1 What are the coordinates of the point on the directed line segment from K(−5, −4) to L(5, 1) that partitions the segment into a ratio of 3 to 2?
1) (−3, −3)
2) (−1, −2)
3) \(\left(0, -\frac{3}{2} \right) \)
4) (1, −1)

2 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is
1) 54º
2) 72º
3) 108º
4) 360º

3 The equation of line \(h \) is \(2x + y = 1 \). Line \(m \) is the image of line \(h \) after a dilation of scale factor 4 with respect to the origin. What is the equation of the line \(m \)?
1) \(y = −2x + 1 \)
2) \(y = −2x + 4 \)
3) \(y = 2x + 4 \)
4) \(y = 2x + 1 \)

4 As shown in the diagram below, circle \(A \) has a radius of 3 and circle \(B \) has a radius of 5.

Use transformations to explain why circles \(A \) and \(B \) are similar.

5 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri’s principle to explain why the volumes of these two stacks of quarters are equal.
6 In the diagram below, triangles $\triangle XYZ$ and $\triangle UVZ$ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.

Describe a sequence of similarity transformations that shows $\triangle XYZ$ is similar to $\triangle UVZ$.

7 Explain why $\cos(x) = \sin(90 - x)$ for x such that $0 < x < 90$.

8 In the diagram of $\triangle LAC$ and $\triangle DNC$ below, $LA \cong DN$, $CA \cong CN$, and $DAC \perp LCN$.

a) Prove that $\triangle LAC \cong \triangle DNC$.

b) Describe a sequence of rigid motions that will map $\triangle LAC$ onto $\triangle DNC$.

9 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

10 In the diagram below of circle O, diameter \overline{AB} and radii \overline{OC} and \overline{OD} are drawn. The length of \overline{AB} is 12 and the measure of $\angle COD$ is 20 degrees.

If $\overline{AC} \cong \overline{BD}$, find the area of sector \overline{BOD} in terms of π.
11 Given: \(\triangle XYZ, \overline{XY} \cong \overline{ZY}, \) and \(\overline{YW} \) bisects \(\angle XYZ \)
Prove that \(\angle YWZ \) is a right angle.

12 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $50,000.

13 In the diagram below, secant \(\overline{ACD} \) and tangent \(\overline{AB} \) are drawn from external point \(A \) to circle \(O \).

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. \(AC \cdot AD = AB^2 \)

14 Given: \(D \) is the image of \(A \) after a reflection over \(CH \).
\(CH \) is the perpendicular bisector of \(BCE \)
\(\triangle ABC \) and \(\triangle DEC \) are drawn
Prove: \(\triangle ABC \cong \triangle DEC \)

15 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man’s head, to the nearest tenth of a degree?
1) 34.1
2) 34.5
3) 42.6
4) 55.9
16 The image of $\triangle ABC$ after a rotation of 90º clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?
1) $BC \cong DE$
2) $AB \cong DF$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

17 The line $y = 2x - 4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?
1) $y = 2x - 4$
2) $y = 2x - 6$
3) $y = 3x - 4$
4) $y = 3x - 6$

18 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?
1) $10 + 2\pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

19 In isosceles $\triangle MNP$, line segment NO bisects vertex $\angle MNP$, as shown below. If $MP = 16$, find the length of MO and explain your answer.

20 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm, and the density of each brick is 1920 kg/m³. The maximum capacity of the contractor's trailer is 900 kg. Can the trailer hold the weight of 500 bricks? Justify your answer.
21 In right triangle ABC with the right angle at C,
\[\sin A = 2x + 0.1 \text{ and } \cos B = 4x - 0.7. \] Determine and state the value of x. Explain your answer.

22 Given right triangles ABC and DEF where $\angle C$ and $\angle F$ are right angles, $AC \cong DF$ and $CB \cong FE$. Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

23 Using a compass and straightedge, construct an altitude of triangle ABC below. [Leave all construction marks.]

24 Prove the sum of the exterior angles of a triangle is 360°.

25 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH.

\[\text{Graph} \]
26 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

27 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.
1. Which object is formed when right triangle \(RST \) shown below is rotated around leg \(RS \)?

 1) a pyramid with a square base
 2) an isosceles triangle
 3) a right triangle
 4) a cone

2. The vertices of \(\triangle JKL \) have coordinates \(J(5,1) \), \(K(-2,-3) \), and \(L(-4,1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?

 1) a translation of two units to the right and two units down
 2) a counterclockwise rotation of 180 degrees around the origin
 3) a reflection over the \(x \)-axis
 4) a dilation with a scale factor of 2 and centered at the origin

3. The center of circle \(Q \) has coordinates \((3,-2)\). If circle \(Q \) passes through \(R(7,1) \), what is the length of its diameter?

 1) 50
 2) 25
 3) 10
 4) 5

4. In the diagram below, congruent figures 1, 2, and 3 are drawn.

 Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

 1) a reflection followed by a translation
 2) a rotation followed by a translation
 3) a translation followed by a reflection
 4) a translation followed by a rotation

5. As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

 If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

 1) 29.7
 2) 16.6
 3) 13.5
 4) 11.2
6. Which figure can have the same cross section as a sphere?

1) \[\square \]
2) \[\triangle \]
3) \[\bigcirc \]
4) \[\\text{tetrahedron} \]

7. A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

8. In the diagram of circle A shown below, chords CD and EF intersect at G, and chords CE and FD are drawn.

Which statement is not always true?

1) $CG \cong FG$
2) $\angle CEG \cong \angle FDG$
3) $\frac{CE}{FD} = \frac{EG}{DG}$
4) $\triangle CEG \sim \triangle FDG$

9. Which equation represents a line that is perpendicular to the line represented by $2x - y = 7$?

1) $y = \frac{1}{2} x + 6$
2) $y = \frac{1}{2} x + 6$
3) $y = -2x + 6$
4) $y = 2x + 6$

10. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon
11 In the diagram of \(\triangle ADC \) below, \(\overline{EB} \parallel \overline{DC} \), \(AE = 9 \), \(ED = 5 \), and \(AB = 9.2 \).

What is the length of \(\overline{AC} \), to the nearest tenth?
1) 5.1
2) 5.2
3) 14.3
4) 14.4

12 In scalene triangle \(ABC \) shown in the diagram below, \(m \angle C = 90^\circ \).

Which equation is always true?
1) \(\sin A = \sin B \)
2) \(\cos A = \cos B \)
3) \(\cos A = \sin C \)
4) \(\sin A = \cos B \)

13 Quadrilateral \(ABCD \) has diagonals \(\overline{AC} \) and \(\overline{BD} \). Which information is not sufficient to prove \(ABCD \) is a parallelogram?
1) \(AC \) and \(BD \) bisect each other.
2) \(AB \parallel CD \) and \(BC \parallel AD \)
3) \(AB \parallel CD \) and \(AB \parallel CD \)
4) \(AB \parallel CD \) and \(BC \parallel AD \)

14 The equation of a circle is \(x^2 + y^2 + 6y = 7 \). What are the coordinates of the center and the length of the radius of the circle?
1) center \((0, 3)\) and radius 4
2) center \((0, -3)\) and radius 4
3) center \((0, 3)\) and radius 16
4) center \((0, -3)\) and radius 16

15 Triangles \(ABC \) and \(DEF \) are drawn below.

If \(AB = 9 \), \(BC = 15 \), \(DE = 6 \), \(EF = 10 \), and \(\angle B \cong \angle E \), which statement is true?
1) \(\angle CAB \cong \angle DEF \)
2) \(\frac{AB}{CB} = \frac{FE}{DE} \)
3) \(\triangle ABC \sim \triangle DEF \)
4) \(\frac{AB}{DE} = \frac{FE}{CB} \)

16 If \(\triangle ABC \) is dilated by a scale factor of 3, which statement is true of the image \(\triangle A'B'C' \)?
1) \(3A'B' = AB \)
2) \(B'C' = 3BC \)
3) \(m \angle A' = 3(m \angle A) \)
4) \(3(m \angle C') = m \angle C \)
17 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $ABCD \parallel EFG$?
1) $\angle CFG \cong \angle FCB$
2) $\angle ABF \cong \angle BFC$
3) $\angle EFB \cong \angle CFB$
4) $\angle CBF \cong \angle GFC$

18 In the diagram below, CD is the image of AB after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?
1) $\frac{EC}{EA}$
2) $\frac{BA}{EA}$
3) $\frac{EA}{BA}$
4) $\frac{EA}{EC}$

19 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?
1) 1
2) 2
3) 3
4) 4

20 In circle O shown below, diameter AC is perpendicular to CD at point C, and chords AB, BC, AE, and CE are drawn.

Which statement is not always true?
1) $\angle ACB \cong \angle BCD$
2) $\angle ABC \cong \angle ACD$
3) $\angle BAC \cong \angle DCB$
4) $\angle CBA \cong \angle AEC$

21 In the diagram below, $\triangle ABC \sim \triangle DEC$.

If $AC = 12$, $DC = 7$, $DE = 5$, and the perimeter of $\triangle ABC$ is 30, what is the perimeter of $\triangle DEC$?
1) 12.5
2) 14.0
3) 14.8
4) 17.5
22. The line $3y = -2x + 8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?
 1) $2x + 3y = 5$
 2) $2x - 3y = 5$
 3) $3x + 2y = 5$
 4) $3x - 2y = 5$

23. A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.
 To the nearest integer, the value of x is
 1) 31
 2) 16
 3) 12
 4) 10

24. Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?
 1) $AB = DE$ and $BC = EF$
 2) $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
 3) There is a sequence of rigid motions that maps AB onto DE, BC onto EF, and AC onto DF.
 4) There is a sequence of rigid motions that maps point A onto point D, AB onto DE, and $\angle B$ onto $\angle E$.

25. Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

26. The diagram below shows parallelogram $LMNO$ with diagonal LN, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$.
 Explain why $m\angle NLO$ is 40 degrees.
27 The coordinates of the endpoints of \(AB \) are \(A(-6,-5) \) and \(B(4,0) \). Point \(P \) is on \(AB \). Determine and state the coordinates of point \(P \), such that \(AP:PB \) is 2:3. [The use of the set of axes below is optional.]

28 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform. Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

29 In the diagram below of circle \(O \), the area of the shaded sector \(AOC \) is \(12\pi \) in\(^2\) and the length of \(OA \) is 6 inches. Determine and state \(m\angle AOC \).

30 After a reflection over a line, \(\triangle A'B'C' \) is the image of \(\triangle ABC \). Explain why triangle \(ABC \) is congruent to triangle \(A'B'C' \).

31 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.
32 In the diagram below, EF intersects AB and CD at G and H, respectively, and GI is drawn such that $GH \cong IH$.

If $m\angle EGB = 50^\circ$ and $m\angle DIG = 115^\circ$, explain why $AB \parallel CD$.

33 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

Prove: $\triangle AED \cong \triangle CEB$

Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

34 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.
35 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $AC = 8.5$ feet, $BF = 25$ feet, and $m\angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

36 In the coordinate plane, the vertices of ΔRST are $R(6,-1)$, $S(1,-4)$, and $T(-5,6)$. Prove that ΔRST is a right triangle. State the coordinates of point P such that quadrilateral $RSTP$ is a rectangle. Prove that your quadrilateral $RSTP$ is a rectangle. [The use of the set of axes below is optional.]
1. A parallelogram must be a rectangle when its
diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

2. If ΔA′B′C′ is the image of ΔABC, under which transformation will the triangles not be congruent?
1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

3. If the rectangle below is continuously rotated about side \(w\), which solid figure is formed?

4. Which expression is always equivalent to \(\sin x\) when \(0° < x < 90°\)?
1) \(\cos(90° - x)\)
2) \(\cos(45° - x)\)
3) \(\cos(2x)\)
4) \(\cos x\)

5. In the diagram below, a square is graphed in the coordinate plane.

 A reflection over which line does not carry the square onto itself?
1) \(x = 5\)
2) \(y = 2\)
3) \(y = x\)
4) \(x + y = 4\)

6. The image of ΔABC after a dilation of scale factor \(k\) centered at point \(A\) is ΔADE, as shown in the diagram below.

 Which statement is always true?
1) \(2AB = AD\)
2) \(AD \perp DE\)
3) \(AC = CE\)
4) \(BC \parallel DE\)
7. A sequence of transformations maps rectangle \(ABCD\) onto rectangle \(A'B'C'D'\), as shown in the diagram below.

Which sequence of transformations maps \(ABCD\) onto \(A'B'C'D'\) and then maps \(A'B'C'D'\) onto \(A''B''C''D''\)?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

8. In the diagram of parallelogram \(FRED\) shown below, \(ED\) is extended to \(A\), and \(AF\) is drawn such that \(AF \cong DF\).

If \(m\angle R = 124^\circ\), what is \(m\angle AFD\)?

1) 124°
2) 112°
3) 68°
4) 56°

9. If \(x^2 + 4x + y^2 - 6y - 12 = 0\) is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

10. Given \(MN\) shown below, with \(M(-6,1)\) and \(N(3,-5)\), what is an equation of the line that passes through point \(P(6,1)\) and is parallel to \(MN\)?

1) \(y = \frac{2}{3}x + 5\)
2) \(y = \frac{2}{3}x - 3\)
3) \(y = \frac{3}{2}x + 7\)
4) \(y = \frac{3}{2}x - 8\)

11. Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9
12. In the diagram shown below, AC is tangent to circle O at A and to circle P at C, OP intersects AC at B, $OA = 4$, $AB = 5$, and $PC = 10$.

What is the length of BC?

1) 6.4
2) 8
3) 12.5
4) 16

13. In the diagram below, which single transformation was used to map triangle A onto triangle B?

1) line reflection
2) rotation
3) dilation
4) translation

14. In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where $AB = 3$, $BC = 5.5$, $AC = 4.5$, $DE = 6$, $FD = 9$, and $EF = 11$.

Which relationship must always be true?

1) $\frac{m\angle A}{m\angle D} = \frac{1}{2}$
2) $\frac{m\angle C}{m\angle F} = \frac{2}{1}$
3) $\frac{m\angle A}{m\angle C} = \frac{m\angle F}{m\angle D}$
4) $\frac{m\angle B}{m\angle E} = \frac{m\angle C}{m\angle F}$

15. In the diagram below, quadrilateral $ABCD$ is inscribed in circle P.

What is $m\angle ADC$?

1) 70°
2) 72°
3) 108°
4) 110°
16 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

17 In the diagram below, \(\triangle ABC \sim \triangle ADE\).

Which measurements are justified by this similarity?
1) \(AD = 3\), \(AB = 6\), \(AE = 4\), and \(AC = 12\)
2) \(AD = 5\), \(AB = 8\), \(AE = 7\), and \(AC = 10\)
3) \(AD = 3\), \(AB = 9\), \(AE = 5\), and \(AC = 10\)
4) \(AD = 2\), \(AB = 6\), \(AE = 5\), and \(AC = 15\)

18 Triangle \(FGH\) is inscribed in circle \(O\), the length of radius \(OH\) is 6, and \(FH \approx OG\).

What is the area of the sector formed by angle \(FOH\)?
1) \(2\pi\)
2) \(\frac{3}{2}\pi\)
3) \(6\pi\)
4) \(24\pi\)

19 As shown in the diagram below, \(\overline{AB}\) and \(\overline{CD}\) intersect at \(E\), and \(\overline{AC} \parallel \overline{BD}\).

Given \(\triangle AEC \sim \triangle BED\), which equation is true?
1) \(\frac{CE}{DE} = \frac{EB}{EA}\)
2) \(\frac{AE}{BE} = \frac{AC}{BD}\)
3) \(\frac{EC}{AE} = \frac{BE}{ED}\)
4) \(\frac{ED}{EC} = \frac{AC}{BD}\)

20 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?
1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.
21 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?
 1) 73
 2) 77
 3) 133
 4) 230

22 A quadrilateral has vertices with coordinates (−3, 1), (0, 3), (5, 2), and (−1, −2). Which type of quadrilateral is this?
 1) rhombus
 2) rectangle
 3) square
 4) trapezoid

23 In the diagram below, \(\triangle ABE \) is the image of \(\triangle ACD \) after a dilation centered at the origin. The coordinates of the vertices are \(A(0,0) \), \(B(3,0) \), \(C(4.5,0) \), \(D(0,6) \), and \(E(0,4) \).

The ratio of the lengths of \(\overline{BE} \) to \(\overline{CD} \) is
 1) \(\frac{2}{3} \)
 2) \(\frac{3}{2} \)
 3) \(\frac{3}{4} \)
 4) \(\frac{4}{3} \)

24 Line \(y = 3x - 1 \) is transformed by a dilation with a scale factor of 2 and centered at \((3,8) \). The line's image is
 1) \(y = 3x - 8 \)
 2) \(y = 3x - 4 \)
 3) \(y = 3x - 2 \)
 4) \(y = 3x - 1 \)
25 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

<table>
<thead>
<tr>
<th>Type of Wood</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>0.373</td>
</tr>
<tr>
<td>Hemlock</td>
<td>0.431</td>
</tr>
<tr>
<td>Elm</td>
<td>0.554</td>
</tr>
<tr>
<td>Birch</td>
<td>0.601</td>
</tr>
<tr>
<td>Ash</td>
<td>0.638</td>
</tr>
<tr>
<td>Maple</td>
<td>0.676</td>
</tr>
<tr>
<td>Oak</td>
<td>0.711</td>
</tr>
</tbody>
</table>

26 Construct an equilateral triangle inscribed in circle \(T \) shown below. [Leave all construction marks.]

27 To find the distance across a pond from point \(B \) to point \(C \), a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

28 In parallelogram \(ABCD \) shown below, diagonals \(AC \) and \(BD \) intersect at \(E \).

Prove: \(\angle ACD \cong \angle CAB \)

29 Triangles \(RST \) and \(XYZ \) are drawn below. If \(RS = 6, ST = 14, XY = 9, YZ = 21 \), and \(\angle S \cong \angle Y \), is \(\triangle RST \) similar to \(\triangle XYZ \)? Justify your answer.

Use the surveyor’s information to determine and state the distance from point \(B \) to point \(C \), to the nearest yard.
30 In the diagram below, \(\triangle ABC \) and \(\triangle XYZ \) are graphed.

Use the properties of rigid motions to explain why \(\triangle ABC \cong \triangle XYZ \).

31 The endpoints of \(\overline{DEF} \) are \(D(1,4) \) and \(F(16,14) \). Determine and state the coordinates of point \(E \), if \(DE:EF = 2:3 \).

32 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point \(A \), the angle of elevation from the ship to the light was \(7^\circ \). A short time later, at point \(D \), the angle of elevation was \(16^\circ \).

To the nearest foot, determine and state how far the ship traveled from point \(A \) to point \(D \).

33 Triangle \(ABC \) has vertices with \(A(x,3) \), \(B(-3,-1) \), and \(C(-1,-4) \). Determine and state a value of \(x \) that would make triangle \(ABC \) a right triangle. Justify why \(\triangle ABC \) is a right triangle. [The use of the set of axes below is optional.]

34 In the diagram below, \(\overline{AC} \cong \overline{DF} \) and points \(A, C, D, \) and \(F \) are collinear on line \(\ell \).

Let \(\triangle D'E'F' \) be the image of \(\triangle DEF \) after a translation along \(\ell \), such that point \(D \) is mapped onto point \(A \). Determine and state the location of \(F' \). Explain your answer. Let \(\triangle D''E''F'' \) be the image of \(\triangle D'E'F' \) after a reflection across line \(\ell \). Suppose that \(E'' \) is located at \(B \). Is \(\triangle DEF \) congruent to \(\triangle ABC \)? Explain your answer.
35 In the diagram of parallelogram $ABCD$ below, $BE \perp CED$, $DF \perp BFC$, $CE \cong CF$.

Prove $ABCD$ is a rhombus.

36 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $37.83 for the molds and charges $1.95 for each candle, what is Walter's profit after selling 100 candles?
1. William is drawing pictures of cross sections of the right circular cone below.

Which drawing can *not* be a cross section of a cone?

1)

2)

3)

4)

2. An equation of a line perpendicular to the line represented by the equation \(y = \frac{1}{2}x - 5 \) and passing through \((6,-4)\) is

1) \(y = -\frac{1}{2}x + 4 \)

2) \(y = -\frac{1}{2}x - 1 \)

3) \(y = 2x + 14 \)

4) \(y = 2x - 16 \)

3. In parallelogram \(QRST\) shown below, diagonal \(TR\) is drawn, \(U\) and \(V\) are points on \(TS\) and \(QR\), respectively, and \(UV\) intersects \(TR\) at \(W\).

If \(\angle S = 60^\circ\), \(\angle SRT = 83^\circ\), and \(\angle TWU = 35^\circ\), what is \(\angle WVQ\)?

1) 37°

2) 60°

3) 72°

4) 83°

4. A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10

2) 25

3) 50

4) 75

5. Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) \((x,y) \rightarrow (y,x)\)

2) \((x,y) \rightarrow (x,-y)\)

3) \((x,y) \rightarrow (4x,4y)\)

4) \((x,y) \rightarrow (x + 2,y - 5)\)
6 In the diagram below, $FE \parallel AC$ at B, and $GE \parallel BD$ at C.

Which statement is always true?
1) $AB \cong DC$
2) $FB \cong EB$
3) BD bisects GE at C.
4) AC bisects FE at B.

7 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is
1) 72
2) 144
3) 288
4) 432

8 Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?
1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y = x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

9 In $\triangle ABC$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
1) $\tan \angle A = \tan \angle B$
2) $\sin \angle A = \sin \angle B$
3) $\cos \angle A = \tan \angle B$
4) $\sin \angle A = \cos \angle B$

10 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line
1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line
11 Quadrilateral $ABCD$ is graphed on the set of axes below.

When $ABCD$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A'B'C'D'$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C'(1,2)$
2) no and $D'(2,4)$
3) yes and $A'(6,2)$
4) yes and $B'(-3,4)$

12 In the diagram below of circle O, the area of the shaded sector LOM is 2π cm2.

If the length of NL is 6 cm, what is $m\angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

13 In the diagram below, $\triangle ABC \sim \triangle DEF$.

If $AB = 6$ and $AC = 8$, which statement will justify similarity by SAS?

1) $DE = 9$, $DF = 12$, and $\angle A \cong \angle D$
2) $DE = 8$, $DF = 10$, and $\angle A \cong \angle D$
3) $DE = 36$, $DF = 64$, and $\angle C \cong \angle F$
4) $DE = 15$, $DF = 20$, and $\angle C \cong \angle F$

14 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

15 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5\sqrt{10}$
3) $5\sqrt{2}$
4) $25\sqrt{2}$
16. In the diagram of right triangle ABC shown below, $AB = 14$ and $AC = 9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

17. What are the coordinates of the center and length of the radius of the circle whose equation is $x^2 + 6x + y^2 - 4y = 23$?

1) $(3, -2)$ and 36
2) $(3, -2)$ and 6
3) $(-3, 2)$ and 36
4) $(-3, 2)$ and 6

18. The coordinates of the vertices of $\triangle RST$ are $R(-2, -3)$, $S(8, 2)$, and $T(4, 5)$. Which type of triangle is $\triangle RST$?

1) right
2) acute
3) obtuse
4) equiangular

19. Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

20. The ratio of similarity of $\triangle BOY$ to $\triangle GRL$ is $1:2$. If $BO = x + 3$ and $GR = 3x - 1$, then the length of GR is

1) 5
2) 7
3) 10
4) 20

21. In the diagram below, DC, AC, DOB, CB, and AB are chords of circle O, FDE is tangent at point D, and radius AO is drawn. Sam decides to apply this theorem to the diagram: “An angle inscribed in a semi-circle is a right angle.”

Which angle is Sam referring to?

1) $\angle AOB$
2) $\angle BAC$
3) $\angle DCB$
4) $\angle FDB$

22. In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse AB of right triangle ABC.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?

1) $AD = 2$ and $DB = 36$
2) $AD = 3$ and $AB = 24$
3) $AD = 6$ and $DB = 12$
4) $AD = 8$ and $AB = 17$
23 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?
1) 15
2) 16
3) 31
4) 32

24 In $\triangle SCU$ shown below, points T and O are on SU and CU, respectively. Segment OT is drawn so that $\angle C \cong \angle OTU$.

If $TU = 4$, $OU = 5$, and $OC = 7$, what is the length of ST?
1) 5.6
2) 8.75
3) 11
4) 15

25 Triangle ABC is graphed on the set of axes below. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a reflection over the line $x = 1$.

26 In the diagram below of circle O with diameter BC and radius OA, chord DC is parallel to chord BA.

If $\angle BCD = 30^\circ$, determine and state $\angle AOB$.

27 Directed line segment PT has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]
28. As graphed on the set of axes below, \(\triangle A'B'C' \) is the image of \(\triangle ABC \) after a sequence of transformations.

Is \(\triangle A'B'C' \) congruent to \(\triangle ABC \)? Use the properties of rigid motion to explain your answer.

29. A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

30. During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish \(A \) has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish \(B \) has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

31. Line \(\ell \) is mapped onto line \(m \) by a dilation centered at the origin with a scale factor of 2. The equation of line \(\ell \) is \(3x - y = 4 \). Determine and state an equation for line \(m \).

32. The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.
33 Given the theorem, “The sum of the measures of the interior angles of a triangle is 180°,” complete the proof for this theorem.

![Diagram of triangle ABC with lines DE and CE drawn parallel to AB]

Given: \(\triangle ABC \)
Prove: \(\angle 1 + \angle 2 + \angle 3 = 180° \)

Fill in the missing reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\triangle ABC)</td>
<td>(1) Given</td>
</tr>
<tr>
<td>(2) Through point C, draw (DCE) parallel to (AB).</td>
<td>(2) Reason 1</td>
</tr>
<tr>
<td>(3) (\angle 1 = \angle ACD), (\angle 3 = \angle BCE)</td>
<td>(3) Reason 2</td>
</tr>
<tr>
<td>(4) (\angle ACD + \angle 2 + \angle BCE = 180°)</td>
<td>(4) Reason 3</td>
</tr>
<tr>
<td>(5) (\angle 1 + \angle 2 + \angle 3 = 180°)</td>
<td>(5) Reason 4</td>
</tr>
</tbody>
</table>
34 Triangle XYZ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle ABC$ is congruent to $\triangle XYZ$.

![Triangle XYZ construction](image)

35 Given: Parallelogram $ANDR$ with \overline{AW} and \overline{DE} bisecting NWD and REA at points W and E, respectively

Prove that $\triangle ANW \cong \triangle DRE$. Prove that quadrilateral $AWDE$ is a parallelogram.

36 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

![Flagpole measurement](image)

Determine and state, to the nearest tenth of a meter, the height of the flagpole.
1 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

1)

2)

3)

4)

2 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

3 Kevin’s work for deriving the equation of a circle is shown below.

\[x^2 + 4x = -(y^2 - 20) \]

STEP 1 \[x^2 + 4x = -y^2 + 20 \]

STEP 2 \[x^2 + 4x + 4 = -y^2 + 20 - 4 \]

STEP 3 \[(x + 2)^2 = -y^2 + 20 - 4 \]

STEP 4 \[(x + 2)^2 + y^2 = 16 \]

In which step did he make an error in his work?

