people?

June 22, 1960

Part I

Answer all questions in this part. Questions 1-10 count 1 credit each. Questions 11-30 count 2 credits each. No partial credit will be allowed. Write the answer to each question on the line at the right.

answer to each question on the tine at the right.	
1-3 Questions 1-3 refer to the graph of the equation $2x + 4y$	+ 5 = 0.
1. Find the slope of the line.	1
2. Write an equation of the straight line parallel to the given line and passing through the origin.	2
3. Find the x-intercept of the given line.	3
 4-6 Questions 4-6 refer to the equation x³ + 10x + 2 = 0. 4. Find the sum of the roots of the equation. 	4
5. Find the product of the roots of the equation.	5
6. How many rational roots does the equation have?	6
Directions (7-10): Indicate whether each of the following true for (1) all real values of x (2) one or more, but not all, real values of x (3) no real value of x by writing on the line at the right the number 1, 2 or 3.	statements is
7. $\sqrt{x^2+9}=x+3$	7
8. $x^2 + 1 = 0$	8
9. $(x-1)^3 = x^3 - 3x^2 + 3x - 1$	9
10. $x^2 - 6x + 9 < 0$	10
11. Express in the form $a + bi$ the reciprocal of $2 + i$.	11
12. Find the numerical value of a if $x + a$ is a factor of $x^5 + 32$.	12
13. John travels from A to B , a distance of 30 miles, at the rate or 6 miles per hour, and then without stopping returns from B to A . What should his return rate be in miles per hour, in order that the average rate for the entire trip be 5 miles per hour?	13
14. If $f(x) = (2x)^0 + x^{-\frac{6}{3}}$, find the value of $f(64)$.	14
15. There are ten people at a conference. How many different committees of three members each can be formed from these ten	. 15

15___

28. If r_1 and r_2 are real roots of the quadratic equation $x^2 + px + q = 0$ such that $r_1 > 0$, $r_2 < 0$ and p and q are integers, it is always true that (1) q > 0 (2) q < 0(3) p > 0 (4) p < 0

29. If $4^x = 8^y$, then x equals

$$(1) \frac{1}{2} y \qquad (2) 2y$$

(3)
$$\frac{3}{2}$$
 y

(3)
$$\frac{3}{2}$$
 y (4) $\frac{2}{3}$ y

30. In the equation $px^2 + qx + s = 0$, p, q and s are real numbers with $p \neq 0$. If the two roots of the equation are equal, then (1) $q^2 = 4ps$ (2) $q^2 = -4ps$ (3) $q^2 = ps$ (4) $q^2 = -bs$

Part II

Answer ten questions from this part. Each correct answer will receive 21/2 credits. No partial credit will be allowed. The question marked * is based upon an optional topic in the syllabus. Write your answer on the line at the right.

- 31. If two of the roots of $x^3 + px + q = 0$ are 3 and -1, find the third root.
- 32. If one of the roots of $x^3 2x^2 + x 2 = 0$ is 2, find the other two roots.
- 33. The x-intercepts of the graph of the equation $y = x^2 + bx + c$ are 2 and 3. Find the value of c.
- 34. The points P_1 (2, 3), P_2 (4, 9), P_4 (6, k) are collinear. Find the value of k.

Directions (35-37): Indicate the correct completion for each of the following by writing on the line at the right the number 1, 2, 3 or 4.

35. A possible root of the equation $6x^4 + px^3 + qx^2 + rx$ + 4 = 0 where p, q and r are integers is (1) $\frac{3}{2}$ (2) $-\frac{3}{2}$

(3)
$$-3$$
 (4) $\frac{4}{3}$ 35_____

- 36. If a and b are real numbers, then the product of a + biand a - bi is (1) always a real number (2) sometimes, but not always, a real number (3) always imaginary (4) sometimes, but not always, imaginary
- (1) $x + \frac{1}{}$ 37. A rational integral function of x is (2) $\sqrt{x} + 2$ (3) $x^2 + x^{3/2}$ (4) $x + \sqrt{2}$ 37_

