The University of the State of New York
 283d Higi School Examination

 ADVANCED ALGEBRA

 ADVANCED ALGEBRA}

Wednesday, January $21,1942-9.15 \mathrm{a} . \mathrm{m}$. to $12.15 \mathrm{p} . \mathrm{m}$., only

Instructions

Do not open this sheet watil the signal is given.

Part I

This part is to bo dome first and the maximum time allowed for it is one and one half hours. Merely write the answer to each question in the space at the right; no work need, be shown.

If you finish part 3 bofore the signal to stop is given you may begin part II. However, it is advisabic to togle youn :ork over carefully before proceeding, since no credit will be given any answer in part I whitich is swo correct and in its simplest form.

When the signal to stop is given at the close of the one and one half hour period, work on part I must cease and this sheet of the question paper must be detached. The sheets will then be collected and you should continue with the remainder of the examination.

Part II

Write at top of first page of answer paper to part II (a) name of school where you have studied, (b) number of weeks and recitations a week in advanced algebra.

The minimum time requirement is five recitations a week for half a school year after the completion of intermediate algebra.

The use of the slide rule will be allowed for checking but all computations with tables must be shown on the answer paper.

Bee inatructions for part it on page I

Part II
Answer five questions from this part. Full credit will not be granted unlesp sll operarions (eweept mental ones) neceskary to find results are given; simply indicating the operations is not sufficient. knch answer should be reduced to its simplest form. Purely arithmetical solutions for problems will not be avcepted.

21 Solve the equation $6 x^{2}-5 x^{3}+7 x^{3}-5 x+1=0$
33 Find, entreit to the tritrist thath, thic rout root of $\boldsymbol{x}^{4}-3 r^{2}+5 x-9=0$
23 Given the set of equations $x^{2}+y^{2}=16$

$$
x+y=k
$$

For what positive value of k will the graph of $x+y=k$ be tangent to the graph of $x^{2}+y^{2}=16 ? \quad[10]$

24 In an infinite series of equilateral triangles, the vertices of cach triangle after the first are the midpoints of the sides of the preceding triangle. The pertinteter of the first triangle is 3 feet. Find the sum of the perimeters of at1 the twitnst

25 An automobile uses 9 gallons of gasoline is traveling 150 miles at 25 miles an hour. If gasoline consumption varies jointiy as the digtance azvond snd the square root of the speed, find

26 Given the formula $A=P(1+r)^{n}$
a Obtain the value of $\log (1+r)$ in tems of $A,{ }^{2}$ and n. [2]
b Solve for r when $A=\$ 1850, P=\$ 1000$ and $n=8 . \quad$ [8]
27 Prove that an equation whose coefficients are integers, that of the term of highest degree being unity, can not bave as a root a rational fraction in its lowest terms. [10]
*28 a Write the complex number $3+i$ in polar form, with amplitude correct to the nearrst degree. [6]
b Write the number $2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$ in the form $a+b i$. [4]
*29 If an arrow is shot vertically upwards with an initial velocity of 144 feet per second, the height S reached in t seconds can be found from the formula $S=144 t-16 t^{2}$. Using this formula, find (a) the velocity of the arrow after 3 seconds, (b) the height to which it will rise. $[5,5]$
*This question is based on one of the optional topics in the syllabus.

Advanced Algerra

Fill in the following lines:

Name of school
Name of pupil
Detach this sheet and hand it in at the close of the one and one half hour period.

Part I

Answer all questions in this part. Each correct answer will receive $2 \dagger$ credits. No partial credit will be allowed. Each answer must be reduced to its simplest form.

1 For what value of a is the graph of $a x+2 y+3=0$ parallel to the x axis?

2 Express the product of two consecutive integers as a function of n in which n is the smaller integer.
1.
2.
3.
4.
5.
6.
7.
8.

9
10

11
12

13 \qquad

14
15
16 \qquad
17

Questions 18-20 refer to the equation $f(x)=10 x^{5}+c x^{3}+e x+21=0$, where c and e are positive integers. [Answer yes or no.]

18 Is -3 a possible root of $f(x)=0$?
18.

19 Do the values of c and e affect the sum of the roots of $f(x)=0$?
20 Must the real root (or roots) of $f(x)=0$ be of fractional form with denominator a factor of 10 ?