1) Step 1
2) Step 2
3) Step 3
4) Step 4
4 Which transformation of \overline{OA} would result in an image parallel to \overline{OA}?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

5 Using the information given below, which set of triangles can not be proven similar?

1)
2)
3)
4)
6 A company is creating an object from a wooden cube with an edge length of 8.5 cm. A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) \((8.5)^3 - \pi(8)^2(8)\)
2) \((8.5)^3 - \pi(4)^2(8)\)
3) \((8.5)^3 - \frac{1}{3} \pi(8)^2(8)\)
4) \((8.5)^3 - \frac{1}{3} \pi(4)^2(8)\)

7 Two right triangles must be congruent if
1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

8 Which sequence of transformations will map \(\triangle ABC\) onto \(\triangle A'B'C'\)?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

9 In parallelogram \(ABCD\), diagonals \(AC\) and \(BD\) intersect at \(E\). Which statement does not prove parallelogram \(ABCD\) is a rhombus?

1) \(AC \cong DB\)
2) \(AB \cong BC\)
3) \(AC \perp DB\)
4) \(AC\) bisects \(\angle DCB\)

10 In the diagram below of circle \(O\), \(OB\) and \(OC\) are radii, and chords \(AB, BC\), and \(AC\) are drawn.

Which statement must always be true?

1) \(\angle BAC \cong \angle BOC\)
2) \(m\angle BAC = \frac{1}{2} m\angle BOC\)
3) \(\triangle BAC\) and \(\triangle BOC\) are isosceles.
4) The area of \(\triangle BAC\) is twice the area of \(\triangle BOC\).

11 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8
12. Line segment NY has endpoints N(-11, 5) and Y(5, -7). What is the equation of the perpendicular bisector of NY?

1) \(y + 1 = \frac{4}{3} (x + 3) \)
2) \(y + 1 = -\frac{3}{4} (x + 3) \)
3) \(y - 6 = \frac{4}{3} (x - 8) \)
4) \(y - 6 = -\frac{3}{4} (x - 8) \)

13. In \(\triangle RST \) shown below, altitude \(SU \) is drawn to \(RT \) at \(U \).

If \(SU = h \), \(UT = 12 \), and \(RT = 42 \), which value of \(h \) will make \(\triangle RST \) a right triangle with \(\angle RST \) as a right angle?
1) \(6\sqrt{3} \)
2) \(6\sqrt{10} \)
3) \(6\sqrt{14} \)
4) \(6\sqrt{35} \)

14. In the diagram below, \(\triangle ABC \) has vertices \(A(4, 5) \), \(B(2, 1) \), and \(C(7, 3) \).

What is the slope of the altitude drawn from \(A \) to \(BC \)?
1) \(\frac{2}{5} \)
2) \(\frac{3}{2} \)
3) \(-\frac{1}{2} \)
4) \(-\frac{5}{2} \)
15 In the diagram below, $\triangle ERM \sim \triangle JTM$.

Which statement is always true?

1) $\cos J = \frac{RM}{RE}$
2) $\cos R = \frac{JM}{JT}$
3) $\tan T = \frac{RM}{EM}$
4) $\tan E = \frac{TM}{JM}$

16 On the set of axes below, rectangle $ABCD$ can be proven congruent to rectangle $KLMN$ using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

17 In the diagram below, DB and AF intersect at point C, and AD and FBE are drawn.

If $AC = 6$, $DC = 4$, $FC = 15$, $m \angle D = 65^\circ$, and $m \angle CBE = 115^\circ$, what is the length of CB?

1) 10
2) 12
3) 17
4) 22.5

18 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3
19 Line segment EA is the perpendicular bisector of ZT, and ZE and TE are drawn.

Which conclusion can *not* be proven?
1) EA bisects angle ZET.
2) Triangle EZT is equilateral.
3) EA is a median of triangle EZT.
4) Angle Z is congruent to angle T.

20 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

21 In the diagram of $\triangle ABC$, points D and E are on AB and CB, respectively, such that $AC \parallel DE$.

If $AD = 24$, $DB = 12$, and $DE = 4$, what is the length of AC?
1) 8
2) 12
3) 16
4) 72

22 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle RST$?
1) $9\sqrt{3} + 15$
2) $9\sqrt{5} + 15$
3) 45
4) 90
23 The graph below shows \overline{AB}, which is a chord of circle O. The coordinates of the endpoints of \overline{AB} are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of \overline{AB} to the center of circle O is 2 units.

What could be a correct equation for circle O?

1) $(x - 1)^2 + (y + 2)^2 = 29$
2) $(x + 5)^2 + (y - 2)^2 = 29$
3) $(x - 1)^2 + (y - 2)^2 = 25$
4) $(x - 5)^2 + (y + 2)^2 = 25$

24 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?

1) $\frac{8\pi}{3}$
2) $\frac{16\pi}{3}$
3) $\frac{32\pi}{3}$
4) $\frac{64\pi}{3}$

25 Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below.

26 Point P is on segment AB such that $AP:PB$ is 4:5. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

27 In $\triangle CED$ as shown below, points A and B are located on sides CE and ED, respectively. Line segment AB is drawn such that $AE = 3.75$, $AC = 5$, $EB = 4.5$, and $BD = 6$.

Explain why \overline{AB} is parallel to \overline{CD}.
28 Find the value of R that will make the equation $\sin 73^\circ = \cos R$ true when $0^\circ < R < 90^\circ$. Explain your answer.

29 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13\pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

30 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

31 In the diagram below, radius OA is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

32 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.
33 Given: Parallelogram $ABCD$, EFG, and diagonal DFB

![Diagram of parallelogram and diagonal](image)

Prove: $\triangle DEF \sim \triangle BGF$

34 In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a transformation.

![Diagram of transformation](image)

Describe the transformation that was performed. Explain why $\triangle A'B'C' \sim \triangle ABC$.

35 Given: Quadrilateral $ABCD$ with diagonals AC and BD that bisect each other, and $\angle 1 \cong \angle 2$

![Diagram of quadrilateral and diagonals](image)

Prove: $\triangle ACD$ is an isosceles triangle and $\triangle AEB$ is a right triangle

36 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

![Diagram of water glass](image)

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.
1 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?
1) $\ell \parallel n$
2) $\ell \parallel p$
3) $m \parallel p$
4) $m \parallel n$

2 Which transformation would not always produce an image that would be congruent to the original figure?
1) translation
2) dilation
3) rotation
4) reflection

3 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?
1) cone
2) pyramid
3) prism
4) sphere

4 In the diagram below, $\angle BDC = 100^\circ$, $\angle A = 50^\circ$, and $\angle DBC = 30^\circ$.

Which statement is true?
1) $\triangle ABD$ is obtuse.
2) $\triangle ABC$ is isosceles.
3) $m\angle ABD = 80^\circ$
4) $\triangle ABD$ is scalene.

5 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?
1) A
2) B
3) C
4) D
6 In \(\triangle ABC \), where \(\angle C \) is a right angle,
\[
\cos A = \frac{\sqrt{21}}{5}.
\]
What is \(\sin B \)?
1) \(\frac{\sqrt{21}}{5} \)
2) \(\frac{\sqrt{21}}{2} \)
3) \(\frac{2}{5} \)
4) \(\frac{5}{\sqrt{21}} \)

7 Quadrilateral \(ABCD \) with diagonals \(\overline{AC} \) and \(\overline{BD} \) is shown in the diagram below.

Which information is not enough to prove \(ABCD \) is a parallelogram?
1) \(AB \cong CD \) and \(AB \parallel DC \)
2) \(AB \cong CD \) and \(BC \cong DA \)
3) \(AB \cong CD \) and \(BC \parallel AD \)
4) \(AB \parallel DC \) and \(BC \parallel AD \)

8 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?
1) 10.0
2) 11.5
3) 17.3
4) 23.1

9 Given: \(\triangle AEC \), \(\triangle DEF \), and \(FE \perp CE \)

What is a correct sequence of similarity transformations that shows \(\triangle AEC \sim \triangle DEF \)?
1) a rotation of 180 degrees about point \(E \) followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point \(E \) followed by a horizontal translation
3) a rotation of 180 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)
4) a counterclockwise rotation of 90 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)

10 In the diagram of right triangle \(ABC \), \(CD \) intersects hypotenuse \(AB \) at \(D \).

If \(AD = 4 \) and \(DB = 6 \), which length of \(AC \) makes \(CD \perp AB \)?
1) \(2\sqrt{6} \)
2) \(2\sqrt{10} \)
3) \(2\sqrt{15} \)
4) \(4\sqrt{2} \)
11 Segment CD is the perpendicular bisector of AB at E. Which pair of segments does \textit{not} have to be congruent?

1) AD, BD
2) AC, BC
3) AE, BE
4) DE, CE

12 In triangle CHR, O is on HR, and D is on CR so that $\angle H \cong \angle RDO$.

If $RD = 4$, $RO = 6$, and $OH = 4$, what is the length of CD?

1) $\frac{4}{3}$
2) $\frac{10}{3}$
3) 11
4) 15

13 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

14 The diagonals of rhombus $TEAM$ intersect at $P(2,1)$. If the equation of the line that contains diagonal TA is $y = -x + 3$, what is the equation of a line that contains diagonal EM?

1) $y = x - 1$
2) $y = x - 3$
3) $y = -x - 1$
4) $y = -x - 3$

15 The coordinates of vertices A and B of $\triangle ABC$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle ABC$ is 24 square units, what could be the coordinates of point C?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

16 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^2 + y^2 - 4x + 8y + 11 = 0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

17 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456
18 Point P is on the directed line segment from point $X(−6,−2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P?
1) $\left(\frac{1}{2}, −4\right)$
2) $\left(−4 \frac{1}{2}, 0\right)$
3) $\left(−4,−\frac{1}{2}\right)$
4) $\left(4,\frac{1}{2}\right)$

19 In circle O, diameter \overline{AB}, chord \overline{BC}, and radius \overline{OC} are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector \overline{COB}:

- Amy $\frac{3}{10} \cdot \pi \cdot (BC)^2$
- Beth $\frac{108}{360} \cdot \pi \cdot (OC)^2$
- Carl $\frac{3}{10} \cdot \pi \cdot (\frac{1}{2} AB)^2$
- Dex $\frac{108}{360} \cdot \pi \cdot \left(\frac{1}{2} AB\right)^2$

Which students wrote correct formulas?
1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

20 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm. To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?
1) 236
2) 282
3) 564
4) 945

21 Line segment $A'B'$, whose endpoints are $(4,−2)$ and $(16,14)$, is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB}?
1) 5
2) 10
3) 20
4) 40

22 Given: $\triangle ABE$ and $\triangle CBD$ shown in the diagram below with $\overline{DB} \cong \overline{BE}$.

Which statement is needed to prove $\triangle ABE \cong \triangle CBD$ using only SAS \cong SAS?
1) $\angle CDB \cong \angle AEB$
2) $\angle AFD \cong \angle EFC$
3) $\overline{AD} \cong \overline{CE}$
4) $\overline{AE} \cong \overline{CD}$
23 In the diagram below, BC is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?
1) $\triangle BCD$ is a right triangle.
2) $\triangle BCD$ is an isosceles triangle.
3) $\triangle BAD$ and $\triangle CBD$ are similar triangles.
4) $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

24 In the diagram below, $ABCD$ is a parallelogram, AB is extended through B to E, and CE is drawn.

If $CE \cong BE$ and $m\angle D = 112^\circ$, what is $m\angle E$?
1) 44°
2) 56°
3) 68°
4) 112°

25 Lines AE and BD are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $AC:CE = 5:3$, and $BD = 56$, determine and state the length of CD.

26 In the diagram below, $\triangle ABC$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after the translation five units to the right and two units up followed by the reflection over the line $y = 0$.

27 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.
28 In the diagram of $\triangle ABC$ shown below, use a compass and straightedge to construct the median to AB. [Leave all construction marks.]

29 Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

30 A circle has a center at $(1, -2)$ and radius of 4. Does the point $(3.4, 1.2)$ lie on the circle? Justify your answer.

31 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

32 Using a compass and straightedge, construct and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of AC and $A'C'$.
33 The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is $(8, -3)$. Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

34 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60-foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

35 Given: Circle O, chords \overline{AB} and \overline{CD} intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $AE \cdot EB = CE \cdot ED$.

36 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is 0.697 g/cm3, and the cost, per kilogram, of ice is $3.83. Determine and state the cost of the ice needed to make 50 snow cones.
0117geo

1 Which equation represents the line that passes through the point (−2, 2) and is parallel to

 \[y = \frac{1}{2}x + 8? \]

 1) \(y = \frac{1}{2}x \)
 2) \(y = -2x - 3 \)
 3) \(y = \frac{1}{2}x + 3 \)
 4) \(y = -2x + 3 \)

2 In the diagram below, \(\triangle ADE \) is the image of \(\triangle ABC \) after a reflection over the line \(AC \) followed by a dilation of scale factor \(\frac{AE}{AC} \) centered at point \(A \).

Which statement must be true?

1) \(\angle BAC \cong \angle AED \)
2) \(\angle ABC \cong \angle ADE \)
3) \(\angle DAE \cong \frac{1}{2} \angle BAC \)
4) \(\angle ACB \cong \frac{1}{2} \angle DAB \)

3 Given \(\triangle ABC \cong \triangle DEF \), which statement is not always true?

 1) \(BC \cong DF \)
 2) \(m\angle A = m\angle D \)
 3) \(\text{area of } \triangle ABC = \text{area of } \triangle DEF \)
 4) \(\text{perimeter of } \triangle ABC = \text{perimeter of } \triangle DEF \)

4 In the diagram below, \(\overline{DE}, \overline{DF}, \) and \(\overline{EF} \) are midsegments of \(\triangle ABC \).

The perimeter of quadrilateral \(ADEF \) is equivalent to

1) \(AB + BC + AC \)
2) \(\frac{1}{2} AB + \frac{1}{2} AC \)
3) \(2AB + 2AC \)
4) \(AB + AC \)
5 In the diagram below, if $\triangle ABE \cong \triangle CDF$ and $AEFC$ is drawn, then it could be proven that quadrilateral $ABCD$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

6 Under which transformation would $\triangle A'B'C'$, the image of $\triangle ABC$, not be congruent to $\triangle ABC$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

7 The diagram below shows two similar triangles. If $\tan \theta = \frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

8 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

9 The diagram shows rectangle $ABCD$, with diagonal BD.

What is the perimeter of rectangle $ABCD$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4

10 Identify which sequence of transformations could map pentagon $ABCDE$ onto pentagon $A'B'C'D'E'$, as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection
11 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?
1) 19
2) 77
3) 93
4) 96

12 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?
1) 11
2) 17
3) 18
4) 22

13 On the graph below, point $A(3,4)$ and BC with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B' and C' after BC undergoes a dilation centered at point A with a scale factor of 2?
1) $B'(5,2)$ and $C'(1,-2)$
2) $B'(6,1)$ and $C'(0,-1)$
3) $B'(5,0)$ and $C'(1,-2)$
4) $B'(5,2)$ and $C'(3,0)$

14 In the diagram of right triangle ADE below, $BC \parallel DE$.

Which ratio is always equivalent to the sine of $\angle A$?
1) $\frac{AD}{DE}$
2) $\frac{AE}{AD}$
3) $\frac{BC}{AB}$
4) $\frac{AB}{AC}$
15 In circle O, secants ABD and AEC are drawn from external point A such that points D, B, E, and C are on circle O. If $AD = 8$, $AE = 6$, and EC is 12 more than BD, the length of BD is
1) 6
2) 22
3) 36
4) 48

16 A parallelogram is always a rectangle if
1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

17 Which rotation about its center will carry a regular decagon onto itself?
1) 54°
2) 162°
3) 198°
4) 252°

18 The equation of a circle is $x^2 + y^2 − 6y + 1 = 0$. What are the coordinates of the center and the length of the radius of this circle?
1) center $(0,3)$ and radius $= 2\sqrt{2}$
2) center $(0,-3)$ and radius $= 2\sqrt{2}$
3) center $(0,6)$ and radius $= \sqrt{35}$
4) center $(0,-6)$ and radius $= \sqrt{35}$

19 Parallelogram $ABCD$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $ABCD$ is a rhombus?
1) The midpoint of AC is $(1,4)$.
2) The length of BD is $\sqrt{40}$.
3) The slope of BD is $\frac{1}{3}$.
4) The slope of AB is $\frac{1}{3}$.

20 Point Q is on MN such that $MQ:QN = 2:3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are
1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

21 In the diagram below of circle O, $GO = 8$ and $\angle GOJ = 60^\circ$.

What is the area, in terms of π, of the shaded region?
1) $\frac{4\pi}{3}$
2) $\frac{20\pi}{3}$
3) $\frac{32\pi}{3}$
4) $\frac{160\pi}{3}$

22 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?
1) $(10,3)$
2) $(-12,13)$
3) $(11,2\sqrt{12})$
4) $(-8,5\sqrt{21})$
23. A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?
 1) triangle
 2) trapezoid
 3) hexagon
 4) rectangle

24. A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?
 1) 1.2
 2) 3.5
 3) 4.7
 4) 14.1

25. Using a compass and straightedge, construct the line of reflection over which triangle RST reflects onto triangle $R'S'T'$. [Leave all construction marks.]

26. The graph below shows $\triangle ABC$ and its image, $\triangle A'B'C'$. Describe a sequence of rigid motions which would map $\triangle ABC$ onto $\triangle A'B'C'$.

27. When instructed to find the length of \overline{HJ} in right triangle HJG, Alex wrote the equation $\sin 28^\circ = \frac{HJ}{20}$ while Marlene wrote $\cos 62^\circ = \frac{HJ}{20}$. Are both students' equations correct? Explain why.
28 In the diagram below, tangent DA and secant DBC are drawn to circle O from external point D, such that $AC = BC$.

If $mBC = 152^\circ$, determine and state $m\angle D$.

29 In the diagram below, GI is parallel to NT, and IN intersects GT at A.

Prove: $\Delta GIA \sim \Delta TNA$

30 In the diagram below of isosceles triangle ABC, $AB = CB$ and angle bisectors AD, BF, and CE are drawn and intersect at X.

If $m\angle BAC = 50^\circ$, find $m\angle AXC$.

31 In square $GEOM$, the coordinates of G are $(2, -2)$ and the coordinates of O are $(-4, 2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]
32 Triangle QRS is graphed on the set of axes below.

On the same set of axes, graph and label $\triangle Q'R'S'$, the image of $\triangle QRS$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q'R' \parallel QR$.

33 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $ABCDEF$. [Leave all construction marks.]

If chords FB and FC are drawn, which type of triangle, according to its angles, would $\triangle FBC$ be? Explain your answer.

34 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm. Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

35 In quadrilateral $ABCD$, $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$, and BF and DE are perpendicular to diagonal AC at points F and E.

Prove: $AE \cong CF$

36 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm. The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is 2.7 g/cm3, and the cost of aluminum is $0.38 per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?
1 In the diagram below, $\triangle ABC \cong \triangle DEF$.

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

2 On the set of axes below, the vertices of $\triangle PQR$ have coordinates $P(-6, 7), Q(2, 1),$ and $R(-1, -3)$.

What is the area of $\triangle PQR$?

1) 10
2) 20
3) 25
4) 50

3 In right triangle ABC, $\angle C = 90^\circ$. If $\cos B = \frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$
4 In the diagram below, \(\overarc{ABC} = 268^\circ \).

What is the number of degrees in the measure of \(\angle ABC \)?
1) 134º
2) 92º
3) 68º
4) 46º

5 Given \(\triangle MRO \) shown below, with trapezoid \(PTRO \), \(MR = 9 \), \(MP = 2 \), and \(PO = 4 \).

What is the length of \(TR \)?
1) 4.5
2) 5
3) 3
4) 6

6 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?
1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

7 Which figure always has exactly four lines of reflection that map the figure onto itself?
1) square
2) rectangle
3) regular octagon
4) equilateral triangle

8 In the diagram below of circle \(O \), chord \(DF \) bisects chord \(BC \) at \(E \).

If \(BC = 12 \) and \(FE \) is 5 more than \(DE \), then \(FE \) is
1) 13
2) 9
3) 6
4) 4
9 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle EDF$, and has already proven $AB \cong DE$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle ABC \cong \triangle DEF$?

1) $AC \cong DF$ and SAS
2) $BC \cong EF$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle CBA \cong \angle FED$ and ASA

10 In the diagram below, \overline{DE} divides \overline{AB} and \overline{AC} proportionally, $m \angle C = 26^\circ$, $m \angle A = 82^\circ$, and \overline{DF} bisects $\angle BDE$.

The measure of angle DFB is

1) 36°
2) 54°
3) 72°
4) 82°

11 Which set of statements would describe a parallelogram that can always be classified as a rhombus?

I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

12 The equation of a circle is $x^2 + y^2 - 12y + 20 = 0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0, 6)$ and radius 4
2) center $(0, -6)$ and radius 4
3) center $(0, 6)$ and radius 16
4) center $(0, -6)$ and radius 16

13 In the diagram of $\triangle RST$ below, $m \angle T = 90^\circ$, $RS = 65$, and $ST = 60$.

What is the measure of $\angle S$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°
14 Triangle $A'B'C'$ is the image of $\triangle ABC$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
 I. $\triangle ABC \cong \triangle A'B'C'$
 II. $\triangle ABC \sim \triangle A'B'C'$
 III. $AB \parallel A'B'$
 IV. $AA' = BB'$
 1) II, only
 2) I and II
 3) II and III
 4) II, III, and IV

15 Line segment RW has endpoints $R(-4, 5)$ and $W(6, 20)$. Point P is on \overline{RW} such that $RP:PW$ is 2:3. What are the coordinates of point P?
 1) (2, 9)
 2) (0, 11)
 3) (2, 14)
 4) (10, 2)

16 The pyramid shown below has a square base, a height of 7, and a volume of 84.

What is the length of the side of the base?
 1) 6
 2) 12
 3) 18
 4) 36

17 In the diagram below of triangle MNO, $\angle M$ and $\angle O$ are bisected by \overline{MS} and \overline{OR}, respectively. Segments MS and OR intersect at T, and $m\angle N = 40^\circ$.

If $m\angle TMR = 28^\circ$, the measure of angle OTS is
 1) 40º
 2) 50º
 3) 60º
 4) 70º

18 In the diagram below, right triangle ABC has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around \overline{AB}?
 1) 32π
 2) 48π
 3) 96π
 4) 144π
19 What is an equation of a line that is perpendicular to the line whose equation is $2y = 3x - 10$ and passes through $(-6, 1)$?

1) $y = -\frac{2}{3}x - 5$
2) $y = -\frac{2}{3}x - 3$
3) $y = \frac{2}{3}x + 1$
4) $y = \frac{2}{3}x + 10$

20 In quadrilateral $BLUE$ shown below, $BE \cong UL$.

Which information would be sufficient to prove quadrilateral $BLUE$ is a parallelogram?

1) $BL \parallel EU$
2) $LU \parallel BE$
3) $BE \cong BL$
4) $LU \cong EU$

21 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

22 In the two distinct acute triangles ABC and DEF, $\angle B \cong \angle E$. Triangles ABC and DEF are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) AC onto DF, and BC onto EF
3) $\angle C$ onto $\angle F$, and BC onto EF
4) point A onto point D, and AB onto DE

23 A fabricator is hired to make a 27-foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025
24 In the diagram below, \(AC = 7.2 \) and \(CE = 2.4 \).

Which statement is not sufficient to prove \(\triangle ABC \sim \triangle EDC \)?

1) \(AB \parallel ED \)
2) \(DE = 2.7 \) and \(AB = 8.1 \)
3) \(CD = 3.6 \) and \(BC = 10.8 \)
4) \(DE = 3.0 \), \(AB = 9.0 \), \(CD = 2.9 \), and \(BC = 8.7 \)

25 Given: Trapezoid \(JKLM \) with \(JK \parallel ML \)

Using a compass and straightedge, construct the altitude from vertex \(J \) to \(ML \). [Leave all construction marks.]

26 Determine and state, in terms of \(\pi \), the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

27 The diagram below shows two figures. Figure \(A \) is a right triangular prism and figure \(B \) is an oblique triangular prism. The base of figure \(A \) has a height of 5 and a length of 8 and the height of prism \(A \) is 14. The base of figure \(B \) has a height of 8 and a length of 5 and the height of prism \(B \) is 14.

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

28 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately 180 in\(^3\). After being fully inflated, its volume is approximately 294 in\(^3\). To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

29 In right triangle \(ABC \) shown below, altitude \(CD \) is drawn to hypotenuse \(AB \). Explain why \(\triangle ABC \sim \triangle ACD \).
30 Triangle ABC and triangle DEF are drawn below.

![Diagram of triangles ABC and DEF]

If $AB \cong DE$, $AC \cong DF$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle ABC onto triangle DEF.

31 Line n is represented by the equation $3x + 4y = 20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

![Graph of line n]

32 Triangle ABC has vertices at $A(-5,2)$, $B(-4,7)$, and $C(-2,7)$, and triangle DEF has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle ABC$ and $\triangle DEF$ on the set of axes below. Determine and state the single transformation where $\triangle DEF$ is the image of $\triangle ABC$. Use your transformation to explain why $\triangle ABC \cong \triangle DEF$.

![Graph of triangles ABC and DEF]

33 Given: \overline{RS} and \overline{TV} bisect each other at point X \overline{TR} and \overline{SV} are drawn

![Diagram with bisected lines]

Prove: $\overline{TR} \parallel \overline{SV}$
34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [1 ft³=7.48 gallons]

35 Quadrilateral \(PQRS\) has vertices \(P(-2,3), Q(3,8), R(4,1),\) and \(S(-1,-4)\). Prove that \(PQRS\) is a rhombus. Prove that \(PQRS\) is not a square. [The use of the set of axes below is optional.]

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.
1 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?
1) cone
2) cylinder
3) pyramid
4) rectangular prism

2 The image of $\triangle DEF$ is $\triangle D'E'F'$. Under which transformation will he triangles not be congruent?
1) a reflection through the origin
2) a reflection over the line $y = x$
3) a dilation with a scale factor of 1 centered at (2,3)
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

3 The vertices of square $RSTV$ have coordinates $R(-1,5)$, $S(-3,1)$, $T(-7,3)$, and $V(-5,7)$. What is the perimeter of $RSTV$?
1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4\sqrt{20}$
4) $4\sqrt{40}$

4 In the diagram below of circle O, chord CD is parallel to diameter AOB and $m\overline{CD} = 130$.

What is $m\overline{AC}$?
1) 25
2) 50
3) 65
4) 115

5 In the diagram below, \overline{AD} intersects \overline{BE} at C, and $\overline{AB} \parallel \overline{DE}$.

If $CD = 6.6$ cm, $DE = 3.4$ cm, $CE = 4.2$ cm, and $BC = 5.25$ cm, what is the length of AC, to the nearest hundredth of a centimeter?
1) 2.70
2) 3.34
3) 5.28
4) 8.25
6. As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?
1) a reflection over the x-axis
2) a reflection over the line \(x = 4\)
3) a rotation of 180° about the origin
4) a rotation of 180° about the point (4,0)

7. In the diagram below, triangle \(ACD\) has points \(B\) and \(E\) on sides \(AC\) and \(AD\), respectively, such that \(BE \parallel CD\), \(AB = 1\), \(BC = 3.5\), and \(AD = 18\).

What is the length of \(AE\), to the nearest tenth?
1) 14.0
2) 5.1
3) 3.3
4) 4.0

8. In the diagram below of parallelogram \(ROCK\), \(\angle C = 70°\) and \(\angle ROS = 65°\).

What is \(\angle KSO\)?
1) 45°
2) 110°
3) 115°
4) 135°

9. In the diagram below, \(\angle GRS \cong \angle ART\), \(GR = 36\), \(SR = 45\), \(AR = 15\), and \(RT = 18\).

Which triangle similarity statement is correct?
1) \(\triangle GRS \sim \triangle ART\) by AA.
2) \(\triangle GRS \sim \triangle ART\) by SAS.
3) \(\triangle GRS \sim \triangle ART\) by SSS.
4) \(\triangle GRS\) is not similar to \(\triangle ART\).

