < 2$
(3) $x < -2$ or $x > 3$
(4) $x < -3$ or $x > 2$