University of the State of New York

75TH EXAMINATION

ADVANCED ALGEBRA

Monday, Jan. 19, 1891-9.15 A. M. to 12:15 P. M., only

		48 creaus,						
			(a)	system	of	logarithms;	(b)	per-
1-1: (0) 01	PIOS						

2. Assuming $\frac{a^m}{a^n} = a^{m-n}$ prove that (a) $a^0 = 1$; (b) $a^{-n} = \frac{1}{a^n}$. Prove that — multiplied by — = +.

3. Find the product of $4 + \sqrt{-7}$ and $8 - 2\sqrt{-7}$, and reduce the result.

4. Prove that (a) $\log mn = \log m + \log n$; (b) $\log \text{base} = 1$.

5. Given $\log 2 = 0.30103$, $\log 3 = 0.47712$; find $\log \frac{225}{8}$

6. Simplify (a) $(-a)^{2n+1} \times (-a)^{2n-1} n$ being an integer; (b) $(a^{-6} - b^{-4}) \div (a^{-3} - b^{-2})$.

7. Form the equation whose roots are $a + \sqrt{-5b}$ and $a - \sqrt{-5b}$.

8. A debt can be discharged in a year by paying \$1 the first week, \$3 the second, \$5 the third, and so on; find the last payment and the amount of the debt.

9. The 7th term of an arithmetical series is 27, its 13th 51; find the first term and the common difference.

10. How many different combinations may be formed of 8 letters, taken 4 at a time?

11. Find, by the binomial theorem, the 7th term of $(1-x)^{\frac{1}{3}}$.

12. Expand to 4 terms, by the method of indeterminate co-efficients, $\frac{2+x}{1+x+x^2}$.

13. Resolve into partial fractions $\frac{3x-5}{x^2-13x+40}$

14. Write the 7th term of the series, 3, 5, 8, 12, 17, and show how it is found.

15. One root of the equation $x^3+x^2-16x+20=0$ is -5; find the other roots.