10. The line represented by the equation \(4y = 3x + 7\) is transformed by a dilation centered at the origin. Which linear equation could represent its image?
1) \(3x - 4y = 9\)
2) \(3x + 4y = 9\)
3) \(4x - 3y = 9\)
4) \(4x + 3y = 9\)
11 Given \(\triangle ABC \) with \(m\angle B = 62^\circ \) and side \(AC \) extended to \(D \), as shown below.

Which value of \(x \) makes \(AB \cong CB \)?
1) 59º
2) 62º
3) 118º
4) 121º

12 In the diagram shown below, \(PA \) is tangent to circle \(T \) at \(A \), and secant \(PBC \) is drawn where point \(B \) is on circle \(T \).

If \(PB = 3 \) and \(BC = 15 \), what is the length of \(PA \)?
1) \(3\sqrt{5} \)
2) \(3\sqrt{6} \)
3) 3
4) 9

13 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is \(150\pi \).

Which line could the rectangle be rotated around?
1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

14 If \(ABCD \) is a parallelogram, which statement would prove that \(ABCD \) is a rhombus?
1) \(\angle ABC \cong \angle CDA \)
2) \(AC \cong BD \)
3) \(AC \perp BD \)
4) \(AB \perp CD \)

15 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, \(x \), of this ramp, to the nearest hundredth of a degree?
1) 4.76
2) 4.78
3) 85.22
4) 85.24
16 In the diagram below of $\triangle ABC$, D, E, and F are the midpoints of AB, BC, and CA, respectively.

What is the ratio of the area of $\triangle CFE$ to the area of $\triangle CAB$?
1) 1:1
2) 1:2
3) 1:3
4) 1:4

17 The coordinates of the endpoints of AB are $A(−8,−2)$ and $B(16,6)$. Point P is on AB. What are the coordinates of point P, such that $AP:PB$ is 3:5?
1) (1,1)
2) (7,3)
3) (9.6,3.6)
4) (6.4,2.8)

18 Kirstie is testing values that would make triangle KLM a right triangle when LN is an altitude, and $KM = 16$, as shown below.

Which lengths would make triangle KLM a right triangle?
1) $LM = 13$ and $KN = 6$
2) $LM = 12$ and $NM = 9$
3) $KL = 11$ and $KN = 7$
4) $LN = 8$ and $NM = 10$

19 In right triangle ABC, $m\angle A = 32^\circ$, $m\angle B = 90^\circ$, and $AE = 6.2$ cm. What is the length of BC, to the nearest tenth of a centimeter?
1) 3.3
2) 3.9
3) 5.3
4) 11.7

20 The 2010 U.S. Census populations and population densities are shown in the table below.

<table>
<thead>
<tr>
<th>State</th>
<th>Population Density $\left(\frac{\text{people}}{\text{mi}^2}\right)$</th>
<th>Population in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>350.6</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Illinois</td>
<td>231.1</td>
<td>12,830,632</td>
</tr>
<tr>
<td>New York</td>
<td>411.2</td>
<td>19,378,102</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>283.9</td>
<td>12,702,379</td>
</tr>
</tbody>
</table>

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?
1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
21 In a right triangle, \(\sin(40 - x)^\circ = \cos(3x)^\circ \). What is the value of \(x \)?
1) 10
2) 15
3) 20
4) 25

22 A regular decagon is rotated \(n \) degrees about its center, carrying the decagon onto itself. The value of \(n \) could be
1) 10\(^\circ\)
2) 150\(^\circ\)
3) 225\(^\circ\)
4) 252\(^\circ\)

23 In a circle with a diameter of 32, the area of a sector is \(\frac{512\pi}{3} \). The measure of the angle of the sector, in radians, is
1) \(\frac{\pi}{3} \)
2) \(\frac{4\pi}{3} \)
3) \(\frac{16\pi}{3} \)
4) \(\frac{64\pi}{3} \)

24 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

![Diagram of a line segment](image)
1) \(y + 2x = 0 \)
2) \(y - 2x = 0 \)
3) \(2y + x = 0 \)
4) \(2y - x = 0 \)

25 Sue believes that the two cylinders shown in the diagram below have equal volumes. Is Sue correct? Explain why.
26 In the diagram of rhombus \(PQRS \) below, the diagonals \(PQ \) and \(QS \) intersect at point \(T \), \(PQ = 16 \), and \(QS = 30 \). Determine and state the perimeter of \(PQRS \).

27 Quadrilateral \(MATH \) and its image \(M''A''T''H'' \) are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral \(MATH \) onto quadrilateral \(M''A''T''H'' \).

28 Using a compass and straightedge, construct a regular hexagon inscribed in circle \(O \). [Leave all construction marks.]

29 The coordinates of the endpoints of \(\overline{AB} \) are \(A(2,3) \) and \(B(5,-1) \). Determine the length of \(\overline{A'B'} \), the image of \(\overline{AB} \), after a dilation of \(\frac{1}{2} \) centered at the origin. [The use of the set of axes below is optional.]
30 In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ}.

Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.

31 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^2 + y^2 - 6x = 56 - 8y$.

32 Triangle PQR has vertices $P(-3,-1)$, $Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of \overline{PQ} and \overline{RQ}, respectively. Use coordinate geometry to prove that \overline{AB} is parallel to \overline{PR} and is half the length of \overline{PR}. [The use of the set of axes below is optional.]

33 In the diagram below of circle O, tangent \overrightarrow{EC} is drawn to diameter \overline{AC}. Chord \overline{BC} is parallel to secant \overrightarrow{ADE}, and chord \overline{AB} is drawn.

Prove: $\frac{BC}{CA} = \frac{AB}{EC}$
34 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm.

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

35 Isosceles trapezoid $ABCD$ has bases DC and AB with nonparallel legs AD and BC. Segments AE, BE, CE, and DE are drawn in trapezoid $ABCD$ such that $\angle CDE \cong \angle DCE$, $AE \perp DE$, and $BE \perp CE$.

Prove $\triangle ADE \cong \triangle BCE$ and prove $\triangle AEB$ is an isosceles triangle.

36 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [1 ft3=7.48 gallons]
1. In the diagram below, a sequence of rigid motions maps $ABCD$ onto $JKLM$. If $\angle A = 82^\circ$, $\angle B = 104^\circ$, and $\angle L = 121^\circ$, the measure of $\angle M$ is
 1) 53°
 2) 82°
 3) 104°
 4) 121°

2. Parallelogram $HAND$ is drawn below with diagonals HN and AD intersecting at S. Which statement is always true?
 1) $AN = \frac{1}{2} AD$
 2) $AS = \frac{1}{2} AD$
 3) $\angle AHS \cong \angle ANS$
 4) $\angle HDS \cong \angle NDS$

3. The graph below shows two congruent triangles, ABC and $A'B'C'$. Which rigid motion would map $\triangle ABC$ onto $\triangle A'B'C'$?
 1) a rotation of 90 degrees counterclockwise about the origin
 2) a translation of three units to the left and three units up
 3) a rotation of 180 degrees about the origin
 4) a reflection over the line $y = x$
4 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?
1) 68.6
2) 80.9
3) 109.8
4) 244.4

5 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?
1) triangle
2) rectangle
3) pentagon
4) hexagon

6 In the diagram below, \(\overline{AC} \) has endpoints with coordinates \(A(-5,2) \) and \(C(4,-10) \).

If \(B \) is a point on \(\overline{AC} \) and \(AB:BC = 1:2 \), what are the coordinates of \(B \)?
1) \((-2,-2)\)
2) \(\left(-\frac{1}{2},-4\right)\)
3) \(\left(0,\frac{14}{3}\right)\)
4) \((1,-6)\)

7 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of \(54.45\pi \) cubic centimeters. What is the number of centimeters in the height of the waffle cone?
1) \(3\frac{3}{4}\)
2) 5
3) 15
4) \(24\frac{3}{4}\)
8 The vertices of \(\triangle PQR \) have coordinates \(P(2,3) \), \(Q(3,8) \), and \(R(7,3) \). Under which transformation of \(\triangle PQR \) are distance and angle measure preserved?

1) \((x,y) \rightarrow (2x,3y)\)
2) \((x,y) \rightarrow (x+2,3y)\)
3) \((x,y) \rightarrow (2x,y+3)\)
4) \((x,y) \rightarrow (x+2,y+3)\)

9 In \(\triangle ABC \) shown below, side \(AC \) is extended to point \(D \) with \(m \angle DAB = (180 - 3x)\)°, \(m \angle B = (6x - 40)\)°, and \(m \angle C = (x + 20)\)°.

What is \(m \angle BAC \)?

1) 20°
2) 40°
3) 60°
4) 80°

10 Circle \(O \) is centered at the origin. In the diagram below, a quarter of circle \(O \) is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the \(y \)-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

11 Rectangle \(A'B'C'D' \) is the image of rectangle \(ABCD \) after a dilation centered at point \(A \) by a scale factor of \(\frac{2}{3} \). Which statement is correct?

1) Rectangle \(A'B'C'D' \) has a perimeter that is \(\frac{2}{3} \) the perimeter of rectangle \(ABCD \).
2) Rectangle \(A'B'C'D' \) has a perimeter that is \(\frac{3}{2} \) the perimeter of rectangle \(ABCD \).
3) Rectangle \(A'B'C'D' \) has an area that is \(\frac{2}{3} \) the area of rectangle \(ABCD \).
4) Rectangle \(A'B'C'D' \) has an area that is \(\frac{3}{2} \) the area of rectangle \(ABCD \).

12 The equation of a circle is \(x^2 + y^2 - 6x + 2y = 6 \). What are the coordinates of the center and the length of the radius of the circle?

1) center \((-3,1)\) and radius 4
2) center \((3,-1)\) and radius 4
3) center \((-3,1)\) and radius 16
4) center \((3,-1)\) and radius 16

13 In the diagram of \(\triangle ABC \) below, \(DE \) is parallel to \(AB \), \(CD = 15 \), \(AD = 9 \), and \(AB = 40 \).

The length of \(DE \) is

1) 15
2) 24
3) 25
4) 30
14. The line whose equation is $3x - 5y = 4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?
 1) The image of the line has the same slope as the pre-image but a different y-intercept.
 2) The image of the line has the same y-intercept as the pre-image but a different slope.
 3) The image of the line has the same slope and the same y-intercept as the pre-image.
 4) The image of the line has a different slope and a different y-intercept from the pre-image.

15. Which transformation would not carry a square onto itself?
 1) a reflection over one of its diagonals
 2) a 90° rotation clockwise about its center
 3) a 180° rotation about one of its vertices
 4) a reflection over the perpendicular bisector of one side

16. In circle M below, diameter AC, chords AB and BC, and radius MB are drawn.

Which statement is not true?
 1) $\triangle ABC$ is a right triangle.
 2) $\triangle ABM$ is isosceles.
 3) $\widehat{BC} = \angle BMC$
 4) $\widehat{AB} = \frac{1}{2} \angle ACB$

17. In the diagram below, XS and YR intersect at Z. Segments XY and RS are drawn perpendicular to YR to form triangles XYZ and SRZ.

Which statement is always true?
 1) $(XY) (SR) = (XZ) (RZ)$
 2) $\triangle XYZ \cong \triangle SRZ$
 3) $XS \cong YR$
 4) $\frac{XY}{SR} = \frac{YZ}{RZ}$

18. As shown in the diagram below, $ABC \parallel EFG$ and $BF \cong EF$.

If $\angle CBF = 42.5^\circ$, then $\angle EBF$ is
 1) 42.5°
 2) 68.75°
 3) 95°
 4) 137.5°

19. A parallelogram must be a rhombus if its diagonals
 1) are congruent
 2) bisect each other
 3) do not bisect its angles
 4) are perpendicular to each other
20 What is an equation of a line which passes through (6,9) and is perpendicular to the line whose equation is $4x - 6y = 15$?

1) $y - 9 = -\frac{3}{2} (x - 6)$

2) $y - 9 = \frac{2}{3} (x - 6)$

3) $y + 9 = -\frac{3}{2} (x + 6)$

4) $y + 9 = \frac{2}{3} (x + 6)$

21 Quadrilateral $ABCD$ is inscribed in circle O, as shown below.

If $m\angle A = 80^\circ$, $m\angle B = 75^\circ$, $m\angle C = (y + 30)^\circ$, and $m\angle D = (x - 10)^\circ$, which statement is true?

1) $x = 85$ and $y = 50$

2) $x = 90$ and $y = 45$

3) $x = 110$ and $y = 75$

4) $x = 115$ and $y = 70$

22 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180

2) 405

3) 540

4) 1215

23 In the diagram below of $\triangle ABC$, $\angle ABC$ is a right angle, $AC = 12$, $AD = 8$, and altitude BD is drawn.

What is the length of BC?

1) $4\sqrt{2}$

2) $4\sqrt{3}$

3) $4\sqrt{5}$

4) $4\sqrt{6}$
24 In the diagram below, two concentric circles with center O, and radii OC, OD, OGE, and ODF are drawn.

If $OC = 4$ and $OE = 6$, which relationship between the length of arc EF and the length of arc CD is always true?
1) The length of arc EF is 2 units longer than the length of arc CD.
2) The length of arc EF is 4 units longer than the length of arc CD.
3) The length of arc EF is 1.5 times the length of arc CD.
4) The length of arc EF is 2.0 times the length of arc CD.

25 Given: Parallelogram $ABCD$ with diagonal AC drawn

Prove: $\triangle ABC \cong \triangle CDA$

26 The diagram below shows circle O with diameter AB. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

27 Given: Right triangle ABC with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

28 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.
29 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $0.29 per kilogram, and has a density of 7.95 g/cm³. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

30 In the graph below, \(\triangle ABC \) has coordinates \(A(-9,2), B(-6,-6), \) and \(C(-3,-2) \), and \(\triangle RST \) has coordinates \(R(-2,9), S(5,6), \) and \(T(2,3) \).

Is \(\triangle ABC \) congruent to \(\triangle RST \)? Use the properties of rigid motions to explain your reasoning.

31 Bob places an 18-foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

32 Triangle \(ABC \) and triangle \(ADE \) are graphed on the set of axes below.

Describe a transformation that maps triangle \(ABC \) onto triangle \(ADE \). Explain why this transformation makes triangle \(ADE \) similar to triangle \(ABC \).

33 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.
34 As shown in the diagram below, an island \(I \) is due north of a marina \(M \). A boat house \(H \) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house \(H \) to the island \(I \). Determine and state, to the nearest tenth of a mile, the distance from the island \(I \) to the marina \(M \).

35 In the coordinate plane, the vertices of triangle \(PAT \) are \(P(-1,-6) \), \(A(-4,5) \), and \(T(5,-2) \). Prove that \(\triangle PAT \) is an isosceles triangle. [The use of the set of axes below is optional.] State the coordinates of \(R \) so that quadrilateral \(PART \) is a parallelogram. Prove that quadrilateral \(PART \) is a parallelogram.
0618geo

1. After a counterclockwise rotation about point X, scalene triangle ABC maps onto ΔRST, as shown in the diagram below.

Which statement must be true?
1) \(\angle A \cong \angle R \)
2) \(\angle A \cong \angle S \)
3) \(CB \cong TR \)
4) \(CA \cong TS \)

2. In the diagram below, \(\overline{AB} \parallel \overline{DEF} \), \(\overline{AE} \) and \(\overline{BD} \) intersect at \(C \), \(m\angle B = 43^\circ \), and \(m\angle CEF = 152^\circ \).

Which statement is true?
1) \(m\angle D = 28^\circ \)
2) \(m\angle A = 43^\circ \)
3) \(m\angle ACD = 71^\circ \)
4) \(m\angle BCE = 109^\circ \)

3. In the diagram below, line \(m \) is parallel to line \(n \). Figure 2 is the image of Figure 1 after a reflection over line \(m \). Figure 3 is the image of Figure 2 after a reflection over line \(n \).

Which single transformation would carry Figure 1 onto Figure 3?
1) a dilation
2) a rotation
3) a reflection
4) a translation
4 In the diagram below, \(\overline{AF} \) and \(\overline{DB} \) intersect at \(C \), and \(\overline{AD} \) and \(\overline{FBE} \) are drawn such that \(\angle D = 65^\circ \), \(\angle CBE = 115^\circ \), \(DC = 7.2 \), \(AC = 9.6 \), and \(FC = 21.6 \).

What is the length of \(\overline{CB} \)?
1) 3.2
2) 4.8
3) 16.2
4) 19.2

6 In right triangle \(\triangle ABC \), hypotenuse \(\overline{AB} \) has a length of 26 cm, and side \(\overline{BC} \) has a length of 17.6 cm. What is the measure of angle \(B \), to the nearest degree?
1) 48°
2) 47°
3) 43°
4) 34°

7 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?
1) 17,869
2) 24,937
3) 39,074
4) 67,349

8 In a right triangle, the acute angles have the relationship \(\sin(2x + 4) = \cos(46) \). What is the value of \(x \)?
1) 20
2) 21
3) 24
4) 25
9. In the diagram below, $AB \parallel DFC$, $EDA \parallel CBG$, and EFB and AG are drawn.

Which statement is always true?
1) $\triangle DEF \cong \triangle CBF$
2) $\triangle BAG \cong \triangle BAE$
3) $\triangle BAG \sim \triangle AEB$
4) $\triangle DEF \sim \triangle AEB$

10. The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm. What is the height, in centimeters, of the pyramid if its volume is 82.8 cm3?
1) 6
2) 2
3) 9
4) 18

11. In the diagram below of right triangle AED, $BC \parallel DE$.

Which statement is always true?
1) $\frac{AC}{BC} = \frac{DE}{AE}$
2) $\frac{AB}{AD} = \frac{BC}{DE}$
3) $\frac{AC}{CE} = \frac{BC}{DE}$
4) $\frac{DE}{BC} = \frac{DB}{AB}$

12. What is an equation of the line that passes through the point (6,8) and is perpendicular to a line with equation $y = \frac{3}{2}x + 5$?
1) $y - 8 = \frac{3}{2}(x - 6)$
2) $y - 8 = -\frac{2}{3}(x - 6)$
3) $y + 8 = \frac{3}{2}(x + 6)$
4) $y + 8 = -\frac{2}{3}(x + 6)$
13. The diagram below shows parallelogram $ABCD$ with diagonals AC and BD intersecting at E.

What additional information is sufficient to prove that parallelogram $ABCD$ is also a rhombus?
1) BD bisects AC.
2) AB is parallel to CD.
3) AC is congruent to BD.
4) AC is perpendicular to BD.

14. Directed line segment DE has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides DE such that $DF:FE$ is 2:3. What are the coordinates of F?
1) $(-3,0)$
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

15. Triangle DAN is graphed on the set of axes below. The vertices of $\triangle DAN$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle DAN$?
1) 60
2) 120
3) $20\sqrt{13}$
4) $40\sqrt{13}$
16 Triangle ABC, with vertices at $A(0,0)$, $B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle ABC$ is rotated continuously about BC?

1)
2)
3)
4)

17 In the diagram below of circle O, chords AB and CD intersect at E.

If $m\overset{\frown}{AC} = 72^\circ$ and $m\angle AEC = 58^\circ$, how many degrees are in $m\overset{\frown}{DB}$?

1) 108º
2) 65º
3) 44º
4) 14º

18 In triangle SRK below, medians SC, KE, and RL intersect at M.

Which statement must always be true?

1) $3(MC) = SC$
2) $MC = \frac{1}{3}(SM)$
3) $RM = 2MC$
4) $SM = KM$
19. The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?
1) 60°
2) 108°
3) 216°
4) 540°

20. What is an equation of circle O shown in the graph below?

1) $x^2 + 10x + y^2 + 4y = -13$
2) $x^2 - 10x + y^2 - 4y = -13$
3) $x^2 + 10x + y^2 + 4y = -25$
4) $x^2 - 10x + y^2 - 4y = -25$

21. In the diagram below of $\triangle PQR$, ST is drawn parallel to PR, $PS = 2$, $SQ = 5$, and $TR = 5$.

What is the length of QR?
1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

22. The diagram below shows circle O with radii OA and OB. The measure of angle AOB is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc AB, in inches?
1) $\frac{120}{360} (6\pi)$
2) $120(6)$
3) $\frac{1}{3} (36\pi)$
4) $\frac{1}{3} (12\pi)$
23 Line segment CD is the altitude drawn to hypotenuse EF in right triangle ECF. If $EC = 10$ and $EF = 24$, then, to the nearest tenth, ED is
1) 4.2
2) 5.4
3) 15.5
4) 21.8

24 Line MN is dilated by a scale factor of 2 centered at the point $(0,6)$. If MN is represented by $y = -3x + 6$, which equation can represent $M'N'$, the image of MN?
1) $y = -3x + 12$
2) $y = -3x + 6$
3) $y = -6x + 12$
4) $y = -6x + 6$

25 Triangle $A'B'C'$ is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle $A'B'C'$? Explain why.

26 Triangle ABC and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$, after a dilation of scale factor 2 centered at point D.

27 Quadrilaterals $BIKE$ and $GOLF$ are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $BIKE$ onto quadrilateral $GOLF$.
28 In the diagram below, secants \overline{RST} and \overline{RQP}, drawn from point R, intersect circle O at S, T, Q, and P.

If $RS = 6$, $ST = 4$, and $RP = 15$, what is the length of RQ?

29 Using a compass and straightedge, construct the median to side \overline{AC} in $\triangle ABC$ below. [Leave all construction marks.]

30 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

31 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches. Determine and state the volume of the basketball, to the nearest cubic inch.

32 Triangle ABC has vertices with coordinates $A(-1,-1)$, $B(4,0)$, and $C(0,4)$. Prove that $\triangle ABC$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]
33 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path FS is 400 feet. The angle formed by path TF and path FS is 72°. The angle formed by path TC and path CS is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

34 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

35 Given: Parallelogram $ABCD$, $BF \perp AFD$, and $DE \perp BEC$

Prove: $BEDF$ is a rectangle
1 In the diagram below, \(\overline{AEFB} \parallel \overline{CGD} \), and \(\overline{GE} \) and \(\overline{GF} \) are drawn.

If \(m\angle EFG = 32^\circ \) and \(m\angle AEG = 137^\circ \), what is \(m\angle EGF \)?
1) 11º
2) 43º
3) 75º
4) 105º

2 If \(\triangle ABC \) is mapped onto \(\triangle DEF \) after a line reflection and \(\triangle DEF \) is mapped onto \(\triangle XYZ \) after a translation, the relationship between \(\triangle ABC \) and \(\triangle XYZ \) is that they are always
1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

3 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a
1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

4 In regular hexagon \(ABCDEF \) shown below, \(\overline{AD} \), \(\overline{BE} \), and \(\overline{CF} \) all intersect at \(G \).

When \(\triangle ABG \) is reflected over \(\overline{BG} \) and then rotated 180º about point \(G \), \(\triangle ABG \) is mapped onto
1) \(\triangle FEG \)
2) \(\triangle AFG \)
3) \(\triangle CBG \)
4) \(\triangle DEG \)

5 A right cylinder is cut perpendicular to its base. The shape of the cross section is a
1) circle
2) cylinder
3) rectangle
4) triangular prism

6 Yolanda is making a springboard to use for gymnastics. She has 8-inch-tall springs and wants to form a 16.5º angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, \(x \)?
1) 2.3
2) 8.3
3) 27.0
4) 28.2
8. Rhombus \(STAR\) has vertices \(S(-1,2), T(2,3), A(3,0),\) and \(R(0,-1)\). What is the perimeter of rhombus \(STAR\)?

1) \(\sqrt{34}\)
2) \(4\sqrt{34}\)
3) \(\sqrt{10}\)
4) \(4\sqrt{10}\)

If \(BD = 4, AD = x - 6,\) and \(CD = x,\) what is the length of \(CD\)?

1) 5
2) 2
3) 8
4) 11

9. In the diagram below of \(\triangle HAR\) and \(\triangle NTY,\) angles \(H\) and \(N\) are right angles, and \(\triangle HAR \sim \triangle NTY.\)

If \(AR = 13\) and \(HR = 12,\) what is the measure of angle \(Y,\) to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°
10. In the diagram below, \overline{AKS}, \overline{NKC}, \overline{AN}, and \overline{SC} are drawn such that $\overline{AN} \cong \overline{SC}$.

Which additional statement is sufficient to prove $\triangle KAN \cong \triangle KSC$ by AAS?
1) \overline{AS} and \overline{NC} bisect each other.
2) K is the midpoint of \overline{NC}.
3) $\overline{AS} \perp \overline{CN}$
4) $\overline{AN} \parallel \overline{SC}$

11. Which equation represents a line that is perpendicular to the line represented by

$y = \frac{2}{3}x + 1$?
1) $3x + 2y = 12$
2) $3x - 2y = 12$
3) $y = \frac{3}{2}x + 2$
4) $y = -\frac{2}{3}x + 4$

12. In the diagram of $\triangle ABC$ below, points D and E are on sides AB and CB respectively, such that $\overline{DE} \parallel \overline{AC}$.

If EB is 3 more than DB, $AB = 14$, and $CB = 21$, what is the length of AD?
1) 6
2) 8
3) 9
4) 12

13. Quadrilateral $MATH$ has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral $MATH$ is always true?
1) $\overline{MT} \cong \overline{AH}$
2) $\overline{MT} \perp \overline{AH}$
3) $\angle MHT \cong \angle ATH$
4) $\angle MAT \cong \angle MHT$
14 In the figure shown below, quadrilateral $TAEO$ is circumscribed around circle D. The midpoint of TA is R, and $HO \cong PE$.

If $AP = 10$ and $EO = 12$, what is the perimeter of quadrilateral $TAEO$?
1) 56
2) 64
3) 72
4) 76

15 The coordinates of the endpoints of directed line segment ABC are $A(-8,7)$ and $C(7,-13)$. If $AB:BC = 3:2$, the coordinates of B are
1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

16 In triangle ABC, points D and E are on sides AB and BC, respectively, such that $DE \parallel AC$, and $AD:DB = 3:5$.

If $DB = 6.3$ and $AC = 9.4$, what is the length of DE, to the nearest tenth?
1) 3.8
2) 5.6
3) 5.9
4) 15.7
17 In the diagram below, rectangle \(ABCD \) has vertices whose coordinates are \(A(7,1) \), \(B(9,3) \), \(C(3,9) \), and \(D(1,7) \).

Which transformation will not carry the rectangle onto itself?
1) a reflection over the line \(y = x \)
2) a reflection over the line \(y = -x + 10 \)
3) a rotation of 180° about the point (6,6)
4) a rotation of 180° about the point (5,5)

18 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?
1) 5.2
2) 6.5
3) 13.1
4) 26.2

19 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?
1) 35
2) 58
3) 82
4) 175

20 In the accompanying diagram of right triangle \(ABC \), altitude \(BD \) is drawn to hypotenuse \(AC \).

Which statement must always be true?
1) \(\frac{AD}{AB} = \frac{BC}{AC} \)
2) \(\frac{AD}{AB} = \frac{AB}{AC} \)
3) \(\frac{BD}{BC} = \frac{AB}{AD} \)
4) \(\frac{AB}{BC} = \frac{BD}{AC} \)

21 An equation of circle \(O \) is \(x^2 + y^2 + 4x - 8y = -16 \). The statement that best describes circle \(O \) is the
1) center is \((2, -4)\) and is tangent to the \(x \)-axis
2) center is \((2, -4)\) and is tangent to the \(y \)-axis
3) center is \((-2, 4)\) and is tangent to the \(x \)-axis
4) center is \((-2, 4)\) and is tangent to the \(y \)-axis
22 In $\triangle ABC$, BD is the perpendicular bisector of ADC. Based upon this information, which statements below can be proven?

