January 25, 1967

Part I

Answer all questions in this part. Each correct answer will receive 21/2 credits.

No partial credit will be allowed. Write your answers in the spaces p	roviaea.
1. If the probability that a basketball player will succeed in making a certain shot is 0.4, what is the probability that he will not succeed?	1
••	
2. Solve for $x: 4^{\frac{3^{\mu}}{2}} = 2^{r+4}$	2
3. Express $\frac{1}{2+i\sqrt{3}}$ as an equivalent fraction with a real	
denominator.	3
4. Solve for y : $\sqrt{3y-8} = y-6$	4
5. If $(a + bi) + (2 - i) = 3 + i$, find the value of b.	5
6. The height(s) above the ground, in feet, of a ball thrown vertically upward is given by the equation $s = 44 + 80t - 16t^2$, where t is measured in seconds. Find the velocity of the ball in feet per second when $t = 1$.	6
7. How many distinct five-letter arrangements can be made from the letters of the word "ADDED"?	7
8. Find the rational root of the equation $2x^3 - x^2 - x - 3 = 0$.	8
9. A root of $x^3 + x^2 + x - 7 = 0$ lies between 1.4 and 1.5. Find this root to the nearest tenth.	9
10. Find the values of x which satisfy the inequality $3 + x \le 4x - 5$.	10
11. Find the remainder, independent of x , when $ax^2 + bx + c$ is divided by $x - r$.	11
12. For what value of k is 2 a root of the equation $2x^4 - 6x^3 + 4kx + 13 = 0$?	12
13. F varies directly as m and inversely as d^2 . If $F = 96$ when $m = 4$ and $d = 6$, find F when $m = 6$ and $d = 8$.	13
14. How many committees each consisting of 3 boys and 2 girls can be chosen from a group of 8 boys and 5 girls?	14
15. Find the numerical value of log ₁₆ 64.	15
16. If the graphs of the equations $4y - 2x = 7$ and $ax + 5y = 10$ are perpendicular to each other, find the numerical value of a .	16
17. Solve for x in terms of y: $y = \frac{2x + 7}{x}$	17

18. The cost of a telephone call is a cents for the first three minutes and b cents per minute for each minute thereafter. If n is an integer greater than 3, write an expression for the cost of a call for n minutes.	18
19. The 5th term of an arithmetic progression is s and the 15th term is t . Find the common difference in terms of s and t .	19
Directions (20-24): Indicate the correct completion for each of by writing the number 1, 2, 3, or 4 in the space provided.	the following
20. One of the equations for the family of lines passing through the point whose coordinates are $(0, -3)$ is (1) $y = -3x + b$ (2) $y = b$ (3) $y = mx - 3$ (4) $y = mx$	20
21. The sum of the roots of the equation $x^3 - 3x^2 + 2x - 1 = 0$ exceeds the product of the roots by (1) 1 (2) 2 (3) -2 (4) 4	21
22. The graph of the equation $3x^2 + 12x - 20y + 42 = 0$ is (1) a parabola (2) an ellipse (3) a circle (4) a hyperbola	22
23. The coordinates of the point of inflection of $y = \frac{x^3}{6} + \frac{x^2}{2}$	
$+2x-1$ are (1) $\left(-1,-\frac{3}{2}\right)$ (2) $\left(-1,-\frac{8}{3}\right)$	
$(3) \left(1, \frac{5}{3}\right) \qquad (4) \left(1, \frac{7}{2}\right)$	23
24. The numerical value of $10^{\log 3}$ is $(1) \frac{10}{3}$ $(2) \frac{3}{10}$	
(3) 3 $(4) \frac{1}{3}$	24
Part II	
Answer sixteen questions from this part, 25-48. Each correct answer 2½ credits. No partial credit will be allowed. Questions marked * are optional topics in the syllabus. Write your answers in the space prov	e based upon
25. Given i is the imaginary unit, write $(-i)^{56}$ in simplest form.	25
26. Determine all the values of x for which the inequality $x^2-x-6<0$ is true.	26
*27. The area of a triangle, expressed in the form $\frac{1}{2}\begin{bmatrix} 2 & 0 & 1 \\ 3 & 5 & 1 \\ x & 8 & 1 \end{bmatrix}$ is 14. Find the value of x .	•27
28. Four points A , B , C , and D , which represent complex numbers plotted in the complex plane, are the vertices of parallelogram $ABCD$. If A represents $0 + 0i$, B represents $5 + i$, and D represents $2 + 7i$, what complex number does C represent?	28

