January 25, 1967

Part I

Answer all questions in this part. Each correct answer will receive 2½ credits. No partial credit will be allowed. Write your answers in the spaces provided.

1. If the probability that a basketball player will succeed in making a certain shot is 0.4, what is the probability that he will not succeed?

2. Solve for x: $4^x = 2^{x+4}$

3. Express $\frac{1}{2 + i\sqrt{3}}$ as an equivalent fraction with a real denominator.

4. Solve for y: $\sqrt{3y} - 8 = y - 6$

5. If $(a + bi) + (2 - i) = 3 + i$, find the value of b.

6. The height(s) above the ground, in feet, of a ball thrown vertically upward is given by the equation $s = 44 + 80t - 16t^2$, where t is measured in seconds. Find the velocity of the ball in feet per second when $t = 1$.

7. How many distinct five-letter arrangements can be made from the letters of the word "ADDED"?

8. Find the rational root of the equation $2x^3 - x^2 - x - 3 = 0$.

9. A root of $x^3 + x^2 + x - 7 = 0$ lies between 1.4 and 1.5. Find this root to the nearest tenth.

10. Find the values of x which satisfy the inequality $3 + x \leq 4x - 5$.

11. Find the remainder, independent of x, when $ax^2 + bx + c$ is divided by $x - r$.

12. For what value of k is 2 a root of the equation $2x^4 - 6x^3 + 4kx^2 + 13 = 0$?

13. F varies directly as m and inversely as d^2. If $F = 96$ when $m = 4$ and $d = 6$, find F when $m = 6$ and $d = 8$.

14. How many committees each consisting of 3 boys and 2 girls can be chosen from a group of 8 boys and 5 girls?

15. Find the numerical value of $\log_{10} 64$.

16. If the graphs of the equations $4y - 2x = 7$ and $ax + 5y = 10$ are perpendicular to each other, find the numerical value of a.

17. Solve for x in terms of y: $y = \frac{2x + 7}{x - 3}$.
18. The cost of a telephone call is a cents for the first three minutes and b cents per minute for each minute thereafter. If n is an integer greater than 3, write an expression for the cost of a call for n minutes.

19. The 5th term of an arithmetic progression is s and the 15th term is t. Find the common difference in terms of s and t.

Directions (20-24): Indicate the correct completion for each of the following by writing the number 1, 2, 3, or 4 in the space provided.

20. One of the equations for the family of lines passing through the point whose coordinates are $(0, -3)$ is (1) $y = -3x + b$ (2) $y = b$ (3) $y = mx - 3$ (4) $y = mx$

21. The sum of the roots of the equation $x^3 - 3x^2 + 2x - 1 = 0$ exceeds the product of the roots by (1) 1 (2) 2 (3) 3 (4) 4

22. The graph of the equation $3x^2 + 12x - 20y + 42 = 0$ is (1) a parabola (2) an ellipse (3) a circle (4) a hyperbola

23. The coordinates of the point of inflection of $y = \frac{x^3}{6} + \frac{x^2}{2} + 2x - 1$ are (1) $\left(-1, -\frac{3}{2} \right)$ (2) $\left(-1, -\frac{8}{3} \right)$ (3) $\left(1, \frac{5}{3} \right)$ (4) $\left(1, \frac{7}{2} \right)$

24. The numerical value of $10^{10} \cdot 3$ is (1) $\frac{10}{3}$ (2) $\frac{3}{10}$ (3) 3 (4) $\frac{1}{3}$

Part II

Answer sixteen questions from this part, 25-48. Each correct answer will receive $2\frac{1}{2}$ credits. No partial credit will be allowed. Questions marked * are based upon optional topics in the syllabus. Write your answers in the space provided.

25. Given i is the imaginary unit, write $(-i)^{56}$ in simplest form.

26. Determine all the values of x for which the inequality $x^2 - x - 6 < 0$ is true.

*27. The area of a triangle, expressed in the form $\frac{1}{2}$

is 14. Find the value of x.

28. Four points $A, B, C,$ and $D,$ which represent complex numbers plotted in the complex plane, are the vertices of parallelogram $ABCD$. If A represents $0 + 0i$, B represents $5 + i$, and D represents $2 + 7i$, what complex number does C represent?
29. Multiply $2(\cos 115^\circ + i \sin 115^\circ)$ by $6(\cos 245^\circ + i \sin 245^\circ)$ and express the result in the rectangular form, $a + bi$.