I. BD is a median.
II. BD bisects $\angle ABC$.
III. $\triangle ABC$ is isosceles.
1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

23 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R'J'M'$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

24 If $\sin(2x + 7)^\circ = \cos(4x - 7)^\circ$, what is the value of x?

1) 7
2) 15
3) 21
4) 30

25 In the circle below, AB is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

```
```

26 In parallelogram $ABCD$ shown below, the bisectors of $\angle ABC$ and $\angle DCB$ meet at E, a point on AD.

If $m\angle A = 68^\circ$, determine and state $m\angle BEC$.

```
```
27. In circle A below, chord BC and diameter DAE intersect at F.

If $\overarc{CD} = 46^\circ$ and $\overarc{DB} = 102^\circ$, what is $m\angle CFE$?

28. Trapezoids $ABCD$ and $A'B'C'D'$ are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $ABCD$ onto trapezoid $A'B'C'D'$.

29. In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6-foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.
30 Aliyah says that when the line $4x + 3y = 24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y = -\frac{4}{3}x + 16$. Is Aliyah correct? Explain why.

[The use of the set of axes below is optional.]

31 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $3.25 per cubic foot.

32 Given: $\triangle ABC$, \overline{AEC}, \overline{BDE} with $\angle ABE \cong \angle CBE$, and $\angle ADE \cong \angle CDE$

Prove: \overline{BDE} is the perpendicular bisector of \overline{AC}

Fill in the missing statement and reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\triangle ABC$, \overline{AEC}, \overline{BDE} with $\angle ABE \cong \angle CBE$, and $\angle ADE \cong \angle CDE$</td>
<td>1 Given</td>
</tr>
<tr>
<td>2 $BD \cong BD$</td>
<td>2</td>
</tr>
<tr>
<td>3 $\angle BDA$ and $\angle ADE$ are supplementary. $\angle BDC$ and $\angle CDE$ are supplementary.</td>
<td>3 Linear pairs of angles are supplementary.</td>
</tr>
<tr>
<td>4</td>
<td>4 Supplements of congruent angles are congruent.</td>
</tr>
<tr>
<td>5 $\triangle ABD \cong \triangle CBD$</td>
<td>5 ASA</td>
</tr>
<tr>
<td>6 $AD \cong CD$, $AB \cong CB$</td>
<td>6</td>
</tr>
<tr>
<td>7 \overline{BDE} is the perpendicular bisector of \overline{AC}</td>
<td>7</td>
</tr>
</tbody>
</table>
33 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, HA, FG, and DE, are congruent, and all three step runs, HG, FE, and DC, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle CAB = 36^\circ$ and $\angle CBA = 90^\circ$.

If each step run is parallel to AB and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of AC, to the nearest inch.

34 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm. The thickness of the chocolate of each sphere is 0.5 cm. Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is 1.308 g/cm³, determine and state, to the nearest gram, the total mass of the chocolate in the box.

35 The vertices of quadrilateral $MATH$ have coordinates $M(-4,2)$, $A(-1,-3)$, $T(9,3)$, and $H(6,8)$. Prove that quadrilateral $MATH$ is a parallelogram. Prove that quadrilateral $MATH$ is a rectangle. [The use of the set of axes below is optional.]
1. After a dilation with center (0,0), the image of \(DB \) is \(D'B' \). If \(DB = 4.5 \) and \(D'B' = 18 \), the scale factor of this dilation is

1) \(\frac{1}{3} \)
2) 5
3) \(\frac{1}{4} \)
4) 4

2. In the diagram below, \(\triangle ABC \) with sides 13, 15, and 16, is mapped onto \(\triangle DEF \) after a clockwise rotation of 90° about point \(P \).

If \(DE = 2x - 1 \), what is the value of \(x \)?

1) 7
2) 7.5
3) 8
4) 8.5

3. On the set of axes below, \(\triangle ABC \) has vertices at \(A(-2,0) \), \(B(2,-4) \), \(C(4,2) \), and \(\triangle DEF \) has vertices at \(D(4,0) \), \(E(-4,8) \), \(F(-8,-4) \).

Which sequence of transformations will map \(\triangle ABC \) onto \(\triangle DEF \)?

1) a dilation of \(\triangle ABC \) by a scale factor of 2 centered at point \(A \)
2) a dilation of \(\triangle ABC \) by a scale factor of \(\frac{1}{2} \) centered at point \(A \)
3) a dilation of \(\triangle ABC \) by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of \(\triangle ABC \) by a scale factor of \(\frac{1}{2} \) centered at the origin, followed by a rotation of 180° about the origin
4. The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?
1) a reflection over the shorter diagonal 3) a clockwise rotation of 90° about the intersection of the diagonals
2) a reflection over the longer diagonal 4) a counterclockwise rotation of 180° about the intersection of the diagonals

5. In the diagram below of circle O, points K, A, T, I, E are on the circle, $\triangle KAE$ and $\triangle ITE$ are drawn, $KE \cong EI$, and $\angle EKA \cong \angle EIT$.

Which statement about $\triangle KAE$ and $\triangle ITE$ is always true?
1) They are neither congruent nor similar. 3) They are right triangles.
2) They are similar but not congruent. 4) They are congruent.

6. In right triangle ABC shown below, point D is on AB and point E is on CB such that $AC \parallel DE$.

If $AB = 15$, $BC = 12$, and $EC = 7$, what is the length of BD?
1) 8.75 3) 5
2) 6.25 4) 4
7 In rhombus $VENU$, diagonals VN and EU intersect at S. If $VN = 12$ and $EU = 16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10

8 Given right triangle ABC with a right angle at C, $m\angle B = 61^\circ$. Given right triangle RST with a right angle at T, $m\angle R = 29^\circ$.

Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is not correct?

1) $\frac{AB}{RS} = \frac{RT}{AC}$
2) $\frac{BC}{ST} = \frac{AB}{RS}$
3) $\frac{BC}{ST} = \frac{AC}{RT}$
4) $\frac{AB}{AC} = \frac{RS}{RT}$

9 A vendor is using an 8-ft by 8-ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft.

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768
10 In the diagram below of right triangle KMI, altitude IG is drawn to hypotenuse KM.

If $KG = 9$ and $IG = 12$, the length of IM is
1) 15 3) 20
2) 16 4) 25

11 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
3) a cylinder with a radius of 5 inches and a height of 6 inches
4) a cylinder with a radius of 6 inches and a height of 5 inches

12 Which statement about parallelograms is always true?
1) The diagonals are congruent. 3) The diagonals are perpendicular.
2) The diagonals bisect each other. 4) The diagonals bisect their respective angles.

13 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?
1) 543 3) 1086
2) 555 4) 1110

14 The area of a sector of a circle with a radius measuring 15 cm is 75π cm2. What is the measure of the central angle that forms the sector?
1) 72° 3) 144°
2) 120° 4) 180°

15 Point M divides AB so that $AM:MB = 1:2$. If A has coordinates $(-1,-3)$ and B has coordinates $(8,9)$, the coordinates of M are
1) $(2,1)$ 3) $(5,5)$
2) $\left(\frac{5}{3},0\right)$ 4) $\left(\frac{23}{3},8\right)$
16 In the diagram below of triangle ABC, AC is extended through point C to point D, and BE is drawn to AC.

Which equation is always true?

1) $m\angle 1 = m\angle 3 + m\angle 2$
2) $m\angle 5 = m\angle 3 - m\angle 2$
3) $m\angle 6 = m\angle 3 - m\angle 2$
4) $m\angle 7 = m\angle 3 + m\angle 2$

17 In the diagram below of right triangle ABC, $AC = 8$, and $AB = 17$.

Which equation would determine the value of angle A?

1) $\sin A = \frac{8}{17}$
2) $\tan A = \frac{8}{15}$
3) $\cos A = \frac{15}{17}$
4) $\tan A = \frac{15}{8}$
Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20 2) 25 3) 29 4) 34

In the diagram of quadrilateral $NAVY$ below, $\angle YNA = 30^\circ$, $\angle YAN = 38^\circ$, $\angle AVY = 94^\circ$, and $\angle VAY = 46^\circ$.

Which segment has the shortest length?

1) \overline{AY} 2) \overline{NY} 3) \overline{VA} 4) \overline{VY}

What is an equation of a circle whose center is $(1,4)$ and diameter is 10?

1) $x^2 - 2x + y^2 - 8y = 8$ 2) $x^2 + 2x + y^2 + 8y = 8$ 3) $x^2 - 2x + y^2 - 8y = 83$ 4) $x^2 + 2x + y^2 + 8y = 83$
21 On the set of axes below, \(\triangle ABC \), altitude \(\overline{CG} \), and median \(\overline{CM} \) are drawn.

Which expression represents the area of \(\triangle ABC \)?

1) \(\frac{(BC)(AC)}{2} \)

2) \(\frac{(GC)(BC)}{2} \)

3) \(\frac{(CM)(AB)}{2} \)

4) \(\frac{(GC)(AB)}{2} \)

22 In right triangle \(\triangle ABC \), \(\angle C = 90^\circ \) and \(AC \neq BC \). Which trigonometric ratio is equivalent to \(\sin B \)?

1) \(\cos A \)

2) \(\cos B \)

3) \(\tan A \)

4) \(\tan B \)

23 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm.

How many cubic centimeters are in the volume of the cone?

1) \(12.5\pi \)

2) \(13.5\pi \)

3) \(30.0\pi \)

4) \(37.5\pi \)

24 What is an equation of the image of the line \(y = \frac{3}{2}x - 4 \) after a dilation of a scale factor of \(\frac{3}{4} \) centered at the origin?

1) \(y = \frac{9}{8}x - 4 \)

2) \(y = \frac{9}{8}x - 3 \)

3) \(y = \frac{3}{2}x - 4 \)

4) \(y = \frac{3}{2}x - 3 \)

25 Write an equation of the line that is parallel to the line whose equation is \(3y + 7 = 2x \) and passes through the point \((2,6) \).
26 Parallelogram $ABCD$ is adjacent to rhombus $DEFG$, as shown below, and \overline{FC} intersects \overline{AGD} at H.

If $m\angle B = 118^\circ$ and $m\angle AHC = 138^\circ$, determine and state $m\angle GFH$.

27 As shown in the diagram below, secants \overrightarrow{PWR} and \overrightarrow{PTS} are drawn to circle O from external point P.

If $m\angle RPS = 35^\circ$ and $m\widehat{RS} = 121^\circ$, determine and state $m\widehat{WT}$.
28 On the set of axes below, \(\triangle ABC \) is graphed with coordinates \(A(-2, -1) \), \(B(3, -1) \), and \(C(-2, -4) \). Triangle \(QRS \), the image of \(\triangle ABC \), is graphed with coordinates \(Q(-5, 2) \), \(R(-5, 7) \), and \(S(-8, 2) \).

Describe a sequence of transformations that would map \(\triangle ABC \) onto \(\triangle QRS \).

29 Given points \(A \), \(B \), and \(C \), use a compass and straightedge to construct point \(D \) so that \(ABCD \) is a parallelogram. [Leave all construction marks.]
30 On the set of axes below, \(\triangle DEF \) has vertices at the coordinates \(D(1, -1) \), \(E(3, 4) \), and \(F(4, 2) \), and point \(G \) has coordinates \((3, 1) \). Owen claims the median from point \(E \) must pass through point \(G \). Is Owen correct? Explain why.

31 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.
32 A triangle has vertices $A(-2,4)$, $B(6,2)$, and $C(1,-1)$. Prove that $\triangle ABC$ is an isosceles right triangle. [The use of the set of axes below is optional.]

33 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of 3.95 per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft. Nancy fills her pool with a water delivery service at a rate of 200 per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool. [1 ft3 water = 7.48 gallons]

34 As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, d, from the bottom of the stairs to the bottom of the ramp.
In the diagram of quadrilateral $ABCD$ with diagonal AC shown below, segments GH and EF are drawn, $AE \cong CG$, $BE \cong DG$, $AH \cong CF$, and $AD \cong CB$.

Prove: $EF \cong GH$
1 On the set of axes below, triangle ABC is graphed. Triangles $A'B'C'$ and $A''B''C''$, the images of triangle ABC, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle ABC$ onto $\triangle A'B'C'$ and then maps $\triangle A'B'C'$ onto $\triangle A''B''C''$.

1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

2 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

<table>
<thead>
<tr>
<th>County</th>
<th>2000 Census Population</th>
<th>2000 Land Area (mi²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broome</td>
<td>200,536</td>
<td>706.82</td>
</tr>
<tr>
<td>Dutchess</td>
<td>280,150</td>
<td>801.59</td>
</tr>
<tr>
<td>Niagara</td>
<td>219,846</td>
<td>522.95</td>
</tr>
<tr>
<td>Saratoga</td>
<td>200,635</td>
<td>811.84</td>
</tr>
</tbody>
</table>

Which county had the greatest population density?

1) Broome
2) Dutchess
3) Niagara
4) Saratoga

3 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone
4. Which transformation carries the parallelogram below onto itself?

1) a reflection over $y = x$
2) a reflection over $y = -x$
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

5. After a dilation centered at the origin, the image of \overline{CD} is $\overline{C'D'}$. If the coordinates of the endpoints of these segments are $C(6, -4), D(2, -8), C'(9, -6)$, and $D'(3, -12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

6. A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

7. The line $-3x + 4y = 8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y = \frac{4}{3}x + 8$
2) $y = \frac{3}{4}x + 8$
3) $y = -\frac{3}{4}x - 8$
4) $y = -\frac{4}{3}x - 8$
8 In the diagram below, \overline{AC} and \overline{BD} intersect at E.

Which information is always sufficient to prove $\triangle ABE \cong \triangle CDE$?

1) $AB \parallel CD$
2) $AB \cong CD$ and $BE \cong DE$
3) E is the midpoint of AC.
4) BD and AC bisect each other.

9 The expression $\sin 57^\circ$ is equal to

1) $\tan 33^\circ$
2) $\cos 33^\circ$
3) $\tan 57^\circ$
4) $\cos 57^\circ$

10 What is the volume of a hemisphere that has a diameter of 12.6 cm, to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2

11 In the diagram below of $\triangle ABC$, D is a point on BA, E is a point on BC, and DE is drawn.

If $BD = 5$, $DA = 12$, and $BE = 7$, what is the length of BC so that $\overline{AC} \parallel \overline{DE}$?

1) 23.8
2) 16.8
3) 15.6
4) 8.6

12 A quadrilateral must be a parallelogram if

1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent
13 In the diagram below of circle O, chords JT and ER intersect at M.

If $EM = 8$ and $RM = 15$, the lengths of JM and TM could be
1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

14 Triangles JOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{EJ} \cong \overline{MS}$. Which mapping would not always lead to $\triangle JOE \cong \triangle SAM$?
1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) \overline{EO} maps onto \overline{MA}
4) \overline{JO} maps onto \overline{SA}

15 In $\triangle ABC$ shown below, $\angle ACB$ is a right angle, E is a point on \overline{AC}, and \overline{ED} is drawn perpendicular to hypotenuse \overline{AB}.

If $AB = 9$, $BC = 6$, and $DE = 4$, what is the length of \overline{AE}?
1) 5
2) 6
3) 7
4) 8

16 Which equation represents a line parallel to the line whose equation is $-2x + 3y = -4$ and passes through the point $(1,3)$?
1) $y - 3 = \frac{-3}{2}(x - 1)$
2) $y - 3 = \frac{2}{3}(x - 1)$
3) $y + 3 = \frac{-3}{2}(x + 1)$
4) $y + 3 = \frac{2}{3}(x + 1)$
17 In rhombus \(TIGE \), diagonals \(TG \) and \(IE \) intersect at \(R \). The perimeter of \(TIGE \) is 68, and \(TG = 16 \).

What is the length of diagonal \(IE \)?

1) 15 3) 34
2) 30 4) 52

18 In circle \(O \) two secants, \(ABP \) and \(CDP \), are drawn to external point \(P \). If \(m\widehat{AC} = 72^\circ \), and \(m\widehat{BD} = 34^\circ \), what is the measure of \(\angle P \)?

1) 19° 3) 53°
2) 38° 4) 106°

19 What are the coordinates of point \(C \) on the directed segment from \(A(-8,4) \) to \(B(10,-2) \) that partitions the segment such that \(AC:CB \) is 2:1?

1) (1,1) 3) (2,−2)
2) (−2,2) 4) (4,0)

20 The equation of a circle is \(x^2 + 8x + y^2 - 12y = 144 \). What are the coordinates of the center and the length of the radius of the circle?

1) center \((4,−6)\) and radius 12 3) center \((4,−6)\) and radius 14
2) center \((-4,6)\) and radius 12 4) center \((-4,6)\) and radius 14

21 In parallelogram \(PQRS \), \(\overline{QP} \) is extended to point \(T \) and \(\overline{ST} \) is drawn.

If \(\overline{ST} \cong \overline{SP} \) and \(m\angle R = 130^\circ \), what is \(m\angle PST \)?

1) 130° 3) 65°
2) 80° 4) 50°
22 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

23 In the diagram of equilateral triangle ABC shown below, E and F are the midpoints of AC and BC, respectively.

If $EF = 2x + 8$ and $AB = 7x - 2$, what is the perimeter of trapezoid $ABFE$?

1) 36
2) 60
3) 100
4) 120

24 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

25 Triangle $A'B'C'$ is the image of triangle ABC after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle ABC congruent to triangle $A'B'C'$? Explain your answer.
26 Determine and state the area of triangle PQR, whose vertices have coordinates $P(-2,-5)$, $Q(3,5)$, and $R(6,1)$. [The use of the set of axes below is optional.]

27 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

28 In the diagram below, circle O has a radius of 10.

If $m\widehat{AB} = 72^\circ$, find the area of shaded sector AOB, in terms of π.
29. On the set of axes below, $\triangle ABC \cong \triangle STU$.

Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle STU$.

30. In right triangle PRT, $\angle P = 90^\circ$, altitude \overline{PQ} is drawn to hypotenuse \overline{RT}, $RT = 17$, and $PR = 15$.

Determine and state, to the nearest tenth, the length of \overline{RQ}.

31. Given circle O with radius \overline{OA}, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]
32 Riley plotted \(A(-1,6), B(3,8), C(6,-1),\) and \(D(1,0)\) to form a quadrilateral. Prove that Riley's quadrilateral \(ABCD\) is a trapezoid. [The use of the set of axes on the next page is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that \(ABCD\) is not an isosceles trapezoid.

33 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of \(6\frac{1}{2}\) feet and a height of 12 inches. The pool is filled with water to \(\frac{2}{3}\) of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.
34 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, \(x \), to the nearest foot.

35 Given: Quadrilateral \(MATH, \overline{HM} \cong \overline{AT}, \overline{HT} \cong \overline{AM}, \overline{HE} \perp \overline{ME}, \) and \(\overline{HA} \perp \overline{AT} \)

Prove: \(TA \cdot HA = HE \cdot TH \)
1 On the set of axes below, \overline{AB} is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $PA \cong AA'\'
2) $AB \parallel A'B'\'
3) $AB = A'B'\'
4) $\frac{5}{2} (A'B') = AB$

2 The coordinates of the vertices of parallelogram $CDEH$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals CE and DH?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

3 The coordinates of the endpoints of \overline{QS} are $Q(-9,8)$ and $S(9,-4)$. Point R is on \overline{QS} such that $QR:RS$ is in the ratio of 1:2. What are the coordinates of point R?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

4 If the altitudes of a triangle meet at one of the triangle’s vertices, then the triangle is

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

5 In the diagram below of $\triangle ACD$, \overline{DB} is a median to \overline{AC}, and $\overline{AB} \cong \overline{DB}$.

If $\angle DAB = 32^\circ$, what is $\angle BDC$?

1) 32°
2) 52°
3) 58°
4) 64°
6. What are the coordinates of the center and the length of the radius of the circle whose equation is
\[x^2 + y^2 = 8x - 6y + 39? \]
1) center \((-4,3)\) and radius 64
2) center \((4,-3)\) and radius 64
3) center \((-4,3)\) and radius 8
4) center \((4,-3)\) and radius 8

7. In the diagram below of parallelogram \(ABCD\), \(AFGB, CF\) bisects \(\angle DCB\), \(DG\) bisects \(\angle ADC\), and \(CF\) and \(DG\) intersect at \(E\).

If \(m\angle B = 75^\circ\), then the measure of \(\angle EFA\) is
1) \(142.5^\circ\)
2) \(127.5^\circ\)
3) \(52.5^\circ\)
4) \(37.5^\circ\)

8. What is an equation of a line that is perpendicular to the line whose equation is \(2y + 3x = 1\)?
1) \(y = \frac{2}{3}x + \frac{5}{2}\)
2) \(y = \frac{3}{2}x + 2\)
3) \(y = -\frac{2}{3}x + 1\)
4) \(y = -\frac{3}{2}x + \frac{1}{2}\)

9. Triangles \(ABC\) and \(RST\) are graphed on the set of axes below.

Which sequence of rigid motions will prove \(\triangle ABC \cong \triangle RST\)?
1) a line reflection over \(y = x\)
2) a rotation of \(180^\circ\) centered at \((1,0)\)
3) a line reflection over the \(x\)-axis followed by a translation of 6 units right
4) a line reflection over the \(x\)-axis followed by a line reflection over \(y = 1\)

10. If the line represented by \(y = -\frac{1}{4}x - 2\) is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?
1) The slope is \(-\frac{1}{4}\) and the \(y\)-intercept is \(-8\).
2) The slope is \(-\frac{1}{4}\) and the \(y\)-intercept is \(-2\).
3) The slope is \(-1\) and the \(y\)-intercept is \(-8\).
4) The slope is \(-1\) and the \(y\)-intercept is \(-2\).
11 Square $MATH$ has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square $MATH$ around side AT?
1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

12 Circle O with a radius of 9 is drawn below. The measure of central angle AOC is 120°.

![Circle diagram]

What is the area of the shaded sector of circle O?
1) 6π
2) 12π
3) 27π
4) 54π

13 In quadrilateral $QRST$, diagonals QS and RT intersect at M. Which statement would always prove quadrilateral $QRST$ is a parallelogram?
1) $\angle TQR$ and $\angle QRS$ are supplementary.
2) $QM \cong SM$ and $QT \cong RS$
3) $QR \cong TS$ and $QT \cong RS$
4) $QR \cong TS$ and $QT \parallel RS$

14 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?
1) 1.10
2) 1.62
3) 2.48
4) 3.81

15 Chelsea is sitting 8 feet from the foot of a tree. From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?
1) 8
2) 7
3) 6
4) 4

16 In the diagram below of right triangle ABC, altitude CD intersects hypotenuse AB at D.

![Right triangle diagram]

Which equation is always true?
1) $\frac{AD}{AC} = \frac{CD}{BC}$
2) $\frac{AD}{BD} = \frac{CD}{CD}$
3) $\frac{AC}{CD} = \frac{BC}{CD}$
4) $\frac{AD}{AC} = \frac{AC}{BD}$
17 A countertop for a kitchen is modeled with the dimensions shown below. An 18-inch by 21-inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?

1) 26
2) 23
3) 22
4) 19

18 In the diagram below, \(\overline{BC} \) connects points \(B \) and \(C \) on the congruent sides of isosceles triangle \(ADE \), such that \(\triangle ABC \) is isosceles with vertex angle \(A \).

If \(AB = 10 \), \(BD = 5 \), and \(DE = 12 \), what is the length of \(\overline{BC} \)?

1) 6
2) 7
3) 8
4) 9

19 In \(\triangle ABC \) below, angle \(C \) is a right angle.

Which statement must be true?

1) \(\sin A = \cos B \)
2) \(\sin A = \tan B \)
3) \(\sin B = \tan A \)
4) \(\sin B = \cos B \)
20 In right triangle RST, altitude TV is drawn to hypotenuse RS. If $RV = 12$ and $RT = 18$, what is the length of SV?

1) $6\sqrt{5}$
2) 15
3) $6\sqrt{6}$
4) 27

21 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm?

1) 8192.0
2) 13,653.3
3) 32,768.0
4) 54,613.3

22 In the diagram below, chords PQ and RS of circle O intersect at T.

Which relationship must always be true?

1) $RT = TQ$
2) $RT = TS$
3) $RT + TS = PT + TQ$
4) $RT \times TS = PT \times TQ$

23 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) 180° rotation counterclockwise about the origin
2) reflection over the line $y = \frac{1}{2}x + 1$
3) reflection over the line $y = 0$
4) reflection over the line $x = 0$

24 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?

1) 6.3
2) 7.0
3) 12.9
4) 13.6
25. In parallelogram $ABCD$ shown below, $m\angle DAC = 98^\circ$ and $m\angle ACD = 36^\circ$. What is the measure of angle B? Explain why.

26. An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below. To the nearest tenth of a degree, what was the angle of elevation?

27. On the set of axes below, $\triangle ABC \cong \triangle DEF$.

28. The vertices of $\triangle ABC$ have coordinates $A(-2, -1)$, $B(10, -1)$, and $C(4, 4)$. Determine and state the area of $\triangle ABC$. [The use of the set of axes below is optional.]
29 Using the construction below, state the degree measure of $\angle CAD$. Explain why.

30 In the diagram below of circle K, secant $PLKE$ and tangent PZ are drawn from external point P.

If $m\angle LZ = 56^\circ$, determine and state the degree measure of angle P.

31 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.

32 Triangle ABC is shown below. Using a compass and straightedge, construct the dilation of $\triangle ABC$ centered at B with a scale factor of 2. [Leave all construction marks.]

Is the image of $\triangle ABC$ similar to the original triangle? Explain why.

33 In the diagram below, $\triangle ABE \cong \triangle CBD$.

Prove: $\triangle AFD \cong \triangle CFE$
34 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer. If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

35 The coordinates of the vertices of $\triangle ABC$ are $A(1,2)$, $B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle ABC$ is isosceles. State the coordinates of point D such that quadrilateral $ABCD$ is a square. Prove that your quadrilateral $ABCD$ is a square. [The use of the set of axes below is optional.]
2014 Geometry Common Core State Standards Sample Items
Answer Section

1 ANS: 4
\[-5 + \frac{3}{5}(5 - -5) \quad -4 + \frac{3}{5}(1 - -4)\]
\[-5 + \frac{3}{5}(10) \quad -4 + \frac{3}{5}(5)\]
\[-5 + 6 \quad -4 + 3\]
1 \quad 1

PTS: 2 REF: spr1401geo NAT: G.GPE.B.6 TOP: Directed Line Segments

2 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five
isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the
segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular
polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

3 ANS: 2
The given line \(h, 2x + y = 1, \) does not pass through the center of dilation, the origin, because the \(y \)-intercept is at
(0, 1). The slope of the dilated line, \(m, \) will remain the same as the slope of line \(h, -2. \) All points on line \(h, \) such as
(0, 1), the \(y \)-intercept, are dilated by a scale factor of 4; therefore, the \(y \)-intercept of the dilated line is (0, 4) because
the center of dilation is the origin, resulting in the dilated line represented by the equation \(y = -2x + 4. \)

PTS: 2 REF: spr1403geo NAT: G.SRT.A.1 TOP: Line Dilations

4 ANS:
Circle \(A \) can be mapped onto circle \(B \) by first translating circle \(A \) along vector \(\overrightarrow{AB} \) such that \(A \) maps onto \(B, \) and
then dilating circle \(A, \) centered at \(A, \) by a scale factor of \(\frac{5}{3}. \) Since there exists a sequence of transformations that
maps circle \(A \) onto circle \(B, \) circle \(A \) is similar to circle \(B. \)

PTS: 2 REF: spr1404geo NAT: G.C.A.1 TOP: Similarity Proofs

5 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will
have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be
the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A.1 TOP: Volume
6 ANS: Triangle $X'Y'Z'$ is the image of $\triangle XYZ$ after a rotation about point Z such that \overline{ZX} coincides with \overline{ZU}. Since rotations preserve angle measure, \overline{ZY} coincides with \overline{ZV}, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{XY} \parallel \overline{UV}$. Then, dilate $\triangle X'Y'Z'$ by a scale factor of $\frac{ZU}{ZX}$ with its center at point Z. Since dilations preserve parallelism, \overline{XY} maps onto \overline{UV}. Therefore, $\triangle XYZ \sim \triangle UVZ$.