12A (ADVANCED ALGEBRA)	59
29. Multiply $2(\cos 115^{\circ} + i \sin 115^{\circ})$ by $6(\cos 245^{\circ} + i \sin 245^{\circ})$ and express the result in the rectangular form, $a + bi$.	29
30. If $y = x^2 + 3x - 2$, find the average rate of change of y with respect to x as x increases from $x = 1$ to $x = 4$.	30
31. What is the abscissa of the point on the graph of $y = x^2 + 5x + 4$ where the slope of the tangent equals 9?	31
32. The arithmetic mean between two numbers is -6 and their positive geometric mean is $4 \lor 2$. Find the two numbers.	32
33. What is the sum of the seven numerical coefficients in the expansion of $(a + b)^6$?	33
34. Express the repeating decimal 0.4333, in which the digit	
3 is repeated endlessly as indicated, in the form $\frac{a}{b}$ where a and b	
are integers.	34
35. If $f(x) = x^2 + 2x - 3$, write $f(a - 3)$ as an expression free of parentheses.	35
*36. Change $x^2 + y^2 = 2x + 15$ from rectangular coordinates to polar coordinates.	*36
37. If $\log_{10} e = 0.4343$, find $\log_e 100$ to the nearest tenth.	37
38. What is the abscissa of the point at which the graph of $y = -2x^2 + x + 3$ is intersected by its axis of symmetry?	38
39. Write an equation of the line whose x-intercept and y-intercept are each twice the corresponding intercepts of the graph of the equation $5x - 2y = 10$.	39
40. The endpoints of a diameter of a circle are $(6, 0)$ and $(0, 8)$. Write the equation of this circle in the form $(x - h)^2 + (y - k)^2 = r^2$.	40
41. The equation $x^3 + 6x^2 + 13x + 10 = 0$ has a root $x = -2$. Express one of the remaining roots in the form $a + bi$.	41
Directions (42-48): For each of those chosen, write in the space number preceding the expression that hest completes each statemen each question.	provided the t or answers
42. A rectangle is twice as long as it is wide. Its diagonal is d in long and its area contains A square inches. The area A expressed in to of d is (1) $\frac{2d^2}{3}$ (2) $\frac{3d^2}{2}$ (3) $\frac{2d^2}{5}$ (4) $\frac{5d^2}{2}$	ches erms
3 2 5 2 43. The value or values of x for which the expression $\frac{x-x}{2x(x+x)}$ is undefined would be (1) 1 only (2) —1 only (3) 0 only (4) 0 and	1)

- 44. Which point does not lie on the graph of $y = \log_4 x$? (1) $(\frac{1}{2}, -\frac{1}{2})$ (2) (1, 0) (3) (-4, -1) (4) (2, $\frac{1}{2}$)
- 45. In how many points do the graphs of xy = 6 and $(x + 3)^2 + (y 3)^2 = 4$ intersect? (1) 1 (2) 2 (3) 0 (4) 4 45_
- 46. The roots of the equation $x^2 kx + k = 0$ are real and unequal if (1) k < 0 or k > 4 (2) 0 < k < 4 (3) k = 0 (4) k = 4
- 47. It requires 8 hours for machine Λ to do a certain job alone, and it requires 15 hours for machine B to do the same job alone. If two machines of exactly the same type as A and three machines of exactly the same type as B work on this job together, in how many hours will they complete it? If x represents the time required for these 5 machines to do the job together, then a correct equation for the solution of this problem is

(1)
$$\frac{x}{16} + \frac{x}{45} = 1$$
 (2) $\frac{1}{4} + \frac{1}{5} = \frac{5}{x}$

(3)
$$\frac{x}{8} + \frac{x}{15} = 1$$
 (4) $\frac{x}{4} + \frac{x}{5} = 1$ 47___

- 48. A complex root of $x^5 + 32 = 0$ is (1) $2(\cos 72^\circ + i \sin 72^\circ)$ 2) $2(\cos 36^\circ + i \sin 36^\circ)$ (3) $-2(\cos 108^\circ + i \sin 108^\circ)$ (2) $2(\cos 36^{\circ} + i \sin 36^{\circ})$ (4) $-2(\cos 36^{\circ} + i \sin 36^{\circ})$