38. The circle whose center is (3, -2) passes through the point (5, 1). Find the length of the radius of the circle.	38
39. The first term of an arithmetic progression is x and the common difference is 2. The first, third and seventh terms form a geometric progression. Write an equation that could be used to find the value of the first term.	39
40. In how many ways may three pupils be seated in a row containing 5 seats?	40
41. Find the slope of the line tangent to the curve whose equation is $y = x^3 - 5x + 2$, at the point where the graph crosses the y-axis.	41
42. Find the coordinates of the point of inflection of the curve whose equation is $y = x^3 - 5x + 2$.	42
43. The area of a rectangle is represented by $12x - x^2$ where x is a side of the rectangle. For what value of x will the area be a maximum?	43
44. Find the set of values of x that satisfies the inequality $4-2x<10$.	44
*45. Write in determinant form an equation of the straight line through the points $(3, 2)$ and $(-1, 0)$.	45
Part III	
Answer ten questions from this part. Each correct answer will	receive 21/2
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the	based upon
credits. No partial credit will be allowed. Questions marked * are	based upon
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the	based upon he right.
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\mathbf{r}}$. Express r in terms of $\log A$, $\log P$ and	based upon he right. 46
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\tau}$. Express r in terms of $\log A$, $\log P$ and $\log e$. Directions (48-53): Indicate the correct completion for each of $\log A$ writing on the line at the right the number 1, 2, 3 or 4. 48. The positive root of the equation $x^3 + 5x - 7 = 0$ lies between (1) 1.0 and 1.2 (2) 1.2 and 1.4 (3) 1.4 and 1.6 (4) 1.6 and 1.8	based upon he right. 46
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\tau}$. Express r in terms of $\log A$, $\log P$ and $\log e$. Directions (48-53): Indicate the correct completion for each of $\log A$ writing on the line at the right the number 1, 2, 3 or 4. 48. The positive root of the equation $x^3 + 5x - 7 = 0$ lies between (1) 1.0 and 1.2 (2) 1.2 and 1.4 (3) 1.4 and 1.6	the right. 46 the follow-
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\mathbf{r}}$. Express r in terms of $\log_2 A$, $\log_2 P$ and $\log_2 e$. Directions (48-53): Indicate the correct completion for each of $\log_2 A$ writing on the line at the right the number 1, 2, 3 or 4. 48. The positive root of the equation $x^3 + 5x - 7 = 0$ lies between (1) 1.0 and 1.2 (2) 1.2 and 1.4 (3) 1.4 and 1.6 (4) 1.6 and 1.8 49. The graph of $y = 3^x$ (1) intersects the x -axis only (2) intersects the y -axis only (3) intersects both coordinate axes (4) does not intersect either axis 50. If r is a positive real number and n is a positive integer,	the follow-
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\mathbf{r}}$. Express r in terms of $\log A$, $\log P$ and $\log e$. Directions (48-53): Indicate the correct completion for each of ing by writing on the line at the right the number 1, 2, 3 or 4. 48. The positive root of the equation $x^3 + 5x - 7 = 0$ lies between (1) 1.0 and 1.2 (2) 1.2 and 1.4 (3) 1.4 and 1.6 (4) 1.6 and 1.8 49. The graph of $y = 3^x$ (1) intersects the x-axis only (2) intersects the y-axis only (3) intersects both coordinate axes (4) does not intersect either axis 50. If r is a positive real number and n is a positive integer,	the follow-
credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answer on the line at the 46. Find to the nearest tenth the value of $\log_2 5$. 47. Given $A = Pe^{\mathbf{r}}$. Express r in terms of $\log A$, $\log P$ and $\log e$. Directions (48-53): Indicate the correct completion for each of ing by writing on the line at the right the number 1, 2, 3 or 4. 48. The positive root of the equation $x^3 + 5x - 7 = 0$ lies between (1) 1.0 and 1.2 (2) 1.2 and 1.4 (3) 1.4 and 1.6 (4) 1.6 and 1.8 49. The graph of $y = 3^x$ (1) intersects the x -axis only (2) intersects the y -axis only (3) intersects both coordinate axes (4) does not intersect either axis 50. If r is a positive real number and n is a positive integer,	the follow-

- 52. If in the equation $y = 3^x$, the variable x is increased by 2, then y is (1) increased by 2 (2) multiplied by 2 (3) increased by 9 (4) multiplied by 9 53. If the roots of the equation $x^2 + x + 1 = 0$ are expressed in the form a + bi, then b is equal to (1) $\pm \frac{1}{2}$ (2) $\pm \frac{3}{2}$ (3) $\pm \frac{\sqrt{3}}{2}$ (4) $\pm \frac{\sqrt{3}}{4}$ 53_ 54. The area of a rectangle is represented by A, the diagonal by d and one side by s. Express d in terms of A and s. 55. In the equation $x^2 + ax + b = 0$, one root is twice the 55 other. Express \hat{b} in terms of a. 56. Express in the form a + bi: 2 (cos 120° + i sin 120°) **5**6 57____ 57. Express in polar form: -3i 58. Find the amplitude of the complex number [1 (cos 40° +
- i sin 40°)] which, when represented graphically, lies in the third quadrant.

 *59. The polar coordinates of a point P are $\left\{2, \frac{\pi}{3}\right\}$. If
- $\left\{\begin{array}{c} x, \frac{4\pi}{3} \\ \end{array}\right\}$ are the coordinates of the same point, find the value of x.
- *60. The equation of a circle in polar form is $r = 6 \sin \theta$. Write an equation of this circle in rectangular form.

ANSWER KEY

Regents Examinations in Advanced Algebra (12A)

TOPICAL REVIEW BOOK CO.

131 North Street

Auburn, New York

June, 1960								
1. 2.	1/2		5/9		1		46.	2.3
	x + 2y = 0		2/3	31.	-2		47.	$\log A - \log P$
3.	$-2\frac{1}{2}$	18.	$-20\sqrt{-1}$	32 . -33.	i, —i 6		71.	log e
3. 4. 5.	-2		25	34.	15		48.	1
6.	none	19.	g \sqrt{g}	35. 36.	4		49. 50.	2 2
7.	2	20	1 + x	37.	4		50. 51.	3
ö. 9.	2 3 1 3	20.	2 + ~	38.	$\sqrt{13}$		52.	
6. 7. 8. 9. 10. 11. 12.	3	21. 22.	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		x	x + 4	53.	3
11.	½5 — ⅓i 2	22.	3, 0	39.	$\frac{1}{x+4}$	$={x+12}$	-4	$\sqrt{A^2+s^4}$
12. 13.	4 2/7	23. 24.	4	40.	4 7 4 60	x + 12	54.	<u> </u>
14.	1 1/16	25.	1	41.	5			2a2
15.	120	26.	3 3	42.	0, 2		55.	9
		27. 28.	2	43. 44.	x > -3	2	5 4	$-1+\sqrt{3}i$
		29.	3		\hat{x}	, 1	30.	-1 + v s i
				45 .	3 2	$\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = 0$		
57	2/000 9709		-i 9709)	50	1—1 0		.	
	$3(\cos 270^{\circ} + (y - 3))$			58.	200°	59. —2	60.	$x^2+y^2-6y=0$