PTS: 2 REF: spr1406geo NAT: G.SRT.A.2 TOP: Compositions of Transformations

7 ANS: The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C.7 TOP: Cofunctions

8 ANS: $LA \cong DN$, $CA \cong CN$, and $\overline{DAC} \perp \overline{LCN}$ (Given). $\angle LCA$ and $\angle DCN$ are right angles (Definition of perpendicular lines). $\triangle LAC$ and $\triangle DNC$ are right triangles (Definition of a right triangle). $\triangle LAC \cong \triangle DNC$ (HL). $\triangle LAC$ will map onto $\triangle DNC$ after rotating $\triangle LAC$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.CO.B.8 TOP: Triangle Congruency

9 ANS: x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05. $\tan 6^\circ = \frac{112 - 1.5}{x}$ $\tan(49^\circ + 6^\circ) = \frac{112 - 1.5}{y}$ $\frac{1051.3 - 77.4}{5} \approx 195$

$x \approx 1051.3$ $y \approx 77.4$

PTS: 4 REF: spr1409geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

10 ANS: $\left(\frac{180 - 20}{2}\right) \times \pi(6)^2 = \frac{80}{360} \times 36\pi = 8\pi$

11 ANS:

\[\Delta XYZ, \overline{XY} \cong \overline{ZY}, \text{ and } \overline{YW} \text{ bisects } \angle XYZ \text{ (Given). } \Delta XYZ \text{ is isosceles (Definition of isosceles triangle). } \overline{YW} \text{ is an altitude of } \Delta XYZ \text{ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). } \overline{YW} \perp \overline{XZ} \text{ (Definition of altitude). } \angle YWZ \text{ is a right angle (Definition of perpendicular lines).} \]

PTS: 4 REF: spr1411geo NAT: G.CO.C.10 TOP: Triangle Proofs

12 ANS:

\[
r = 25 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 0.25 \text{ m} \quad V = \pi(0.25 \text{ m})^2(10 \text{ m}) = 0.625\pi \text{ m}^3 \quad W = 0.625\pi \text{ m}^3 \left(\frac{380 \text{ K}}{1 \text{ m}^3}\right) \approx 746.1 \text{ K} \\
n = \left(\frac{\$50,000}{N}\right) = 14.1 \quad \text{trees}
\]

PTS: 4 REF: spr1412geo NAT: G.MG.A.2 TOP: Density

13 ANS:

Circle \(O \), secant \(ACD \), tangent \(AB \) (Given). Chords \(BC \) and \(BD \) are drawn (Auxiliary lines). \(\angle A \cong \angle A \), \(BC \cong BC \) (Reflexive property). \(\angle BDC = \frac{1}{2} \angle BCD \) (The measure of an inscribed angle is half the measure of the intercepted arc). \(\angle CBA = \frac{1}{2} \angle BCD \) (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). \(\angle BDC \cong \angle CBA \) (Angles equal to half of the same arc are congruent). \(\triangle ABC \sim \triangle ADB \) (AA). \(\frac{AB}{AC} = \frac{AD}{AB} \) (Corresponding sides of similar triangles are proportional). \(AC \cdot AD = AB^2 \) (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B.5 TOP: Circle Proofs
It is given that point D is the image of point A after a reflection in line CH. It is given that CH is the perpendicular bisector of BCE at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $BC \cong EC$. Point E is the image of point B after a reflection over the line CH, since points B and E are equidistant from point C and it is given that CH is perpendicular to BE. Point C is on CH, and therefore, point C maps to itself after the reflection over CH. Since all three vertices of triangle ABC map to all three vertices of triangle DEC under the same line reflection, then $\triangle ABC \cong \triangle DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

15 ANS: 1
The man’s height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x = \frac{69}{102}$ $x \approx 34.1$°

16 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

17 ANS: 2
The line $y = 2x - 4$ does not pass through the center of dilation, so the dilated line will be distinct from $y = 2x - 4$. Since a dilation preserves parallelism, the line $y = 2x - 4$ and its image will be parallel, with slopes of 2. To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0, \frac{3}{2} \cdot -4 \cdot \frac{3}{2}\right) \rightarrow (0,-6)$. So the equation of the dilated line is $y = 2x - 6$.

18 ANS: 3
$\theta = \frac{s}{r} = \frac{2\pi}{10} = \frac{\pi}{5}$

19 ANS:
$\triangle MNO$ is congruent to $\triangle PNO$ by SAS. Since $\triangle MNO \cong \triangle PNO$, then $\overline{MO} \cong \overline{PO}$ by CPCTC. So \overline{NO} must divide \overline{MP} in half, and $MO = 8$.

PTS: 6 REF: spr1414geo NAT: G.CO.B.7 TOP: Triangle Congruency

PTS: 2 REF: fall1401geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

PTS: 2 REF: fall1403geo NAT: G.SRT.A.1 TOP: Line Dilations

PTS: 2 REF: fall1405geo NAT: G.SRT.B.5 TOP: Isosceles Triangle Theorem
20 ANS:
No, the weight of the bricks is greater than 900 kg. \(500 \times (5.1 \text{ cm} \times 10.2 \text{ cm} \times 20.3 \text{ cm}) = 528,003 \text{ cm}^3\).

\[
528,003 \text{ cm}^3 \times \frac{1 \text{ m}^3}{100 \text{ cm}^3} = 0.528003 \text{ m}^3. \quad \frac{1920 \text{ kg}}{\text{m}^3} \times 0.528003 \text{ m}^3 \approx 1013 \text{ kg}.
\]

PTS: 2
REF: fall1406geo NAT: G.MG.A.2 TOP: Density

21 ANS:
\(4x - .07 = 2x + .01\) \(\sin A\) is the ratio of the opposite side and the hypotenuse while \(\cos B\) is the ratio of the adjacent side and the hypotenuse. The side opposite angle \(A\) is the same side as the side adjacent to angle \(B\). Therefore, \(\sin A = \cos B\).

PTS: 2
REF: fall1407geo NAT: G.SRT.C.7 TOP: Cofunctions

22 ANS:
Translate \(\triangle ABC\) along \(\overline{CF}\) such that point \(C\) maps onto point \(F\), resulting in image \(\triangle A'B'C\). Then reflect \(\triangle A'B'C\) over \(\overline{DF}\) such that \(\triangle A'B'C\) maps onto \(\triangle DEF\).

or

Reflect \(\triangle ABC\) over the perpendicular bisector of \(\overline{EB}\) such that \(\triangle ABC\) maps onto \(\triangle DEF\).

PTS: 2
REF: fall1408geo NAT: G.CO.B.7 TOP: Triangle Congruency

23 ANS:

\[
\text{PTS: 2} \quad \text{REF: } \text{fall1409geo} \quad \text{NAT: G.CO.D.12} \quad \text{TOP: Constructions}
\]

KEY: parallel and perpendicular lines

24 ANS:
As the sum of the measures of the angles of a triangle is 180°, \(m\angle ABC + m\angle BCA + m\angle CAB = 180°\). Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so \(m\angle ABC + m\angle FBC = 180°, m\angle BCA + m\angle DCA = 180°,\) and \(m\angle CAB + m\angle EAB = 180°.\) By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4
REF: fall1410geo NAT: G.CO.C.10 TOP: Triangle Proofs
25 ANS:
\[M \left(\frac{4 + 0}{2}, \frac{6 - 1}{2} \right) = M \left(\frac{5}{2}, \frac{5}{2} \right) \]
\[m = \frac{6 - 1}{4 - 0} = \frac{7}{4}, \quad m_1 = -\frac{4}{7} \quad y - 2.5 = -\frac{4}{7}(x - 2) \]
The diagonals, \(MT \) and \(AH \), of rhombus \(MATH \) are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

26 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D.13 TOP: Constructions

27 ANS:
\[\tan 3.47 = \frac{M}{6336} \]
\[M \approx 384 \]
\[4960 + 384 = 5344 \]
\[A \approx 229 \]
\[5344 - 229 = 5115 \]

PTS: 6 REF: fall1413geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side KEY: advanced
<table>
<thead>
<tr>
<th>ANS: 4</th>
<th>PTS: 2</th>
<th>REF: 061501geo</th>
<th>NAT: G.GMD.B.4</th>
<th>TOP: Rotations of Two-Dimensional Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ANS: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[r = \sqrt{(7 - 3)^2 + (1 - 2)^2} = \sqrt{16 + 9} = 5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTS: 2</td>
<td>REF: 061503geo</td>
<td>NAT: G.GPE.B.4</td>
<td>TOP: Circles in the Coordinate Plane</td>
<td></td>
</tr>
<tr>
<td>5 ANS: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[\tan 34° = \frac{T}{20}]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[T \approx 13.5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTS: 2</td>
<td>REF: 061505geo</td>
<td>NAT: G.SRT.C.8</td>
<td>TOP: Using Trigonometry to Find a Side</td>
<td>KEY: graphics</td>
</tr>
<tr>
<td>6 ANS: 2</td>
<td>PTS: 2</td>
<td>REF: 061506geo</td>
<td>NAT: G.GMD.B.4</td>
<td>TOP: Cross-Sections of Three-Dimensional Objects</td>
</tr>
<tr>
<td>7 ANS: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[V = 12 \cdot 8.5 \cdot 4 = 408]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[W = 408 \cdot 0.25 = 102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTS: 2</td>
<td>REF: 061507geo</td>
<td>NAT: G.MG.A.2</td>
<td>TOP: Density</td>
<td></td>
</tr>
<tr>
<td>9 ANS: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[m = \frac{-A}{B} = \frac{-2}{-1} = 2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[m_\perp = -\frac{1}{2}]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTS: 2</td>
<td>REF: 061509geo</td>
<td>NAT: G.GPE.B.5</td>
<td>TOP: Parallel and Perpendicular Lines</td>
<td>KEY: identify perpendicular lines</td>
</tr>
<tr>
<td>10 ANS: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[\frac{360°}{45°} = 8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTS: 2</td>
<td>REF: 061510geo</td>
<td>NAT: G.CO.A.3</td>
<td>TOP: Mapping a Polygon onto Itself</td>
<td></td>
</tr>
</tbody>
</table>
11 ANS: 3
\[
\frac{9}{5} = \frac{9.2}{x} \quad 5.1 + 9.2 = 14.3
\]
\[9x = 46\]
\[x \approx 5.1\]

PTS: 2 REF: 061511geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

12 ANS: 4 PTS: 2 REF: 061512geo NAT: G.SRT.C.7 TOP: Cofunctions

14 ANS: 2
\[x^2 + y^2 + 6y + 9 = 7 + 9\]
\[x^2 + (y + 3)^2 = 16\]

PTS: 2 REF: 061514geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

15 ANS: 3
\[
\frac{AB}{BC} = \frac{DE}{EF}
\]
\[
\frac{9}{15} = \frac{6}{10}
\]
\[90 = 90\]

PTS: 2 REF: 061515geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

16 ANS: 2 PTS: 2 REF: 061516geo NAT: G.SRT.A.2 TOP: Dilations

17 ANS: 1 TOP: Alternate interior angles

PTS: 2 REF: 061517geo NAT: G.CO.C.9 TOP: Lines and Angles

18 ANS: 1 PTS: 2 REF: 061518geo NAT: G.SRT.A.1 TOP: Line Dilations

19 ANS: 2
\[SA = 6 \cdot 12^2 = 864\]
\[
\frac{864}{450} = 1.92
\]

PTS: 2 REF: 061519geo NAT: G.MG.A.3 TOP: Surface Area

KEY: mixed
21 ANS: 4
\[
\frac{7}{12} \cdot 30 = 17.5
\]

PTS: 2 REF: 061521geo NAT: G.SRT.B.5 TOP: Similarity
KEY: perimeter and area

22 ANS: 1
The line \(3y = -2x + 8\) does not pass through the center of dilation, so the dilated line will be distinct from \(3y = -2x + 8\). Since a dilation preserves parallelism, the line \(3y = -2x + 8\) and its image \(2x + 3y = 5\) are parallel, with slopes of \(-\frac{2}{3}\).

PTS: 2 REF: 061522geo NAT: G.SRT.A.1 TOP: Line Dilations

23 ANS: 2
\(x\) is \(\frac{1}{2}\) the circumference. \(\frac{C}{2} = \frac{10\pi}{2} \approx 16\)

PTS: 2 REF: 061523geo NAT: G.GMD.A.1 TOP: Circumference

24 ANS: 3 PTS: 2 REF: 061524geo NAT: G.CO.B.7 TOP: Triangle Congruency

25 ANS:

\[
\text{Opposite angles in a parallelogram are congruent, so } \angle O = 118^\circ. \text{ The interior angles of a triangle equal } 180^\circ. \text{ } 180 - (118 + 22) = 40.
\]

PTS: 2 REF: 061525geo NAT: G.CO.D.13 TOP: Constructions

26 ANS:

\[
\text{Opposite angles in a parallelogram are congruent, so } \angle O = 118^\circ. \text{ The interior angles of a triangle equal } 180^\circ. \text{ } 180 - (118 + 22) = 40.
\]

27 ANS:

\[-6 + \frac{2}{5}(4 - 6) -5 + \frac{2}{5}(0 - 5) (-2, -3)\]

\[-6 + \frac{2}{5}(10) -5 + \frac{2}{5}(5)\]

\[-6 + 4 -5 + 2\]

\[-2 \quad -3\]

PTS: 2 REF: 061527geo NAT: G.GPE.B.6 TOP: Directed Line Segments

28 ANS:

\[\sin x = \frac{4.5}{11.75}\]

\[x \approx 23\]

PTS: 2 REF: 061528geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

29 ANS:

\[A = 6^2 \pi = 36\pi\]

\[36\pi \cdot \frac{x}{360} = 12\pi\]

\[x = 360 \cdot \frac{12}{36}\]

\[x = 120\]

PTS: 2 REF: 061529geo NAT: G.C.B.5 TOP: Sectors

30 ANS:

Reflections are rigid motions that preserve distance.

PTS: 2 REF: 061530geo NAT: G.CO.B.7 TOP: Triangle Congruency
31 ANS:
\[
\frac{1.65}{4.15} = \frac{x}{16.6}
\]
\[4.15x = 27.39\]
\[x = 6.6\]

PTS: 2 REF: 061531geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

32 ANS:
Since linear angles are supplementary, \(m\angle GHI = 65^\circ\). Since \(GH \cong HI\), \(m\angle GHI = 50^\circ\) \((180 - (65 + 65))\). Since \(\angle EGB \cong \angle GHI\), the corresponding angles formed by the transversal and lines are congruent and \(AB \parallel CD\).

PTS: 4 REF: 061532geo NAT: G.CO.C.9 TOP: Lines and Angles

33 ANS:
Quadrilateral \(ABCD\) is a parallelogram with diagonals \(AC\) and \(BD\) intersecting at \(E\) (Given). \(AD \cong BC\) (Opposite sides of a parallelogram are congruent). \(\angle AED \cong \angle CEB\) (Vertical angles are congruent). \(BC \parallel DA\) (Definition of parallelogram). \(\angle DBC \cong \angle BDA\) (Alternate interior angles are congruent). \(\triangle AED \cong \triangle CEB\) (AAS). 180° rotation of \(\triangle AED\) around point \(E\).

PTS: 4 REF: 061533geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

34 ANS:
\[x = \sqrt{.55^2 - .25^2} \approx 0.49\]
\[.49^2 = .25y\]
\[.9604 + .25 < 1.5\]
\[.9604 = y\]

PTS: 4 REF: 061534geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

35 ANS:
\[\tan 47 = \frac{x}{8.5}\]
Cone: \(V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6\)
Cylinder: \(V = \pi (8.5)^2 (25) \approx 5674.5\)
Hemisphere: \(V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3\right) \approx 1286.3\)
\(689.6 + 5674.5 + 1286.3 \approx 7650\)
No, because \(7650 \cdot 62.4 = 477,360\)
\[477,360 \cdot .85 = 405,756,\] which is greater than \(400,000\).

ANS:

\[m_{TS} = \frac{-10}{6} = -\frac{5}{3} \quad m_{SR} = \frac{3}{5} \]

Since the slopes of \(TS \) and \(SR \) are opposite reciprocals, they are perpendicular and form a right angle. \(\triangle RST \) is a right triangle because \(\angle S \) is a right angle. \(P(0,9) \)

\[m_{RP} = \frac{-10}{6} = -\frac{5}{3} \quad m_{PT} = \frac{3}{5} \]

Since the slopes of all four adjacent sides (\(TS \) and \(SR \), \(SR \) and \(RP \), \(PT \) and \(TS \), \(RP \) and \(PT \)) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral \(RSTP \) is a rectangle because it has four right angles.
0815geo

Answer Section

1 ANS: 2 PTS: 2 REF: 081501geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
2 ANS: 3 PTS: 2 REF: 081502geo NAT: G.CO.A.2 TOP: Identifying Transformations KEY: basic
3 ANS: 4 PTS: 2 REF: 081503geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
4 ANS: 1 PTS: 2 REF: 081504geo NAT: G.SRT.C.7 TOP: Cofunctions
5 ANS: 1 PTS: 2 REF: 081505geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself
6 ANS: 4 PTS: 2 REF: 081506geo NAT: G.SRT.A.2 TOP: Dilations
7 ANS: 1 PTS: 2 REF: 081507geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify
8 ANS: 3

9 ANS: 3

\[x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9 \]

\[(x + 2)^2 + (y - 3)^2 = 25 \]

PTS: 2 REF: 081509geo NAT: G.GPE.A.1 TOP: Equations of Circles KEY: completing the square
10 ANS: 1

\[m = \frac{-2}{3} \]

\[1 = \left(\frac{-2}{3}\right)6 + b \]

\[1 = -4 + b \]

\[5 = b \]

PTS: 2 REF: 081510geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
11 ANS: 2
\[s^2 + s^2 = 7^2 \]
\[2s^2 = 49 \]
\[s^2 = 24.5 \]
\[s \approx 4.9 \]

PTS: 2 REF: 081511geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem

12 ANS: 3
\[5 \cdot 10 \cdot \frac{4}{4} = \frac{50}{4} = 12.5 \]

PTS: 2 REF: 081512geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: common tangents

13 ANS: 2 PTS: 2 REF: 081513geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: graphics

14 ANS: 4 PTS: 2 REF: 081514geo NAT: G.SRT.A.2
TOP: Compositions of Transformations KEY: grids

15 ANS: 3 PTS: 2 REF: 081515geo NAT: G.C.A.3
TOP: Inscribed Quadrilaterals

16 ANS: 1
\[V = \frac{4}{3} \pi \left(\frac{10}{2} \right)^3 \]
\[V = \frac{4}{3} \pi \cdot 25 \approx 261.8 \cdot 62.4 = 16,336 \]

PTS: 2 REF: 081516geo NAT: G.MG.A.2 TOP: Density

17 ANS: 4
\[\frac{2}{6} = \frac{5}{15} \]

PTS: 2 REF: 081517geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

18 ANS: 3
\[\frac{60}{360} \cdot 6^2 \pi = 6\pi \]

PTS: 2 REF: 081518geo NAT: G.C.B.5 TOP: Sectors

19 ANS: 2 PTS: 2 REF: 081519geo NAT: G.SRT.B.5
TOP: Similarity KEY: basic

20 ANS: 1
\[3^3 = 9 \]

PTS: 2 REF: 081520geo NAT: G.SRT.A.2 TOP: Dilations
21 ANS: 4
\[2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5 \]
\[230 \approx s \]

PTS: 2 REF: 081521geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids

22 ANS: 4
\[\frac{-2 - 1}{-1 - 3} = \frac{-3}{2} \quad \frac{3 - 2}{0 - 5} = \frac{1}{-5} \quad \frac{3 - 1}{0 - 3} = \frac{2}{3} \quad \frac{2 - 2}{5 - 1} = \frac{0}{6} = 0 \]

PTS: 2 REF: 081522geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

23 ANS: 1
\[\frac{4}{6} = \frac{3}{4.5} = \frac{2}{3} \]

PTS: 2 REF: 081523geo NAT: G.SRT.A.2 TOP: Dilations

24 ANS: 4
The line \(y = 3x - 1 \) passes through the center of dilation, so the dilated line is not distinct.

PTS: 2 REF: 081524geo NAT: G.SRT.A.1 TOP: Line Dilations

25 ANS:
\[\frac{137.8}{6^2} \approx 0.638 \text{ Ash} \]

PTS: 2 REF: 081525geo NAT: G.MG.A.2 TOP: Density

26 ANS:

\[\frac{120}{230} = \frac{x}{315} \]
\[x = 164 \]

PTS: 2 REF: 081526geo NAT: G.CO.D.13 TOP: Constructions
KEY: basic

27 ANS:

\[\frac{120}{230} = \frac{x}{315} \]
\[x = 164 \]

PTS: 2 REF: 081527geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic
28 ANS:
Parallelogram $ABCD$, diagonals \overline{AC} and \overline{BD} intersect at E (given). $\overline{DC} \parallel \overline{AB}; \overline{DA} \parallel \overline{CB}$ (opposite sides of a parallelogram are parallel). $\angle ACD \cong \angle CAB$ (alternate interior angles formed by parallel lines and a transversal are congruent).

29 ANS:
\[
\frac{6}{14} = \frac{9}{21} \quad \text{SAS}
\]

\[126 = 126\]

PTS: 2 REF: 081529geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

30 ANS:
The transformation is a rotation, which is a rigid motion.

PTS: 2 REF: 081530geo NAT: G.CO.B.7 TOP: Triangle Congruency

31 ANS:
\[
\frac{2}{5} \cdot (16 - 1) = 6 \quad \frac{2}{5} \cdot (14 - 4) = 4 \quad (1 + 6, 4 + 4) = (7, 8)
\]

PTS: 2 REF: 081531geo NAT: G.GPE.B.6 TOP: Directed Line Segments

32 ANS:
\[
\tan 7 = \frac{125}{x} \quad \tan 16 = \frac{125}{y} \quad 1018 - 436 \approx 582
\]

\[x \approx 1018 \quad y \approx 436\]

PTS: 4 REF: 081532geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

KEY: advanced
33 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles and a right triangle.
\[m_{BC} = \frac{-3}{2} \]
\[m_{\perp} = \frac{2}{3} \]
\[1 = b \]
\[3 = \frac{2}{3} x + 1 \]
\[2 = \frac{2}{3} x \]
\[3 = x \]
\[-4 = \frac{2}{3} (-1) + b \]

\[-1 = -2 + b \]
\[\frac{-12}{3} = \frac{-2}{3} + b \]
\[\frac{10}{3} = b \]
\[3 = \frac{2}{3} x - \frac{10}{3} \]
\[19 = 2x \]
\[9.5 = x \]

PTS: 4 REF: 081533geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

34 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. \(\triangle DEF \cong \triangle ABC \) as \(AC \cong DF \) and points are collinear on line \(\ell \) and a reflection preserves distance.

PTS: 4 REF: 081534geo NAT: G.CO.B.7 TOP: Triangle Congruency

35 ANS:
Parallelogram \(ABCD, BE \perp CED, DF \perp BFC, CE \cong CF \) (given). \(\angle BEC \cong \angle DFC \) (perpendicular lines form right angles, which are congruent). \(\angle FCD \cong \angle BCE \) (reflexive property). \(\triangle BEC \cong \triangle DFC \) (ASA). \(BC \cong CD \) (CPCTC). \(ABCD \) is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

36 ANS:
\[V = \frac{1}{3} \pi \left(\frac{3}{2} \right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \]
\[1885 \cdot 0.52 \cdot 0.10 = 98.02 \]
\[1.95(100) - (37.83 + 98.02) = 59.15 \]

PTS: 6 REF: 081536geo NAT: G.MG.A.2 TOP: Density
0116geo

Answer Section

1 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects

2 ANS: 4

\[m = -\frac{1}{2} \]

\[-4 = 2(6) + b \]

\[m_\perp = 2 \]

\[-4 = 12 + b \]

\[-16 = b \]

PTS: 2 REF: 011602geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line

3 ANS: 3

4 ANS: 2

\[14 \times 16 \times 10 = 2240 \]

\[\frac{2240 - 1680}{2240} = 0.25 \]

PTS: 2 REF: 011604geo NAT: G.GMD.A.3 TOP: Volume KEY: prisms

5 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A.2 TOP: Analytical Representations of Transformations KEY: basic

6 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C.9 TOP: Lines and Angles

7 ANS: 2

\[V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144 \]

PTS: 2 REF: 011607geo NAT: G.GMD.A.3 TOP: Volume KEY: pyramids

8 ANS: 1 PTS: 2 REF: 011608geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

9 ANS: 4 PTS: 2 REF: 011609geo NAT: G.SRT.C.7 TOP: Cofunctions

10 ANS: 2 PTS: 2 REF: 011610geo NAT: G.SRT.A.1 TOP: Line Dilations

12. ANS: 3
\[
\frac{x}{360} \cdot 3^2 \pi = 2\pi \quad 180 - 80 = 100
\]
\[
x = 80 \quad \frac{180 - 100}{2} = 40
\]

PTS: 2
REF: 011612geo
NAT: G.C.B.5
TOP: Sectors

13. ANS: 1
\[
\frac{6}{8} = \frac{9}{12}
\]

PTS: 2
REF: 011613geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: basic

14. ANS: 3
\[
\frac{4}{3} \pi \left(\frac{9.5}{2} \right)^3 \approx 55
\]

PTS: 2
REF: 011614geo
NAT: G.GMD.A.3
TOP: Volume
KEY: spheres

15. ANS: 2
\[
\sqrt{(-1 - 2)^2 + (4 - 3)^2} = \sqrt{10}
\]

PTS: 2
REF: 011615geo
NAT: G.GPE.B.7
TOP: Polygons in the Coordinate Plane

16. ANS: 3
\[
\cos A = \frac{9}{14}
A \approx 50^\circ
\]

PTS: 2
REF: 011616geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

17. ANS: 4
\[
x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 9 + 4
\]
\[
(x + 3)^2 + (y - 2)^2 = 36
\]

PTS: 2
REF: 011617geo
NAT: G.GPE.A.1
TOP: Equations of Circles
KEY: completing the square

18. ANS: 1
\[
m_{RT} = \frac{5 - 3}{4 - 2} = \frac{8}{6} = \frac{4}{3} \quad m_{ST} = \frac{5 - 2}{4 - 8} = \frac{3}{-4} = -\frac{3}{4}
\]
Slopes are opposite reciprocals, so lines form a right angle.