30. If $y = x^2 + 3x - 2$, find the average rate of change of y with respect to x as x increases from $x = 1$ to $x = 4$.

31. What is the abscissa of the point on the graph of $y = x^2 + 5x + 4$ where the slope of the tangent equals 9?

32. The arithmetic mean between two numbers is -6 and their positive geometric mean is $4\sqrt{2}$. Find the two numbers.

33. What is the sum of the seven numerical coefficients in the expansion of $(a + b)^6$?

34. Express the repeating decimal $0.4333\ldots$, in which the digit 3 is repeated endlessly as indicated, in the form $\frac{a}{b}$ where a and b are integers.

35. If $f(x) = x^2 + 2x - 3$, write $f(a - 3)$ as an expression free of parentheses.

36. Change $x^2 + y^2 = 2x + 15$ from rectangular coordinates to polar coordinates.

37. If $\log_{10} e = 0.4343$, find $\log_{10} 100$ to the nearest tenth.

38. What is the abscissa of the point at which the graph of $y = -2x^2 + x + 3$ is intersected by its axis of symmetry?

39. Write an equation of the line whose x-intercept and y-intercept are each twice the corresponding intercepts of the graph of the equation $5x - 2y = 10$.

40. The endpoints of a diameter of a circle are $(6, 0)$ and $(0, 8)$. Write the equation of this circle in the form $(x - h)^2 + (y - k)^2 = r^2$.

41. The equation $x^3 + 6x^2 + 13x + 10 = 0$ has a root $x = -2$. Express one of the remaining roots in the form $a + bi$.

*36. Change $x^2 + y^2 = 2x + 15$ from rectangular coordinates to polar coordinates.

Directions (42-48): For each of those chosen, write in the space provided the number preceding the expression that best completes each statement or answers each question.

42. A rectangle is twice as long as it is wide. Its diagonal is d inches long and its area contains A square inches. The area A expressed in terms of d is

\[
\frac{2d^2}{3} \quad (2) \quad \frac{3d^2}{2} \quad (3) \quad \frac{2d^2}{5} \quad (4) \quad \frac{5d^2}{2}
\]

43. The value or values of x for which the expression $\frac{x - 1}{2x(x + 1)}$ is undefined would be (1) 1 only (2) -1 only (3) 0 only (4) 0 and -1 43____
44. Which point does not lie on the graph of \(y = \log x \)?
 (1) \(\left(\frac{1}{2}, -\frac{1}{2} \right) \)
 (2) \((1, 0) \)
 (3) \((-4, -1) \)
 (4) \((2, \frac{1}{2}) \)

45. In how many points do the graphs of \(xy = 6 \) and \((x + 3)^2 + (y - 3)^2 = 4 \) intersect?
 (1) 1
 (2) 2
 (3) 0
 (4) 4

46. The roots of the equation \(x^2 - kx + k = 0 \) are real and unequal if
 (1) \(k < 0 \) or \(k > 4 \)
 (2) \(0 \leq k < 4 \)
 (3) \(k = 0 \)
 (4) \(k = 4 \)

47. It requires 8 hours for machine \(A \) to do a certain job alone, and it requires 15 hours for machine \(B \) to do the same job alone. If two machines of exactly the same type as \(A \) and three machines of exactly the same type as \(B \) work on this job together, in how many hours will they complete it? If \(x \) represents the time required for these 5 machines to do the job together, then a correct equation for the solution of this problem is

\[
\frac{x}{16} + \frac{x}{45} = 1
\]

\[
\frac{1}{4} + \frac{1}{5} = \frac{5}{x}
\]

\[
\frac{x}{8} + \frac{x}{15} = 1
\]

\[
\frac{x}{4} + \frac{x}{5} = 1
\]

48. A complex root of \(x^5 + 32 = 0 \) is
 (1) \(2(\cos 72^\circ + i \sin 72^\circ) \)
 (2) \(2(\cos 36^\circ + i \sin 36^\circ) \)
 (3) \(-2(\cos 108^\circ + i \sin 108^\circ) \)
 (4) \(-2(\cos 36^\circ + i \sin 36^\circ) \)