6. Solve the following equation for \(n \):

\[\frac{9}{8760} = \frac{1}{?} \]

\[0.000127 \]

7. Solve the following equation for \(x \):

\[x^2 + x - 4y = 0 \]

8. Obtain all the information possible concerning the roots of the equation:

\[x^2 + x - 4y = 0 \]

9. If \(a \) and \(b \) are the roots of the equation, transform \(x^2 + x - 4y = 0 \) into an equation whose roots are \(-2a \) and \(3b \).

10. Plot between the values of \(x = -2 \) and \(x = +3 \) the curve with the equation:

\[y = 4x^2 - 6x^2 + 10 + 10x \]

11. Solve the following equation for \(n \), where \(x \) is the positive root of \(x^2 + x - 4y = 0 \):

\[\frac{1}{n} + \frac{1}{n+1} = \frac{1}{y} \]

[10, 20]