PTS: 2
REF: 011618geo
NAT: G.GPE.B.4
TOP: Triangles in the Coordinate Plane
19 ANS: 2
\[
\frac{4}{3} \pi \cdot 4^3 + 0.075 \approx 20
\]

PTS: 2 REF: 011619geo NAT: G.MG.A.2 TOP: Density

20 ANS: 4
\[
\frac{1}{2} = \frac{x + 3}{3x - 1} \quad \text{GR} = 3(7) - 1 = 20
\]
\[
3x - 1 = 2x + 6
\]
\[
x = 7
\]

PTS: 2 REF: 011620geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

21 ANS: 3 PTS: 2 REF: 011621geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

KEY: inscribed

22 ANS: 2
\[
\sqrt{3 \cdot 21} = \sqrt{63} = 3\sqrt{7}
\]

PTS: 2 REF: 011622geo NAT: G.SRT.B.5 TOP: Similarity

KEY: altitude

23 ANS: 1
\[
\frac{1000}{20\pi} \approx 15.9
\]

PTS: 2 REF: 011623geo NAT: G.GMD.A.1 TOP: Circumference

24 ANS: 3
\[
\frac{12}{4} = \frac{x}{5} \quad 15 - 4 = 11
\]
\[
x = 15
\]

PTS: 2 REF: 011624geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

25 ANS:

PTS: 2 REF: 011625geo NAT: G.CO.A.5 TOP: Reflections

KEY: grids
26 ANS:
\[180 - 2(30) = 120\]

PTS: 2 REF: 011626geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: parallel lines

27 ANS:
\[x = \frac{2}{3}(4 - 2) = 4 \quad -2 + 4 = 2 \quad J(2,5)\]
\[y = \frac{2}{3}(7 - 1) = 4 \quad 1 + 4 = 5\]

PTS: 2 REF: 011627geo NAT: G.GPE.B.6 TOP: Directed Line Segments

28 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B.7 TOP: Triangle Congruency

29 ANS:
\[\sin 70 = \frac{30}{L}\]
\[L \approx 32\]

PTS: 2 REF: 011629geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: graphics

30 ANS:
\[\frac{40000}{\pi \left(\frac{51}{2}\right)^2} \approx 19.6 \quad \frac{72000}{\pi \left(\frac{75}{2}\right)^2} \approx 16.3 \quad \text{Dish } A\]

PTS: 2 REF: 011630geo NAT: G.MG.A.2 TOP: Density
31 ANS:
\[\ell: y = 3x - 4 \]
\[m: y = 3x - 8 \]

PTS: 2 REF: 011631geo NAT: G.SRT.A.1 TOP: Line Dilations

32 ANS:
\[\frac{16}{9} = \frac{x}{20.6} \quad D = \sqrt{36.6^2 + 20.6^2} \approx 42 \]
\[x \approx 36.6 \]

PTS: 4 REF: 011632geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem
KEY: without graphics

33 ANS:
(2) Euclid’s Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

34 ANS:

\[\triangle \overrightarrow{C} \approx \triangle \overrightarrow{A} \quad \text{SAS} \approx \text{SAS} \]

PTS: 4 REF: 011634geo NAT: G.CO.D.12 TOP: Constructions
KEY: congruent and similar figures

35 ANS:
Parallelogram \(\overline{ANDR} \) with \(\overline{AW} \) and \(\overline{DE} \) bisecting \(\overline{NWD} \) and \(\overline{REA} \) at points \(W \) and \(E \) (Given). \(\overline{AN} \approx \overline{RD} \), \(\overline{AR} \approx \overline{DN} \) (Opposite sides of a parallelogram are congruent). \(AE = \frac{1}{2} AR, WD = \frac{1}{2} DN \), so \(\overline{AE} \approx \overline{WD} \) (Definition of bisect and division property of equality). \(\overline{AR} \parallel \overline{DN} \) (Opposite sides of a parallelogram are parallel). \(AWDE \) is a parallelogram (Definition of parallelogram). \(RE = \frac{1}{2} AR, NW = \frac{1}{2} DN \), so \(\overline{RE} \approx \overline{NW} \) (Definition of bisect and division property of equality). \(ED \approx AW \) (Opposite sides of a parallelogram are congruent). \(\triangle ANW \approx \triangle DRE \) (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs
36 ANS:
\[
\tan 52.8 = \frac{h}{x} \quad \Rightarrow x \tan 52.8 = x \tan 34.9 + 8 \tan 34.9 \quad \tan 52.8 \approx \frac{h}{9} \quad 11.86 + 1.7 \approx 13.6
\]
\[
h = x \tan 52.8 \quad \Rightarrow x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9
\]
\[
\tan 34.9 = \frac{h}{x + 8} \quad \Rightarrow x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9 \quad x \approx 11.86
\]
\[
h = (x + 8) \tan 34.9 \quad \Rightarrow x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9 \quad x \approx 9
\]

PTS: 6
REF: 011636geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side
KEY: advanced
0616geo

Answer Section

1. ANS: 3 PTS: 2 REF: 061601geo NAT: G.GMD.B.4
 TOP: Rotations of Two-Dimensional Objects

2. ANS: 4
 \(3 \times 6 = 18 \)
 PTS: 2 REF: 061602geo NAT: G.SRT.A.1 TOP: Line Dilations

3. ANS: 2 PTS: 2 REF: 061603geo NAT: G.GPE.A.1
 TOP: Equations of Circles KEY: find center and radius | completing the square

4. ANS: 1 PTS: 2 REF: 061604geo NAT: G.CO.A.2
 TOP: Identifying Transformations KEY: graphics

5. ANS: 3
 1) \(\frac{12}{9} = \frac{4}{3} \) 2) AA 3) \(\frac{32}{16} \neq \frac{8}{2} \) 4) SAS
 PTS: 2 REF: 061605geo NAT: G.SRT.B.5 TOP: Similarity
 KEY: basic

6. ANS: 4 PTS: 2 REF: 061606geo NAT: G.GMD.A.3
 TOP: Volume KEY: compositions

7. ANS: 3
 1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal
 PTS: 2 REF: 061607geo NAT: G.SRT.B.5 TOP: Triangle Proofs
 KEY: statements

8. ANS: 4 PTS: 2 REF: 061608geo NAT: G.SRT.A.2
 TOP: Compositions of Transformations KEY: grids

9. ANS: 1
 1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle
 PTS: 2 REF: 061609geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

 TOP: Chords, Secants and Tangents KEY: inscribed

11. ANS: 4
 \(\sin 70 = \frac{x}{20} \)
 \(x \approx 18.8 \)
 PTS: 2 REF: 061611geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
 KEY: without graphics

12. ANS: 1
 \[m = \left(\frac{-11 + 5}{2}, \frac{5 + (-7)}{2} \right) = (-3, -1) \]
 \(m = \frac{5 - (-7)}{-11 - 5} = \frac{12}{-16} = \frac{3}{-4} \)
 \(m_{\perp} = \frac{4}{3} \)
 PTS: 2 REF: 061612geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
 KEY: perpendicular bisector
13 ANS: 2
\[h^2 = 30 \cdot 12 \]
\[h^2 = 360 \]
\[h = 6\sqrt{10} \]

PTS: 2 REF: 061613geo NAT: G.SRT.B.5 TOP: Similarity
KEY: altitude

14 ANS: 4
The slope of \(\overline{BC} \) is \(\frac{2}{5} \). Altitude is perpendicular, so its slope is \(-\frac{5}{2} \).

PTS: 2 REF: 061614geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line

15 ANS: 4 PTS: 2 REF: 061615geo NAT: G.SRT.C.6
TOP: Trigonometric Ratios

16 ANS: 3 PTS: 2 REF: 061616geo NAT: G.CO.A.2
TOP: Identifying Transformations
KEY: graphics

17 ANS: 1
\[\frac{f}{4} = \frac{15}{6} \]
\[f = 10 \]

PTS: 2 REF: 061617geo NAT: G.CO.C.9 TOP: Lines and Angles

18 ANS: 2
\[\frac{11}{1.2 \text{ oz}} \left(\frac{16 \text{ oz}}{1 \text{ lb}} \right) = \frac{13.31 \text{ lb}}{\text{lb}} \left(\frac{1 \text{ g}}{3.7851} \right) \approx \frac{3.5 \text{ g}}{1 \text{ lb}} \]

PTS: 2 REF: 061618geo NAT: G.MG.A.2 TOP: Density

19 ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C.10 TOP: Triangle Proofs

20 ANS: 1
\[\frac{1}{2} \left(\frac{4}{3} \right) \pi \cdot 5^3 \cdot 62.4 \approx 16,336 \]

PTS: 2 REF: 061620geo NAT: G.MG.A.2 TOP: Density
21 ANS: 2
\[
\frac{12}{4} = \frac{36}{x}
\]
\[
12x = 144
\]
\[
x = 12
\]

PTS: 2 REF: 061621geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

22 ANS: 3
\[
\sqrt{45} = 3\sqrt{5} \quad a = \frac{1}{2} \left(3\sqrt{5}\right) \left(6\sqrt{5}\right) = \frac{1}{2} (18)(5) = 45
\]
\[
\sqrt{180} = 6\sqrt{5}
\]

PTS: 2 REF: 061622geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

23 ANS: 1
Since the midpoint of \(AB\) is \((3,−2)\), the center must be either \((5,−2)\) or \((1,−2)\).

\[
r = \sqrt{2^2 + 5^2} = \sqrt{29}
\]

PTS: 2 REF: 061623geo NAT: G.GPE.A.1 TOP: Equations of Circles

KEY: other

24 ANS: 3
\[
\frac{60}{360} \cdot 8^2 \pi \cdot \frac{1}{6} \cdot 64\pi = \frac{32\pi}{3}
\]

PTS: 2 REF: 061624geo NAT: G.C.B.5 TOP: Sectors

25 ANS: \(T_{6,0} \circ r_{x-axis}\)

PTS: 2 REF: 061625geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify
26 ANS:
\[
4 + \frac{4}{9}(22 - 4) \quad 2 + \frac{4}{9}(2 - 2) \quad (12, 2)
\]
\[
4 + \frac{4}{9}(18) \quad 2 + \frac{4}{9}(0)
\]
\[
4 + 8 \quad 2 + 0
\]
\[
12 \quad 2
\]

PTS: 2 REF: 061626geo NAT: G.GPE.B.6 TOP: Directed Line Segments

27 ANS:
\[
\frac{3.75}{5} = \frac{4.5}{6} \quad \overline{AB} \text{ is parallel to } \overline{CD} \text{ because } \overline{AB} \text{ divides the sides proportionately.}
\]

\[
39.375 = 39.375
\]

PTS: 2 REF: 061627geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

28 ANS:
\[
73 + R = 90 \quad \text{Equal cofunctions are complementary.}
\]

\[
R = 17
\]

PTS: 2 REF: 061628geo NAT: G.SRT.C.7 TOP: Cofunctions

29 ANS:
\[
s = \theta \cdot r \quad s = \theta \cdot r \quad \text{Yes, both angles are equal.}
\]
\[
\pi = A \cdot 4 \quad \frac{13\pi}{8} = B \cdot 6.5
\]
\[
\frac{\pi}{4} = A \quad \frac{\pi}{4} = B
\]

KEY: arc length

30 ANS:
\[
tan x = \frac{10}{4}
\]
\[
x \approx 68
\]

PTS: 2 REF: 061630geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
31 ANS:

\[\frac{\pi \cdot 11.25^2 \cdot 33.5}{231} \approx 57.7\]

PTS: 2 REF: 061631geo NAT: G.CO.D.12 TOP: Constructions
KEY: parallel and perpendicular lines

32 ANS:

Parallelogram \(ABCD, \overline{EFG}\), and diagonal \(\overline{DFB}\) (given); \(\angle DFE \cong \angle BFG\) (vertical angles); \(\overline{AD} \parallel \overline{CB}\) (opposite sides of a parallelogram are parallel); \(\angle EDF \cong \angle GBF\) (alternate interior angles are congruent); \(\triangle DEF \sim \triangle BGF\) (AA).

PTS: 4 REF: 061632geo NAT: G.GMD.A.3 TOP: Volume
KEY: cylinders

33 ANS:

Parallelogram \(ABCD, \overline{EFG}\), and diagonal \(\overline{DFB}\) (given); \(\angle DFE \cong \angle BFG\) (vertical angles); \(\overline{AD} \parallel \overline{CB}\) (opposite sides of a parallelogram are parallel); \(\angle EDF \cong \angle GBF\) (alternate interior angles are congruent); \(\triangle DEF \sim \triangle BGF\) (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A.3 TOP: Similarity Proofs

34 ANS:

A dilation of \(\frac{5}{2}\) about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo NAT: G.SRT.A.3 TOP: Similarity Proofs

35 ANS:

Quadrilateral \(ABCD\) with diagonals \(\overline{AC}\) and \(\overline{BD}\) that bisect each other, and \(\angle 1 \cong \angle 2\) (given); quadrilateral \(ABCD\) is a parallelogram (the diagonals of a parallelogram bisect each other); \(\overline{AB} \parallel \overline{CD}\) (opposite sides of a parallelogram are parallel); \(\angle 1 \cong \angle 3\) and \(\angle 2 \cong \angle 4\) (alternate interior angles are congruent); \(\angle 2 \cong \angle 3\) and \(\angle 3 \cong \angle 4\) (substitution); \(\triangle ACD\) is an isosceles triangle (the base angles of an isosceles triangle are congruent); \(\overline{AD} \cong \overline{DC}\) (the sides of an isosceles triangle are congruent); quadrilateral \(ABCD\) is a rhombus (a rhombus has consecutive congruent sides); \(\overline{AE} \perp \overline{BE}\) (the diagonals of a rhombus are perpendicular); \(\angle BEA\) is a right angle (perpendicular lines form a right angle); \(\triangle AEB\) is a right triangle (a right triangle has a right angle).

ANS:

Similar triangles are required to model and solve a proportion.

\[\frac{x + 5}{1.5} = \frac{x}{1} \quad \frac{1}{3} \pi (1.5)^2 (15) - \frac{1}{3} \pi (1)^2 (10) \approx 24.9 \]

\[x + 5 = 1.5x \]
\[5 = .5x \]
\[10 = x \]
\[10 + 5 = 15 \]

PTS: 6 REF: 061636geo NAT: G.GMD.A.3 TOP: Volume

KEY: cones
0816geo

Answer Section

1 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C.9
TOP: Lines and Angles

2 ANS: 2 PTS: 2 REF: 081602geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: basic

3 ANS: 1 PTS: 2 REF: 081603geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects

4 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C.10 TOP: Interior and Exterior Angles of Triangles

5 ANS: 1 PTS: 2 REF: 081605geo NAT: G.CO.A.5
TOP: Rotations KEY: grids

6 ANS: 1 PTS: 2 REF: 081606geo NAT: G.SRT.C.7
TOP: Cofunctions

7 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C.11 TOP: Parallelograms

8 ANS: 3

\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2 REF: 081608geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem KEY: without graphics

9 ANS: 4 PTS: 2 REF: 081609geo NAT: G.SRT.A.2
TOP: Compositions of Transformations KEY: grids

10 ANS: 2

\[x^2 = 4 \cdot 10 \]

\[x = \sqrt{40} \]

\[x = 2\sqrt{10} \]

PTS: 2 REF: 081610geo NAT: G.SRT.B.5 TOP: Similarity KEY: leg

11 ANS: 4 PTS: 2 REF: 081611geo NAT: G.CO.C.9
TOP: Lines and Angles
12 ANS: 3
\[
\frac{x}{10} = \frac{6}{4} \quad CD = 15 - 4 = 11
\]
\[x = 15\]

PTS: 2 REF: 081612geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

13 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects

14 ANS: 1
\[m_{TM} = -1 \quad y = mx + b\]
\[m_{EM} = 1 \quad 1 = 1(2) + b\]
\[-1 = b\]

PTS: 2 REF: 081614geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

15 ANS: 3
\[A = \frac{1}{2} ab \quad 3 - 6 = -3 = x\]
\[24 = \frac{1}{2} a(8) \quad \frac{4+12}{2} = 8 = y\]
\[a = 6\]

PTS: 2 REF: 081615geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

16 ANS: 1
\[x^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16\]
\[(x - 2)^2 + (y + 4)^2 = 9\]

PTS: 2 REF: 081616geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

17 ANS: 2
\[C = \pi d \quad V = \pi \left(\frac{2.25}{\pi} \right)^2 \cdot 8 \approx 12.8916 \quad W = 12.8916 \cdot 752 \approx 9694\]
\[4.5 = \pi d\]
\[\frac{4.5}{\pi} = d\]
\[\frac{2.25}{\pi} = r\]

PTS: 2 REF: 081617geo NAT: G.MG.A.2 TOP: Density
18 ANS: 4
\[x = -6 + \frac{1}{6} (6 - 6) = -6 + 2 = -4 \]
\[y = -2 + \frac{1}{6} (7 - 2) = -2 + \frac{9}{6} = -\frac{1}{2} \]

PTS: 2 REF: 081618geo NAT: G.GPE.B.6 TOP: Directed Line Segments

19 ANS: 2 PTS: 2 REF: 081619geo NAT: G.C.B.5
TOP: Sectors

20 ANS: 4
\[V = \pi \left(\frac{6.7}{2} \right)^2 (4 \cdot 6.7) \approx 945 \]

PTS: 2 REF: 081620geo NAT: G.GMD.A.3 TOP: Volume
KEY: cylinders

21 ANS: 4
\[\sqrt{(32 - 8)^2 + (28 - 4)^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40 \]

PTS: 2 REF: 081621geo NAT: G.SRT.A.1 TOP: Line Dilations

22 ANS: 3 PTS: 2 REF: 081622geo NAT: G.SRT.B.5
TOP: Triangle Proofs KEY: statements

23 ANS: 1
The other statements are true only if \(AD \perp BC \).

PTS: 2 KEY: inscribed

24 ANS: 1
\[180 - (68 \cdot 2) \]

PTS: 2 REF: 081624geo NAT: G.CO.C.11 TOP: Interior and Exterior Angles of Polygons

25 ANS:
\[\frac{3}{8} \cdot 56 = 21 \]

PTS: 2 REF: 081625geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: common tangents
26 ANS:

![Diagram](image1.png)

PTS: 2
KEY: grids

27 ANS:

\[\frac{360}{6} = 60 \]

PTS: 2

28 ANS:

![Diagram](image2.png)

PTS: 2
KEY: line bisector

29 ANS:

\[M = 180 - (47 + 57) = 76 \] Rotations do not change angle measurements.

PTS: 2

30 ANS:

Yes.

\[(x - 1)^2 + (y + 2)^2 = 4^2 \]
\[(3.4 - 1)^2 + (1.2 + 2)^2 = 16 \]
\[5.76 + 10.24 = 16 \]
\[16 = 16 \]

PTS: 2
31 ANS:
\[\sin 75 = \frac{15}{x} \]
\[x = \frac{15}{\sin 75} \]
\[x \approx 15.5 \]

PTS: 2 REF: 081631geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: graphics

32 ANS:
The length of $A'C'$ is twice AC.

PTS: 4 REF: 081632geo NAT: G.CO.D.12 TOP: Constructions
KEY: congruent and similar figures

33 ANS:
ABC – point of reflection $\rightarrow (-y,x)$ + point of reflection $\rightarrow A'B'C'$ because ΔDEF is a reflection of $A(2, -3) - (2, -3) = (0, 0) \rightarrow (0, 0) + (2, -3) = A'(2, -3)$
$B(6, -8) - (2, -3) = (4, -5) \rightarrow (5, 4) + (2, -3) = B'(7, 1)$
$C(2, -9) - (2, -3) = (0, -6) \rightarrow (6, 0) + (2, -3) = C'(8, -3)$
$\Delta A'B'C'$ and reflections preserve distance.

PTS: 4 REF: 081633geo NAT: G.CO.A.5 TOP: Rotations
KEY: grids

34 ANS:
\[\tan x = \frac{12}{75} \quad \tan y = \frac{72}{75} \]
\[43.83 - 9.09 \approx 34.7 \]
\[x \approx 9.09 \quad y \approx 43.83 \]

PTS: 4 REF: 081634geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
Circle O, chords AB and CD intersect at E (Given); Chords CB and AD are drawn (auxiliary lines drawn); $\angle CEB \cong \angle AED$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);

$\triangle BCE \sim \triangle DAE$ (AA); $\frac{AE}{CE} = \frac{ED}{EB}$ (Corresponding sides of similar triangles are proportional);

$AE \cdot EB = CE \cdot ED$ (The product of the means equals the product of the extremes).

\[V = \frac{1}{3} \pi \left(\frac{8.3}{2} \right)^2 (10.2) + \frac{1}{2} \cdot \frac{4}{3} \pi \left(\frac{8.3}{2} \right)^3 \approx 183.961 + 149.693 \approx 333.65 \text{ cm}^3 \]

$333.65 \times 50 = 16682.7 \text{ cm}^3$

$16682.7 \times 0.697 = 11627.8 \text{ g}$

$11.6278 \times 3.83 = \$44.53$

35 ANS:

36 ANS:
0117geo

Answer Section

1 ANS: 3
 \[y = mx + b \]
 \[2 = \frac{1}{2}(-2) + b \]
 \[3 = b \]
 PTS: 2 REF: 011701geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
 KEY: write equation of parallel line

2 ANS: 2 PTS: 2
 TOP: Compositions of Transformations
 KEY: basic
 PTS: 2 REF: 011702geo NAT: G.SRT.A.2

3 ANS: 1 PTS: 2
 TOP: Triangle Congruency
 PTS: 2 REF: 011703geo NAT: G.SRT.B.5

4 ANS: 4 PTS: 2
 TOP: Midssegments
 PTS: 2 REF: 011704geo NAT: G.CO.C.10

5 ANS: 4 PTS: 2
 TOP: Special Quadrilaterals
 PTS: 2 REF: 011705geo NAT: G.CO.C.11

6 ANS: 4 PTS: 2
 TOP: Identifying Transformations
 KEY: basic
 PTS: 2 REF: 011706geo NAT: G.CO.A.2

7 ANS: 2
 \[\tan \theta = \frac{2.4}{x} \]
 \[\frac{3}{7} = \frac{2.4}{x} \]
 \[x = 5.6 \]
 PTS: 2 REF: 011707geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

8 ANS: 1
 \[\frac{64}{4} = 16 \quad 16^2 = 256 \quad 2w + 2(w + 2) = 64 \quad 15 \times 17 = 255 \quad 2w + 2(w + 4) = 64 \quad 14 \times 18 = 252 \quad 2w + 2(w + 6) = 64 \]
 \[w = 15 \quad w = 14 \quad w = 13 \]
 \[13 \times 19 = 247 \]
 PTS: 2 REF: 011708geo NAT: G.MG.A.3 TOP: Area of Polygons

9 ANS: 2
 \[6 + 6\sqrt{3} + 6 + 6\sqrt{3} \approx 32.8 \]
 PTS: 2 REF: 011709geo NAT: G.SRT.C.8 TOP: 30-60-90 Triangles

10 ANS: 3 PTS: 2
 TOP: Compositions of Transformations
 KEY: identify
 PTS: 2 REF: 011710geo NAT: G.CO.A.5
11 ANS: 2
\[4 \times 4 \times 6 - \pi(1)^2(6) \approx 77\]

PTS: 2 REF: 011711geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

12 ANS: 3
\[\cos 40 = \frac{14}{x}\]

\[x \approx 18\]

PTS: 2 REF: 011712geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

13 ANS: 1
\[B: (4 - 3, 3 - 4) \rightarrow (1, -1) \rightarrow (2, -2) \rightarrow (2 + 3, -2 + 4)\]

\[C: (2 - 3, 1 - 4) \rightarrow (-1, -3) \rightarrow (-2, -6) \rightarrow (-2 + 3, -6 + 4)\]

PTS: 2 REF: 011713geo NAT: G.SRT.A.1 TOP: Line Dilations

14 ANS: 3 PTS: 2 REF: 011714geo NAT: G.SRT.C.6 TOP: Trigonometric Ratios

15 ANS: 2
\[8(x + 8) = 6(x + 18)\]

\[8x + 64 = 6x + 108\]

\[2x = 44\]

\[x = 22\]

PTS: 2 REF: 011715geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length

16 ANS: 1 PTS: 2 REF: 011716geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

17 ANS: 4
\[\frac{360^\circ}{10} = 36^\circ\] 252° is a multiple of 36°

PTS: 2 REF: 011717geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

18 ANS: 1
\[x^2 + y^2 - 6y + 9 = -1 + 9\]

\[x^2 + (y - 3)^2 = 8\]

PTS: 2 REF: 011718geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

19 ANS: 3
\[\frac{7 - 1}{0 - 2} = \frac{6}{-2} = -3\] The diagonals of a rhombus are perpendicular.

PTS: 2 REF: 011719geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
20 ANS: 1

\[3 + \frac{2}{5}(8 - 3) = 3 + \frac{2}{5}(5) = 3 + 2 = 5 \]
\[5 + \frac{2}{5}(-5 - 5) = 5 + \frac{2}{5}(-10) = 5 - 4 = 1 \]

PTS: 2 REF: 011720geo NAT: G.GPE.B.6 TOP: Directed Line Segments

21 ANS: 4

\[\frac{300}{360} \cdot \frac{8^2 \pi}{3} = \frac{160 \pi}{3} \]

PTS: 2 REF: 011721geo NAT: G.C.B.5 TOP: Sectors

22 ANS: 3

\[\sqrt{(-5)^2 + 12^2} = \sqrt{169} \]
\[\frac{\sqrt{11^2 + (2 \cdot 12)^2}}{\sqrt{121 + 48}} = \sqrt{121} + 48 = \sqrt{169} \]

PTS: 2 REF: 011722geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane

23 ANS: 4 PTS: 2 REF: 011723geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects

24 ANS: 1

\[V = \frac{1}{3} \pi \left(\frac{1.5}{2} \right)^2 \left(\frac{4}{2} \right) \approx 1.2 \]

PTS: 2 REF: 011724geo NAT: G.GMD.A.3 TOP: Volume KEY: cones

25 ANS:

PTS: 2 REF: 011725geo NAT: G.CO.D.12 TOP: Constructions KEY: line bisector

26 ANS:

\[T_{0,-2} \circ r_{y-axis} \]

PTS: 2 REF: 011726geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

27 ANS:

Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.

PTS: 2 REF: 011727geo NAT: G.SRT.C.7 TOP: Cofunctions
28 ANS:
\[
\frac{152 - 56}{2} = 48
\]

PTS: 2 REF: 011728geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

29 ANS:
\[\overline{GI} \parallel \overline{NT}, \text{ and } \overline{IN} \text{ intersects at } A \text{ (given)}; \angle I \cong \angle N, \angle G \cong \angle T \text{ (paralleling lines cut by a transversal form congruent alternate interior angles)}; \triangle GIA \sim \triangle TNA \text{ (AA)}.\]

PTS: 2 REF: 011729geo NAT: G.SRT.A.3 TOP: Similarity Proofs

30 ANS:
\[180 - 2(25) = 130\]

PTS: 2 REF: 011730geo NAT: G.SRT.B.5 TOP: Isosceles Triangle Theorem

31 ANS:

32 ANS:

A dilation preserves slope, so the slopes of \(\overline{QR}\) and \(\overline{Q'R'}\) are equal. Because the slopes are equal, \(\overline{Q'R'} \parallel \overline{QR}\).

PTS: 4 REF: 011732geo NAT: G.SRT.A.2 TOP: Dilations
KEY: grids
33 ANS: Right triangle because $\angle CBF$ is inscribed in a semi-circle.

PTS: 4 REF: 011733geo NAT: G.CO.D.13 TOP: Constructions

34 ANS:

$$C = 2\pi r \quad V = \frac{1}{3} \pi \cdot 5^2 \cdot 13 \approx 340$$

$$31.416 = 2\pi r$$

$$5 \approx r$$

PTS: 4 REF: 011734geo NAT: G.GMD.A.3 TOP: Volume

KEY: cones

35 ANS:

Quadrilateral $ABCD$, $AB \cong CD$, $AB \parallel CD$, and BF and DE are perpendicular to diagonal AC at points F and E (given). $\angle AED$ and $\angle CFB$ are right angles (perpendicular lines form right angles). $\angle AED \cong \angle CFB$ (All right angles are congruent). $ABCD$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $AD \parallel BC$ (Opposite sides of a parallelogram are parallel). $\angle DAE \cong \angle BCF$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\triangle DAE \cong \triangle CBF$ (AAS). $AE \cong CF$ (CPCTC).

PTS: 6 REF: 011735geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

36 ANS:

C: $V = \pi (26.7)^2 (750) - \pi (24.2)^2 (750) = 95,437.5\pi$

$$95,437.5\pi \ cm^3 \left(\frac{2.7 \ g}{\text{cm}^3} \right) \left(\frac{1 \ kg}{1000 \ g} \right) \left(\frac{\$0.38}{\text{kg}} \right) = \$307.62$$

P: $V = 40^2 (750) - 35^2 (750) = 281,250$$

$307.62 - 288.56 = \$19.06$

$$281,250 \ cm^3 \left(\frac{2.7 \ g}{\text{cm}^3} \right) \left(\frac{1 \ kg}{1000 \ g} \right) \left(\frac{\$0.38}{\text{kg}} \right) = \$288.56$$

PTS: 6 REF: 011736geo NAT: G.MG.A.2 TOP: Density
0617geo

Answer Section

1. ANS: 2
 TOP: Compositions of Transformations
 KEY: identify
 PTS: 2
 REF: 061701geo
 NAT: G.CO.A.5

2. ANS: 3
 TOP: Polygons in the Coordinate Plane
 PTS: 2
 REF: 061702geo
 NAT: G.GPE.B.7

3. ANS: 3
 TOP: Cofunctions
 PTS: 2
 REF: 061703geo
 NAT: G.SRT.C.7

4. ANS: 4
 \[\frac{1}{2} (360 - 268) = 46 \]

5. ANS: 4
 \[\frac{2}{4} = \frac{9 - x}{x} \]
 \[36 - 4x = 2x \]
 \[x = 6 \]

6. ANS: 3
 TOP: Line Dilations
 PTS: 2
 REF: 061706geo
 NAT: G.CO.A.3

7. ANS: 2
 TOP: Mapping a Polygon onto Itself
 PTS: 2
 REF: 061708geo
 NAT: G.CO.A.5

8. ANS: 4
 \[6 \cdot 6 = x(x - 5) \]
 \[36 = x^2 - 5x \]
 \[0 = x^2 - 5x - 36 \]
 \[0 = (x - 9)(x + 4) \]
 \[x = 9 \]

9. ANS: 2
 TOP: Triangle Proofs
 PTS: 2
 REF: 061709geo
 NAT: G.SRT.B.5

10. ANS: 2
 \[\angle B = 180 - (82 + 26) = 72; \quad \angle DEC = 180 - 26 = 154; \quad \angle EDB = 360 - (154 + 26 + 72) = 108; \quad \angle BDF = \frac{108}{2} = 54; \]
 \[\angle DFB = 180 - (54 + 72) = 54 \]

PTS: 2
REF: 061710geo
NAT: G.CO.C.10
TOP: Interior and Exterior Angles of Triangles
11 ANS: 4 PTS: 2 REF: 061711geo NAT: G.CO.C.11
TOP: Special Quadrilaterals
12 ANS: 1
\[x^2 + y^2 - 12y + 36 = -20 + 36 \]
\[x^2 + (y - 6)^2 = 16 \]

PTS: 2 REF: 061712geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square
13 ANS: 1
\[\cos S = \frac{60}{65} \]
\[S \approx 23 \]

PTS: 2 REF: 061713geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
14 ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if \(A, B, A' \) and \(B' \) are collinear.

PTS: 2 REF: 061714geo NAT: G.SRT.A.2 TOP: Compositions of Transformations
KEY: basic
15 ANS: 2
\[-4 + \frac{2}{5} (6 - 4) = -4 + \frac{2}{5} (10) = -4 + 4 = 0 \]
\[5 + \frac{2}{5} (20 - 5) = 5 + \frac{2}{5} (15) = 5 + 6 = 11 \]

PTS: 2 REF: 061715geo NAT: G.GPE.B.6 TOP: Directed Line Segments
16 ANS: 1
\[84 = \frac{1}{3} \cdot s^2 \cdot 7 \]
\[6 = s \]

PTS: 2 REF: 061716geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids
17 ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C.10 TOP: Interior and Exterior Angles of Triangles
18 ANS: 1
\[V = \frac{1}{3} \pi(4)^2(6) = 32\pi \]

PTS: 2 REF: 061718geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
19 ANS: 2
\(m = \frac{3}{2}. \quad 1 = \frac{2}{3} (-6) + b\)
\(m_{\perp} = -\frac{2}{3} \quad 1 = 4 + b\)

PTS: 2 REF: 061719geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

20 ANS: 2 PTS: 2 REF: 061720geo NAT: G.CO.C.11
TOP: Parallelograms

21 ANS: 4
\(\sin 71 = \frac{x}{20}\)
\(x = 20 \sin 71 \approx 19\)

PTS: 2 REF: 061721geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: without graphics

22 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061722geo NAT: G.CO.B.7 TOP: Triangle Congruency

23 ANS: 3
\(2.5 \times 1.25 \times (27 \times 12) + \frac{1}{2} \pi (1.25)^2 (27 \times 12) \approx 1808\)

PTS: 2 REF: 061723geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

24 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

25 ANS:

PTS: 2 REF: 061725geo NAT: G.CO.D.12 TOP: Constructions
KEY: parallel and perpendicular lines
26 ANS:
\[\frac{40}{360} \cdot \pi(4.5)^2 = 2.25\pi \]

PTS: 2 REF: 061726geo NAT: G.C.B.5 TOP: Sectors

27 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14, the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A.1 TOP: Volume

28 ANS:
\[\frac{3}{4\pi} \left(\frac{3V_f}{4\pi} \right) - \frac{3}{4\pi} \left(\frac{3V_p}{4\pi} \right) = \frac{3(294)}{4\pi} - \frac{3(180)}{4\pi} \approx 0.6 \]

PTS: 2 REF: 061728geo NAT: G.GMD.A.3 TOP: Volume

KEY: spheres

29 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo NAT: G.SRT.B.5 TOP: Similarity

KEY: altitude

30 ANS:
Rotate \(\triangle ABC \) clockwise about point \(C \) until \(DF \parallel AC \). Translate \(\triangle ABC \) along \(CF \) so that \(C \) maps onto \(F \).

PTS: 2 REF: 061730geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify

31 ANS:
\[p: 3x + 4y = 20 \]

PTS: 2 REF: 061731geo NAT: G.SRT.A.1 TOP: Line Dilations
32 ANS:

Reflections are rigid motions that preserve distance, so $\triangle ABC \cong \triangle DEF$.

KEY: graphics

33 ANS:

RS and TV bisect each other at point X; TR and SV are drawn (given); $TX \cong VX$ and $RX \cong XS$ (segment bisectors create two congruent segments); $\angle TXR \cong \angle VXS$ (vertical angles are congruent); $\triangle TXR \cong \triangle VXS$ (SAS); $\angle T \cong \angle V$ (CPCTC); $TR \parallel SV$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo NAT: G.SRT.B.5 TOP: Triangle Proofs
KEY: proof

34 ANS:

$$20000 \text{ g} \left(\frac{1 \text{ ft}^3}{7.48 \text{ g}}\right) = 2673.8 \text{ ft}^3$$
$$2673.8 = \pi r^2 (34.5)$$
$$9.9 + 1 = 10.9$$
$$r \approx 4.967$$
$$d \approx 9.9$$

PTS: 4 REF: 061734geo NAT: G.GMD.A.3 TOP: Volume
KEY: cylinders

35 ANS:

$$PQ = \sqrt{(8-3)^2 + (3-2)^2} = \sqrt{50}$$
$$QR = \sqrt{(1-8)^2 + (4-3)^2} = \sqrt{50}$$
$$RS = \sqrt{(-4-1)^2 + (-1-4)^2} = \sqrt{50}$$
$$PS = \sqrt{(-4-3)^2 + (-1-2)^2} = \sqrt{50}$$

$PQRS$ is a rhombus because all sides are congruent. $m_{PQ} = \frac{8-3}{3-2} = \frac{5}{1} = 1$
$$m_{QR} = \frac{1-8}{4-3} = -7$$

Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular and do not form a right angle. Therefore $PQRS$ is not a square.

PTS: 6 REF: 061735geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
36 ANS:
\[\tan 15 = \frac{6250}{x} \quad \tan 52 = \frac{6250}{y} \]
\[23325.3 - 4883 = 18442 \left(\frac{1 \text{ mi}}{5280 \text{ ft}} \right) \left(\frac{60 \text{ min}}{1 \text{ h}} \right) \approx 210 \]
\[x \approx 23325.3 \quad y \approx 4883 \]

PTS: 6
REF: 061736geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side
0817geo

Answer Section

1 ANS: 2 PTS: 2 REF: 081701geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 4 PTS: 2 REF: 081702geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: basic
3 ANS: 3
\[4\sqrt{(-1-(-3))^2 + (5-1)^2} = 4\sqrt{20}\]
PTS: 2 REF: 081703geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane
4 ANS: 1
Parallel chords intercept congruent arcs. \[\frac{180 - 130}{2} = 25\]
PTS: 2 REF: 081704geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents KEY: parallel lines
5 ANS: 4
\[\frac{6.6}{x} = \frac{4.2}{5.25}\]
\[4.2x = 34.65\]
\[x = 8.25\]
PTS: 2 REF: 081705geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic
6 ANS: 3
The x-axis and line \(x = 4\) are lines of symmetry and \((4,0)\) is a point of symmetry.
PTS: 2 REF: 081706geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself
7 ANS: 4
\[\frac{1}{3.5} = \frac{x}{18-x}\]
\[3.5x = 18-x\]
\[4.5x = 18\]
\[x = 4\]
PTS: 2 REF: 081707geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem
8 ANS: 4

9 ANS: 4

\[
\frac{36}{45} \neq \frac{15}{18} \\
\frac{4}{5} \neq \frac{5}{6}
\]

PTS: 2 REF: 081709geo NAT: G.SRT.A.3 TOP: Similarity Proofs

10 ANS: 1

Since a dilation preserves parallelism, the line \(4y = 3x + 7\) and its image \(3x - 4y = 9\) are parallel, with slopes of \(\frac{3}{4}\).

PTS: 2 REF: 081710geo NAT: G.SRT.A.1 TOP: Line Dilations

11 ANS: 4

12 ANS: 2

\[x^2 = 3 \cdot 18\]
\[x = \sqrt{3 \cdot 3 \cdot 6} = 3 \sqrt{6}\]

PTS: 2 REF: 081712geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length

13 ANS: 3

\[v = \pi r^2 h \]

\(1)\ 6^2 \cdot 10 = 360\)
\(150\pi = \pi r^2 h \quad (2)\ 10^2 \cdot 6 = 600\)
\(150 = r^2 h \quad (3)\ 5^2 \cdot 6 = 150\)
\(3^2 \cdot 10 = 900\)

PTS: 2 REF: 081713geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
14 ANS: 3
In (1) and (2), \(ABCD\) could be a rectangle with non-congruent sides. (4) is not possible

PTS: 2 REF: 081714geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

15 ANS: 1
\[\tan x = \frac{1}{12} \]
\[x \approx 4.76 \]

PTS: 2 REF: 081715geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

17 ANS: 1
\[-8 + \frac{3}{8}(16 - 8) = -8 + \frac{3}{8}(24) = -8 + 9 = 1 \]
\[-2 + \frac{3}{8}(6 - (-2)) = -2 + \frac{3}{8}(8) = -2 + 3 = 1 \]

PTS: 2 REF: 081717geo NAT: G.GPE.B.6 TOP: Directed Line Segments

18 ANS: 2
\[12^2 = 9 \cdot 16 \]
\[144 = 144 \]

PTS: 2 REF: 081718geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

19 ANS: 1
\[\sin 32 = \frac{x}{6.2} \]
\[x \approx 3.3 \]

PTS: 2 REF: 081719geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

20 ANS: 1
\[
\begin{align*}
\text{Illinois: } \frac{12830632}{231.1} &\approx 55520 \\
\text{Florida: } \frac{18801310}{350.6} &\approx 53626 \\
\text{New York: } \frac{19378102}{411.2} &\approx 47126 \\
\text{Pennsylvania: } \frac{12702379}{283.9} &\approx 44742
\end{align*}
\]

PTS: 2 REF: 081720geo NAT: G.MG.A.2 TOP: Density

21 ANS: 4
\[40 - x + 3x = 90 \]
\[2x = 50 \]
\[x = 25 \]

PTS: 2 REF: 081721geo NAT: G.SRT.C.7 TOP: Cofunctions
22 ANS: 4
\[
\frac{360^\circ}{10} = 36^\circ \quad 252^\circ \text{ is a multiple of } 36^\circ
\]
PTS: 2 REF: 081722geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

23 ANS: 2
\[
\frac{512\pi}{3} \cdot \frac{2\pi}{3} = \frac{4\pi}{3}
\]
PTS: 2 REF: 081723geo NAT: G.C.B.5 TOP: Sectors

24 ANS: 4
The segment’s midpoint is the origin and slope is \(-2\). The slope of a perpendicular line is \(\frac{1}{2}\).
\[
y = \frac{1}{2}x + 0
\]
\[
2y = x
\]
\[
2y - x = 0
\]
PTS: 2 REF: 081724geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector

25 ANS: Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2 REF: 081725geo NAT: G.GMD.A.1 TOP: Volume

26 ANS: The four small triangles are 8-15-17 triangles. \(4 \times 17 = 68\)
PTS: 2 REF: 081726geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

27 ANS:
\[
R_{180^\circ} \text{ about } \left(\frac{1}{2}, \frac{1}{2} \right)
\]
PTS: 2 REF: 081727geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify

28 ANS:
29 ANS:
\[\sqrt{(2.5 - 1)^2 + (-.5 - 1.5)^2} = \sqrt{2.25 + 4} = 2.5 \]

PTS: 2 REF: 081729geo NAT: G.SRT.A.2 TOP: Dilations

30 ANS:
Yes. \(\angle A \cong \angle X \), \(\angle C \cong \angle Z \), \(AC \cong XZ \) after a sequence of rigid motions which preserve distance and angle measure, so \(\triangle ABC \cong \triangle XYZ \) by ASA. \(BC \cong YZ \) by CPCTC.

PTS: 2 REF: 081730geo NAT: G.CO.B.7 TOP: Triangle Congruency

31 ANS:
\[x^2 - 6x + 9 + y^2 + 8y + 16 = 56 + 9 + 16 \]
\[(x - 3)^2 + (y + 4)^2 = 81 \]

PTS: 2 REF: 081731geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

32 ANS:

PTS: 4 REF: 081732geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane
33 ANS:
Circle O, tangent \overline{EC} to diameter \overline{AC}, chord $\overline{BC} \parallel$ secant \overline{ADE}, and chord \overline{AB} (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overline{EC} \perp \overline{OC}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle ECA$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle ECA$ (all right angles are congruent); $\angle BCA \cong \angle CAE$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle ABC \sim \triangle ECA$ (AA); $\frac{BC}{CA} = \frac{AB}{EC}$ (Corresponding sides of similar triangles are in proportion).

34 ANS:
$x^2 + x^2 = 58^2 \quad A = (\sqrt{1682} + 8)^2 \approx 2402.2$

$2x^2 = 3364$

$x = \sqrt{1682}$

35 ANS:
Isosceles trapezoid $ABCD$, $\angle CDE \cong \angle DCE$, $\overline{AE} \perp \overline{DE}$, and $\overline{BE} \perp \overline{CE}$ (given); $\overline{AD} \cong \overline{BC}$ (congruent legs of isosceles trapezoid); $\angle DEA$ and $\angle CEB$ are right angles (perpendicular lines form right angles); $\angle DEA \cong \angle CEB$ (all right angles are congruent); $\angle CDA \cong \angle DCB$ (base angles of an isosceles trapezoid are congruent); $\angle CDA - \angle CDE \cong \angle DCB - \angle DCE$ (subtraction postulate); $\triangle ADE \cong \triangle BCE$ (AAS); $\overline{EA} \cong \overline{EB}$ (CPCTC);

$\angle EDA \cong \angle ECB$

$\triangle AEB$ is an isosceles triangle (an isosceles triangle has two congruent sides).

36 ANS:
$tan 16.5 = \frac{x}{13.5} \quad 9 \times 16 \times 4.5 = 648 \quad 3752 - (35 \times 16 \times .5) = 3472$

$x \approx 4$

$13.5 \times 16 \times 4.5 = 972 \quad 3472 \times 7.48 \approx 25971$

$4 + 4.5 = 8.5 \quad \frac{1}{2} \times 13.5 \times 16 \times 4 = 432 \quad \frac{25971}{10.5} \approx 2473.4$

$12.5 \times 16 \times 8.5 = \frac{1700}{3752} \approx 41$

$\frac{25971}{10.5} \approx 2473.4$

$\frac{2473.4}{60} \approx 41$
0118geo

Answer Section

1 ANS: 1
$360 - (82 + 104 + 121) = 53$

KEY: basic

2 ANS: 2
PTS: 2 REF: 011802geo NAT: G.CO.C.11
TOP: Parallelograms

3 ANS: 4
PTS: 2 REF: 011803geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: graphics

4 ANS: 1
\[
\sin 32 = \frac{O}{129.5}
\]

\[O \approx 68.6\]

PTS: 2 REF: 011804geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

5 ANS: 2
PTS: 2 REF: 011805geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

6 ANS: 1
\[
x = -5 + \frac{1}{3} (4 - 5) = -5 + 3 = -2 \quad y = 2 + \frac{1}{3} (-10 - 2) = 2 - 4 = -2
\]

PTS: 2 REF: 011806geo NAT: G.GPE.B.6 TOP: Directed Line Segments

7 ANS: 3
\[
V = \frac{1}{3} \pi r^2 h
\]

\[54.45 \pi = \frac{1}{3} \pi (3.3)^2 h\]

\[h = 15\]

PTS: 2 REF: 011807geo NAT: G.GMD.A.3 TOP: Volume
KEY: cones

8 ANS: 4
PTS: 2 REF: 011808geo NAT: G.CO.A.2
TOP: Analytical Representations of Transformations KEY: basic

9 ANS: 3
\[6x - 40 + x + 20 = 180 - 3x \quad \text{m} \angle BAC = 180 - (80 + 40) = 60\]

\[10x = 200\]

\[x = 20\]

PTS: 2 REF: 011809geo NAT: G.CO.C.10 TOP: Exterior Angle Theorem

10 ANS: 4
PTS: 2 REF: 011810geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects
11 ANS: 1
TOP: Dilations
PTS: 2
REF: 011811geo
NAT: G.SRT.A.2

12 ANS: 2
\[
\begin{align*}
x^2 + y^2 - 6x + 2y &= 6 \\
x^2 - 6x + 9 + y^2 + 2y + 1 &= 6 + 9 + 1 \\
(x - 3)^2 + (y + 1)^2 &= 16
\end{align*}
\]
PTS: 2
REF: 011812geo
NAT: G.GPE.A.1
TOP: Equations of Circles
KEY: completing the square

13 ANS: 3
\[
\frac{24}{40} = \frac{15}{x}
\]
\[
24x = 600
\]
\[
x = 25
\]
PTS: 2
REF: 011813geo
NAT: G.SRT.B.5
TOP: Side Splitter Theorem

14 ANS: 1
TOP: Line Dilations
PTS: 2
REF: 011814geo
NAT: G.SRT.A.1

15 ANS: 3
TOP: Mapping a Polygon onto Itself
PTS: 2
REF: 011815geo
NAT: G.CO.A.3

16 ANS: 4
TOP: Chords, Secants and Tangents
PTS: 2
REF: 011816geo
NAT: G.C.A.2
KEY: inscribed

17 ANS: 4
TOP: Similarity
PTS: 2
REF: 011817geo
NAT: G.SRT.B.5
KEY: basic

18 ANS: 2

PTS: 2
REF: 011818geo
NAT: G.CO.C.9
TOP: Lines and Angles

19 ANS: 4
TOP: Special Quadrilaterals
PTS: 2
REF: 011819geo
NAT: G.CO.C.11
20 ANS: 1
\[m = -\frac{4}{-6} = \frac{2}{3} \]
\[m_{\perp} = \frac{3}{2} \]

PTS: 2 REF: 011820geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line

21 ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.

PTS: 2 REF: 011821geo NAT: G.C.A.3 TOP: Inscribed Quadrilaterals

22 ANS: 2
\[V = \frac{1}{3} \left(\frac{36}{4} \right)^2 \cdot 15 = 405 \]

PTS: 2 REF: 011822geo NAT: G.GMD.A.3 TOP: Volume KEY: pyramids

23 ANS: 2
\[x^2 = 12(12 – 8) \]
\[x^2 = 48 \]
\[x = 4\sqrt{3} \]

PTS: 2 REF: 011823geo NAT: G.SRT.B.5 TOP: Similarity KEY: leg

24 ANS: 3
\[\frac{s_L}{s_S} = \frac{6\theta}{4\theta} = 1.5 \]

25 ANS:
Parallelogram \(AB \) \(CD \) with diagonal \(AC \) drawn (given). \(AC \cong AC \) (reflexive property). \(AD \cong CB \) and \(BA \cong DC \) (opposite sides of a parallelogram are congruent). \(\triangle ABC \cong \triangle CDA \) (SSS).

PTS: 2 REF: 011825geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs
26 ANS:

\[\cos B \text{ increases because } \angle A \text{ and } \angle B \text{ are complementary and } \sin A = \cos B. \]

PTS: 2 REF: 011826geo NAT: G.CO.D.13 TOP: Constructions

27 ANS:

\[
\frac{O}{360}(\pi)\left(\frac{25^2}{2}\right) = (\pi)\left(\frac{25^2}{2}\right) - 500\pi
\]

\[Q = \frac{125\pi(360)}{625\pi} \]

\[Q = 72 \]

PTS: 2 REF: 011827geo NAT: G.SRT.C.7 TOP: Cofunctions

28 ANS:

\[500 \times 1015 \text{ cc} \times \frac{0.29 \text{ kg}}{\text{cc}} \times \frac{7.95 \text{ g}}{1000 \text{ g}} = $1170 \]

PTS: 2 REF: 011828geo NAT: G.C.B.5 TOP: Sectors

29 ANS:

No. Since \(BC = 5 \) and \(ST = \sqrt{18} \) are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps \(\triangle ABC \) onto \(\triangle RST \).

PTS: 2 REF: 011829geo NAT: G.MG.A.2 TOP: Density

30 ANS:

\[\cos W = \frac{6}{18} \]

\[W \approx 71 \]

PTS: 2 REF: 011830geo NAT: G.CO.B.7 TOP: Triangle Congruency

31 ANS:

\[\cos W = \frac{6}{18} \]

\[W \approx 71 \]

PTS: 2 REF: 011831geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
32 ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.

PTS: 4 REF: 011832geo NAT: G.SRT.A.2 TOP: Dilations

33 ANS:
$V = (\pi)(4^2)(9) + \left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)(4^3) \approx 586$

PTS: 4 REF: 011833geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

34 ANS:
$\cos 54 = \frac{4.5}{m}$ $\tan 54 = \frac{h}{4.5}$

$m \approx 7.7$ $h \approx 6.2$

PTS: 4 REF: 011834geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

35 ANS:
$\triangle PAT$ is an isosceles triangle because sides \overline{AP} and \overline{AT} are congruent ($\sqrt{3^2 + 11^2} = \sqrt{7^2 + 9^2} = \sqrt{130}$).
$R(2,9)$. Quadrilateral $PART$ is a parallelogram because the opposite sides are parallel since they have equal slopes

$\left(\frac{m_{AR}}{6} = \frac{2}{3}; \ m_{PT} = \frac{4}{6} = \frac{2}{3}; \ m_{PA} = -\frac{11}{3}; \ m_{RT} = -\frac{11}{3}\right)$

PTS: 6 REF: 011835geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
0618geo

Answer Section

1. ANS: 1
 TOP: Properties of Transformations
 KEY: graphics
 PTS: 2
 REF: 061801geo
 NAT: G.CO.B.6

2. ANS: 3
 TOP: Lines and Angles
 PTS: 2
 REF: 061802geo
 NAT: G.CO.C.9

3. ANS: 4
 TOP: Identifying Transformations
 KEY: graphics
 PTS: 2
 REF: 061803geo
 NAT: G.CO.A.2

4. ANS: 3
 \[
 \triangle CFB \sim \triangle CAD \quad \frac{CB}{CF} = \frac{CD}{CA} \\
 \frac{x}{21.6} = \frac{7.2}{9.6} \\
 x = 16.2
 \]
 PTS: 2
 KEY: basic
 REF: 061804geo
 NAT: G.SRT.B.5
 TOP: Similarity

5. ANS: 4
 \[9 \cdot 3 = 27, 27 \cdot 4 = 108\]
 PTS: 2
 REF: 061805geo
 NAT: G.SRT.A.2
 TOP: Dilations

6. ANS: 2
 \[\cos B = \frac{17.6}{26}\]
 \[B \approx 47\]
 PTS: 2
 REF: 061806geo
 NAT: G.SRT.C.8
 TOP: Using Trigonometry to Find an Angle

7. ANS: 1
 \[20 \cdot 12 \cdot 45 + \frac{1}{2} \pi (10)^2 (45) \approx 17869\]
 PTS: 2
 KEY: compositions
 REF: 061807geo
 NAT: G.GMD.A.3
 TOP: Volume

8. ANS: 1
 \[2x + 4 + 46 = 90\]
 \[2x = 40\]
 \[x = 20\]
 PTS: 2
 REF: 061808geo
 NAT: G.SRT.C.7
 TOP: Cofunctions

9. ANS: 4
 \[AA\]
 PTS: 2
 REF: 061809geo
 NAT: G.SRT.A.3
 TOP: Similarity Proofs
10 ANS: 1

\[82.8 = \frac{1}{3} (4.6)(9)h\]

\[h = 6\]

PTS: 2
REF: 061810geo
NAT: G.GMD.A.3
TOP: Volume

KEY: pyramids

11 ANS: 2

\[\triangle ACB \sim \triangle AED\]

PTS: 2
REF: 061811geo
NAT: G.SRT.B.5
TOP: Similarity

KEY: basic

12 ANS: 2

\[m = \frac{3}{2}\]

\[m_{\perp} = -\frac{2}{3}\]

PTS: 2
REF: 061812geo
NAT: G.GPE.B.5
TOP: Parallel and Perpendicular Lines

KEY: write equation of perpendicular line

13 ANS: 4
PTS: 2
REF: 061813geo
NAT: G.CO.C.11
TOP: Special Quadrilaterals

14 ANS: 2

\[-4 + \frac{2}{5} (1 - 4) = -4 + \frac{2}{5} (5) = -4 + 2 = -2 \quad -2 + \frac{2}{5} (8 - 2) = -2 + \frac{2}{5} (10) = -2 + 4 = 2\]

PTS: 2
REF: 061814geo
NAT: G.GPE.B.6
TOP: Directed Line Segments

15 ANS: 1

\[
(12 \cdot 11) - \left(\frac{1}{2} (12 \cdot 4) + \frac{1}{2} (7 \cdot 9) + \frac{1}{2} (11 \cdot 3) \right) = 60
\]

PTS: 2
REF: 061815geo
NAT: G.GPE.B.7
TOP: Polygons in the Coordinate Plane

16 ANS: 3
PTS: 2
REF: 061816geo
NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects
17 ANS: 3
\[
\frac{x + 72}{2} = 58
\]
\[x + 72 = 116\]
\[x = 44\]

PTS: 2 REF: 061817geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle

18 ANS: 1
\[M\] is a centroid, and cuts each median 2:1.

PTS: 2 REF: 061818geo NAT: G.CO.C.10 TOP: Centroid, Orthocenter, Incenter and Circumcenter

19 ANS: 3
\[\frac{360^\circ}{5} = 72^\circ \text{ 216}^\circ \text{ is a multiple of 72}^\circ\]

PTS: 2 REF: 061819geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

20 ANS: 2
\[(x - 5)^2 + (y - 2)^2 = 16\]
\[x^2 - 10x + 25 + y^2 - 4y + 4 = 16\]
\[x^2 - 10x + y^2 - 4y = -13\]

PTS: 2 REF: 061820geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: write equation, given graph

21 ANS: 4
\[\frac{5}{7} = \frac{x}{x + 5}\]
\[12 \frac{1}{2} + 5 = 17 \frac{1}{2}\]
\[5x + 25 = 7x\]
\[2x = 25\]
\[x = 12 \frac{1}{2}\]

PTS: 2 REF: 061821geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

22 ANS: 4
\[C = 12\pi \frac{120}{360} (12\pi) = \frac{1}{3} (12\pi)\]

PTS: 2 REF: 061822geo NAT: G.C.B.5 TOP: Arc Length
KEY: arc length
23 ANS: 1
24x = 10^2
24x = 100
x \approx 4.2

PTS: 2 REF: 061823geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

24 ANS: 2
The line \(y = -3x + 6 \) passes through the center of dilation, so the dilated line is not distinct.

PTS: 2 REF: 061824geo NAT: G.SRT.A.1 TOP: Line Dilations

25 ANS: Yes, as translations do not change angle measurements.

KEY: basic

26 ANS:
\[A(-2,1) \rightarrow (-3,-1) \rightarrow (-6,-2) \rightarrow (-5,0), \ B(0,5) \rightarrow (-1,3) \rightarrow (-2,6) \rightarrow (-1,8), \]
\[C(4,-1) \rightarrow (3,-3) \rightarrow (6,-6) \rightarrow (7,-4) \]

PTS: 2 REF: 061826geo NAT: G.SRT.A.2 TOP: Dilations

27 ANS: Reflection across the \(y \)-axis, then translation up 5.

PTS: 2 REF: 061827geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: grids

28 ANS:
10 \cdot 6 = 15x
x = 4

PTS: 2 REF: 061828geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length

29 ANS:

29 ANS:

PTS: 2 REF: 061829geo NAT: G.CO.D.12 TOP: Constructions
KEY: line bisector

30 ANS: Yes. The triangles are congruent because of SSS \(\sqrt{5^2 + 12^2} = 13 \). All congruent triangles are similar.

PTS: 2 REF: 061830geo NAT: G.SRT.B.5 TOP: Triangle Congruency
31 ANS:

\[29.5 = 2\pi r \quad V = \frac{4}{3} \pi \left(\frac{29.5}{2\pi} \right)^3 \approx 434 \]

\[r = \frac{29.5}{2\pi} \]

PTS: 2 REF: 061831geo NAT: G.GMD.A.3 TOP: Volume KEY: spheres

32 ANS:

Because \(\overline{AB} \cong \overline{AC} \), \(\triangle ABC \) has two congruent sides and is isosceles. Because \(\overline{AB} \cong \overline{BC} \) is not true, \(\triangle ABC \) has sides that are not congruent and \(\triangle ABC \) is not equilateral.

PTS: 4 REF: 061832geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane KEY: advanced

33 ANS:

\[\tan 72 = \frac{x}{400} \quad \sin 55 = \frac{400\tan 72}{y} \]

\[x = 400\tan 72 \quad y = \frac{400\tan 72}{\sin 55} \approx 1503 \]

PTS: 4 REF: 061833geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side KEY: advanced

34 ANS:

\[V = \pi(10)^2(18) = 1800\pi \text{ in}^3 \quad 1800\pi \text{ in}^3 \left(\frac{1 \text{ ft}^3}{12^3 \text{ in}^3} \right) = \frac{25}{24} \pi \text{ ft}^3 \approx 266 \]

\[266 + 270 = 536 \]

PTS: 4 REF: 061834geo NAT: G.MG.A.2 TOP: Density

35 ANS:

Parallelogram \(ABCD \), \(\overline{BF} \perp \overline{AFD} \), and \(\overline{DE} \perp \overline{BEC} \) (given); \(BC \parallel \overline{AD} \) (opposite sides of a \(\square \) are \(\parallel \)); \(\overline{BE} \parallel \overline{FD} \) (parts of \(\parallel \) lines are \(\parallel \)); \(\overline{BF} \parallel \overline{DE} \) (two lines \(\perp \) to the same line are \(\parallel \)); \(BEDF \) is \(\square \) (a quadrilateral with both pairs of opposite sides \(\parallel \) is a \(\square \)); \(\angle DEB \) is a right \(\angle \) (\(\perp \) lines form right \(\angle \)s); \(BEDF \) is a rectangle (a \(\square \) with one right \(\angle \) is a rectangle).

1 ANS: 4 PTS: 2 REF: 081801geo NAT: G.CO.C.9 TOP: Lines and Angles
2 ANS: 1 Distance and angle measure are preserved after a reflection and translation.
3 ANS: 4 PTS: 2 REF: 081803geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
4 ANS: 1 PTS: 2 REF: 081804geo NAT: G.SRT.A.2 TOP: Compositions of Transformations KEY: grids
5 ANS: 3 PTS: 2 REF: 081805geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects
6 ANS: 4
\[\sin 16.5 = \frac{8}{x} \]
\[x \approx 28.2 \]
7 ANS: 3
\[x(x - 6) = 4^2 \]
\[x^2 - 6x - 16 = 0 \]
\[(x - 8)(x + 2) = 0 \]
\[x = 8 \]
8 ANS: 4
\[4\sqrt{(-1 - 2)^2 + (2 - 3)^2} = 4\sqrt{10} \]
9 ANS: 1
\[\cos x = \frac{12}{13} \]
\[x \approx 23 \]
10 ANS: 4 PTS: 2 REF: 081810geo NAT: G.SRT.B.5 TOP: Triangle Proofs KEY: statements
11 ANS: 1
The slope of $3x + 2y = 12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.

PTS: 2 REF: 081811geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

12 ANS: 2
\[
\frac{x}{x + 3} = \frac{14}{21} \quad 14 - 6 = 8
\]
\[
21x = 14x + 42
\]
\[
7x = 42
\]
\[
x = 6
\]

PTS: 2 REF: 081812geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

14 ANS: 2

PTS: 2 REF: 081814geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length

15 ANS: 1
\[-8 + \frac{3}{5} (7 - -8) = -8 + 9 = 1 \quad 7 + \frac{3}{5} (-13 - 7) = 7 - 12 = -5\]

PTS: 2 REF: 081815geo NAT: G.GPE.B.6 TOP: Directed Line Segments

16 ANS: 3
\[
\frac{x}{6.3} = \frac{3}{5} \quad \frac{y}{9.4} = \frac{6.3}{6.3 + 3.78}
\]
\[
x = 3.78 \quad y = 5.9
\]

PTS: 2 REF: 081816geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

17 ANS: 3 PTS: 2 REF: 081817geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself
18 ANS: 2
\[\frac{30}{360} (5)^2 (\pi) \approx 6.5 \]

PTS: 2 REF: 081818geo NAT: G.C.B.5 TOP: Sectors

19 ANS: 2
\[V = \frac{1}{3} \left(\frac{60}{12} \right)^2 \left(\frac{84}{12} \right) \approx 58 \]

PTS: 2 REF: 081819geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids

20 ANS: 2
\[AB = 10 \text{ since } \triangle ABC \text{ is a 6-8-10 triangle. } \]
\[6^2 = 10x \]
\[3.6 = x \]

PTS: 2 REF: 081820geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

21 ANS: 4
\[x^2 + 4x + 4 + y^2 - 8y + 16 = -16 + 4 + 16 \]
\[(x + 2)^2 + (y - 4)^2 = 4 \]

PTS: 2 REF: 081821geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

22 ANS: 4 PTS: 2
REF: 081822geo NAT: G.CO.C.10
TOP: Medians, Altitudes and Bisectors

23 ANS: 3
\[6 \cdot 3^2 = 54 \]
\[12 \cdot 3 = 36 \]

PTS: 2 REF: 081823geo NAT: G.SRT.A.2 TOP: Dilations

24 ANS: 2
\[2x + 7 + 4x - 7 = 90 \]
\[6x = 90 \]
\[x = 15 \]

PTS: 2 REF: 081824geo NAT: G.SRT.C.7 TOP: Cofunctions
25 ANS:

![Diagram of a circle with intersecting lines]

PTS: 2 REF: 081825geo NAT: G.CO.D.12 TOP: Constructions
KEY: parallel and perpendicular lines

26 ANS:

![Diagram of a parallelogram]

PTS: 2 REF: 081826geo NAT: G.CO.C.11 TOP: Parallelograms

27 ANS:

\[
\frac{134 + 102}{2} = 118
\]

PTS: 2 REF: 081827geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle

28 ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about \(B \), translation 6 units down and 6 units left; or reflection over \(x \)-axis, translation 2 units down, reflection over \(y \)-axis

PTS: 2 REF: 081828geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify
29 ANS:

\[\triangle ABC \sim \triangle AED\] by AA. \(\angle DAE \cong \angle CAB\) because they are the same \(\angle\).

\(\angle DEA \cong \angle CBA\) because they are both right \(\angle\)s.

PTS: 2 REF: 081829geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

30 ANS:
No, The line \(4x + 3y = 24\) passes through the center of dilation, so the dilated line is not distinct.

\[
4x + 3y = 24
3y = -4x + 24
y = \frac{-4}{3}x + 8
\]

PTS: 2 REF: 081830geo NAT: G.SRT.A.1 TOP: Line Dilations

31 ANS:

\[
2 \left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25 = 19.50
\]

PTS: 2 REF: 081831geo NAT: G.GMD.A.3 TOP: Volume
KEY: prisms

32 ANS:
2 Reflexive; 4 \(\angle BDA \cong \angle BDC\); 6 CPCTC; 7 If points \(B\) and \(D\) are equidistant from the endpoints of \(\overline{AC}\), then \(B\) and \(D\) are on the perpendicular bisector of \(\overline{AC}\).

PTS: 4 REF: 081832geo NAT: G.SRT.B.5 TOP: Triangle Proofs
KEY: proof

33 ANS:

\[
tan 36 = \frac{x}{10} \quad \cos 36 = \frac{10}{y} \quad 12.3607 \times 3 \approx 37
\]

\[
x \approx 7.3 \quad y \approx 12.3607
\]

PTS: 4 REF: 081833geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

34 ANS:

\[
\frac{4\pi}{3} (2^3 - 1.5^3) \approx 19.4 \quad 19.4 \cdot 1.308 \cdot 8 \approx 203
\]

PTS: 4 REF: 081834geo NAT: G.MG.A.2 TOP: Density
The diagram shows a parallelogram $MATH$ with vertices labeled M, A, T, and H. The slopes of the lines forming the sides of the parallelogram are calculated as follows:

- $m_{MH} = \frac{6}{10} = \frac{3}{5}$
- $m_{AT} = \frac{6}{10} = \frac{3}{5}$
- $m_{MA} = -\frac{5}{3}$
- $m_{HT} = -\frac{5}{3}$

Since MH is parallel to AT and MA is parallel to HT, $MATH$ is a parallelogram.

The slopes m_{MA} and m_{AT} are negative reciprocals, indicating that $MA \perp AT$ and $\angle A$ is a right angle. Therefore, $MATH$ is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
0119geo

Answer Section

1. \[\frac{18}{4.5} = 4 \]

 PTS: 2
 REF: 011901geo
 NAT: G.SRT.A.1
 TOP: Line Dilations

2. \[2x - 1 = 16 \]

 \[x = 8.5 \]

 PTS: 2
 REF: 011902geo
 NAT: G.CO.B.6
 TOP: Properties of Transformations
 KEY: graphics

3. \[x - 1 = 16 \]

 \[x = 17 \]

 PTS: 2
 REF: 011903geo
 NAT: G.CO.A.5
 TOP: Compositions of Transformations
 KEY: identify

4. \[2x + 1 = 16 \]

 \[x = 7.5 \]

 PTS: 2
 REF: 011904geo
 NAT: G.CO.A.3
 TOP: Mapping a Polygon onto Itself

5. \[3x - 1 = 16 \]

 \[x = 6.25 \]

 PTS: 2
 REF: 011905geo
 NAT: G.C.A.2
 TOP: Chords, Secants and Tangents
 KEY: inscribed

6. \[\frac{x}{15} = \frac{5}{12} \]

 \[x = 6.25 \]

 PTS: 2
 REF: 011906geo
 NAT: G.SRT.B.5
 TOP: Side Splitter Theorem

7. \[\sqrt{8^2 + 6^2} = 10 \text{ for one side} \]

 PTS: 2
 REF: 011907geo
 NAT: G.CO.C.11
 TOP: Special Quadrilaterals

8. \[\Delta ABC \sim \Delta RST \]

 PTS: 2
 REF: 011908geo
 NAT: G.SRT.B.5
 TOP: Similarity
 KEY: basic

9. \[8 \times 8 \times 9 + \frac{1}{3} (8 \times 8 \times 3) = 640 \]

 PTS: 2
 REF: 011909geo
 NAT: G.GMD.A.3
 TOP: Volume
 KEY: compositions
10 ANS: 3
\[12^2 = 9 \cdot GM \]
\[IM^2 = 16 \cdot 25 \]
\[GM = 16 \]
\[IM = 20 \]
PTS: 2
REF: 011910geo
NAT: G.SRT.B.5
TOP: Similarity

11 ANS: 3
PTS: 2
REF: 011911geo
NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects

12 ANS: 2
PTS: 2
REF: 011912geo
NAT: G.CO.C.11
TOP: Parallelograms

13 ANS: 2
\[\tan 11.87 = \frac{x}{0.5(5280)} \]
\[x \approx 555 \]
PTS: 2
REF: 011913geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side

14 ANS: 2
\[\frac{x}{360} (15)^2 \pi = 75\pi \]
\[x = 120 \]
PTS: 2
REF: 011914geo
NAT: G.C.B.5
TOP: Sectors

15 ANS: 1
\[-1 + \frac{1}{3} (8 + 1) = -1 + \frac{1}{3} (9) = -1 + 3 = 2 -3 + \frac{1}{3} (9 - 3) = -3 + \frac{1}{3} (12) = -3 + 4 = 1 \]
PTS: 2
REF: 011915geo
NAT: G.GPE.B.6
TOP: Directed Line Segments

16 ANS: 4
PTS: 2
REF: 011916geo
NAT: G.CO.C.10
TOP: Exterior Angle Theorem

17 ANS: 4
\[\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{15}{8} \]
PTS: 2
REF: 011917geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

18 ANS: 1
PTS: 2
REF: 011918geo
NAT: G.MG.A.3
TOP: Compositions of Polygons and Circles

19 ANS: 3
\[\angle N \] is the smallest angle in \(\triangle NYA \), so side \(\overline{AY} \) is the shortest side of \(\triangle NYA \). \(\angle VYA \) is the smallest angle in \(\triangle VYA \), so side \(\overline{VA} \) is the shortest side of both triangles.
PTS: 2
REF: 011919geo
NAT: G.CO.C.10
TOP: Angle Side Relationship
20 ANS: 1

\[(x - 1)^2 + (y - 4)^2 = \left(\frac{10}{2}\right)^2\]

\[x^2 - 2x + 1 + y^2 - 8y + 16 = 25\]

\[x^2 - 2x + y^2 - 8y = 8\]

PTS: 2 REF: 011920geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: write equation, given center and radius

21 ANS: 4 PTS: 2 REF: 011921geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

22 ANS: 1 PTS: 2 REF: 011922geo NAT: G.SRT.C.7 TOP: Cofunctions

23 ANS: 1

\[h = \sqrt{6.5^2 - 2.5^2} = 6, V = \frac{1}{3} \pi (2.5)^2 6 = 12.5\pi\]

PTS: 2 REF: 011923geo NAT: G.GMD.A.3 TOP: Volume
KEY: cones

24 ANS: 4

The line \(y = \frac{3}{2}x - 4\) does not pass through the center of dilation, so the dilated line will be distinct from \(y = \frac{3}{2}x - 4\). Since a dilation preserves parallelism, the line \(y = \frac{3}{2}x - 4\) and its image will be parallel, with slopes of \(\frac{3}{2}\). To obtain the \(y\)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{4}\), can be applied to the \(y\)-intercept, \((0, -4)\). Therefore, \(\left(0, \frac{3}{4}, -4, \frac{3}{4}\right) \rightarrow (0, -3)\). So the equation of the dilated line is \(y = \frac{3}{2}x - 3\).

PTS: 2 REF: 011924geo NAT: G.SRT.A.1 TOP: Line Dilations

25 ANS:

\[3y + 7 = 2x \quad y - 6 = \frac{2}{3}(x - 2)\]

\[3y = 2x - 7\]

\[y = \frac{2}{3}x - \frac{7}{3}\]

PTS: 2 REF: 011925geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
26 ANS:

\[\frac{121 - x}{2} = 35 \]

\[121 - x = 70 \]

\[x = 51 \]

27 ANS:

\[R_{(-5,2),90^\circ} T_{-3,1} r_{x-axis} \]

PTS: 2 REF: 011927geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, angle

28 ANS:

No. The midpoint of \(\overline{DF} \) is \(\left(\frac{1 + 4}{2}, \frac{-1 + 2}{2} \right) = (2.5, 0.5) \). A median from point \(E \) must pass through the midpoint.

PTS: 2 REF: 011930geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

30 ANS:

\[2 \times (90 \times 10) + (\pi)(30^2) - (\pi)(20^2) \approx 3371 \]

PTS: 2 REF: 011931geo NAT: G.MG.A.3 TOP: Compositions of Polygons and Circles KEY: area
Triangle with vertices $A(-2,4), B(6,2)$, and $C(1,-1)$ (given); $m_{\overline{AC}} = -\frac{5}{3}, m_{\overline{BC}} = \frac{3}{5}$, definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle ABC$ is a right triangle (if a triangle has a right angle, it is a right triangle); $AC \cong BC = \sqrt{34}$ (distance formula); $\triangle ABC$ is an isosceles triangle (an isosceles triangle has two congruent sides).

33. ANS: Theresa. $(30 \times 15 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{3.95}{100 \text{ g}} = 465.35$, $(\pi \times 12^2 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{200}{6000 \text{ g}} = 394.79$

34. ANS: $\sin 4.76 = \frac{1.5}{x}$, $\tan 4.76 = \frac{1.5}{x}$, $x \approx 18.1$, $x \approx 18$

35. ANS: Quadrilateral $ABCD$ with diagonal \overline{AC}, segments GH and EF, $AE \cong CG$, $BE \cong DG$, $AH \cong CF$, and $AD \cong CB$ (given); $HF \cong HF$, $AC \cong AC$ (reflexive property); $AH + HF \cong CF + HF$, $AE + BE \cong CG + DG$ (segment addition); $\triangle ABC \cong \triangle CDA$ (SSS); $\angle EAF \cong \angle GCH$ (CPCTC); $\triangle AEF \cong \triangle CGH$ (SAS); $\overline{EF} \cong \overline{GH}$ (CPCTC).
0619geo

Answer Section

 TOP: Compositions of Transformations
 KEY: identify

2. ANS: 3
 Broome: \(\frac{200536}{706.82} \approx 284\)
 Duchess: \(\frac{280150}{801.59} \approx 349\)
 Niagara: \(\frac{219846}{522.95} \approx 420\)
 Saratoga: \(\frac{200635}{811.84} \approx 247\)
 PTS: 2 REF: 061902geo NAT: G.MG.A.2 TOP: Density

3. ANS: 2 PTS: 2 REF: 061903geo NAT: G.GMD.B.4
 TOP: Rotations of Two-Dimensional Objects

4. ANS: 4 PTS: 2 REF: 061904geo NAT: G.CO.A.3
 TOP: Mapping a Polygon onto Itself

5. ANS: 1
 \(\frac{9}{6} = \frac{3}{2}\)
 PTS: 2 REF: 061905geo NAT: G.SRT.A.1 TOP: Line Dilations

6. ANS: 2
 \(V = \frac{1}{3} \times 8^2 \times 6 = 128\)
 PTS: 2 REF: 061906geo NAT: G.GMD.A.3 TOP: Volume
 KEY: pyramids

7. ANS: 2
 The slope of \(-3x + 4y = 8\) is \(\frac{3}{4}\).
 PTS: 2 REF: 061907geo NAT: G.SRT.A.1 TOP: Line Dilations

8. ANS: 4
 PTS: 2 REF: 061908geo NAT: G.SRT.B.5 TOP: Triangle Proofs
 KEY: statements

9. ANS: 2
 \(90 - 57 = 33\)
 PTS: 2 REF: 061909geo NAT: G.SRT.C.7 TOP: Cofunctions
10 ANS: 1
\[V = \frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{1}{2} \times \frac{4}{3} \pi \left(\frac{12.6}{2} \right)^3 \approx 523.7 \]

PTS: 2 REF: 061910geo NAT: G.GMD.A.3 TOP: Volume KEY: spheres

11 ANS: 1
\[5x = 12 \cdot 7 \quad 16.8 + 7 = 23.8 \]
\[5x = 84 \]
\[x = 16.8 \]

PTS: 2 REF: 061911geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

12 ANS: 3 PTS: 2 REF: 061912geo NAT: G.CO.C.11 TOP: Parallelograms

13 ANS: 3
\[8 \cdot 15 = 16 \cdot 7.5 \]

PTS: 2 REF: 061913geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents KEY: intersecting chords, length

14 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo NAT: G.CO.B.7 TOP: Triangle Congruency

15 ANS: 2
\[\frac{4}{x} = \frac{6}{9} \]
\[x = 6 \]

PTS: 2 REF: 061915geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

16 ANS: 2
\[m = \frac{(-2)}{3} = \frac{2}{3} \]

PTS: 2 REF: 061916geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line

17 ANS: 2
\[ER = \sqrt{17^2 - 8^2} = 15 \]

PTS: 2 REF: 061917geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
18 ANS: 1

\[\frac{72 - 34}{2} = 19 \]

PTS: 2 REF: 061918geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

KEY: secants drawn from common point, angle

19 ANS: 4

\[-8 + \frac{2}{3}(10 - 8) = -8 + \frac{2}{3}(18) = -8 + 12 = 4 \quad 4 + \frac{2}{3}(-2 - 4) = 4 + \frac{2}{3}(-6) = 4 - 4 = 0 \]

PTS: 2 REF: 061919geo NAT: G.GPE.B.6 TOP: Directed Line Segments

20 ANS: 4

\[x^2 + 8x + 16 + y^2 - 12y + 36 = 144 + 16 + 36 \]
\[(x + 4)^2 + (y - 6)^2 = 196 \]

PTS: 2 REF: 061920geo NAT: G.GPE.A.1 TOP: Equations of Circles

KEY: completing the square

21 ANS: 2

22 ANS: 4

\[\sin x = \frac{10}{12} \]
\[x \approx 56 \]

PTS: 2 REF: 061922geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
23 ANS: 3

\[2(2x + 8) = 7x - 2 \hspace{1cm} AB = 7(6) - 2 = 40. \]

Since \(EF\) is a midsegment, \(EF = \frac{40}{2} = 20.\) Since \(\triangle ABC\) is equilateral,

\[4x + 16 = 7x - 2 \hspace{1cm} 18 = 3x \hspace{1cm} 6 = x \hspace{1cm} AE = BF = \frac{40}{2} = 20. \]

\[40 + 20 + 20 + 20 = 100 \]

PTS: 2 REF: 061923geo NAT: G.CO.C.10 TOP: Midsegments

24 ANS: 3

PTS: 2 REF: 061924geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

25 ANS:

No, because dilations do not preserve distance.

PTS: 2 REF: 061925geo NAT: G.SRT.A.2 TOP: Dilations

26 ANS:

\[\frac{1}{2}(5)(10) = 25 \]

PTS: 2 REF: 061926geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

27 ANS:

\[\cos 68 = \frac{10}{x} \hspace{1cm} x \approx 27 \]

PTS: 2 REF: 061927geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

28 ANS:

\[\frac{72}{360}(\pi)(10^2) = 20\pi \]

PTS: 2 REF: 061928geo NAT: G.C.B.5 TOP: Sectors

29 ANS:

\[R_{90^\circ} \text{ or } T_{2,-6} \circ R_{(-4,2),90^\circ} \text{ or } R_{270^\circ} \circ r_{\text{x-axis}} \circ r_{\text{y-axis}} \]

PTS: 2 REF: 061929geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify
30 ANS:
\[17x = 15^2 \]
\[17x = 225 \]
\[x \approx 13.2 \]

PTS: 2 REF: 061930geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

31 ANS:

\[m_{AD} = \frac{0 - 6}{1 - (-1)} = -3 \]

\[AD \parallel BC \] because their slopes are equal. \(ABCD \) is a trapezoid

\[m_{BC} = \frac{-1 - 8}{6 - 3} = -3 \]

\[AD \parallel BC \] because their slopes are equal. \(ABCD \) is a trapezoid

\[AC = \sqrt{(-1 - 6)^2 + (6 - (-1))^2} = \sqrt{98} \]

\[BD = \sqrt{(8 - 0)^2 + (3 - 1)^2} = \sqrt{68} \]

\[AC = \sqrt{98} \]

\[BD = \sqrt{68} \]

\[AC \neq BD \]

\[ABCD \] is not an isosceles trapezoid

\[AC \neq BD \]

\[ABCD \] is not an isosceles trapezoid

PTS: 4 REF: 061932geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
33 ANS:
\[V = \frac{2}{3} \pi \left(\frac{6.5}{2} \right)^2 \approx 22 \cdot 7.48 \approx 165 \]

PTS: 4 REF: 061933geo NAT: G.GMD.A.3 TOP: Volume KEY: cylinders

34 ANS:
\[
\tan 30 = \frac{y}{440}, \quad \tan 38.8 = \frac{h}{440}, \quad 353.8 - 254 = 100
\]
\[
y \approx 254, \quad h \approx 353.8
\]

PTS: 4 REF: 061934geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side KEY: advanced

35 ANS:
Quadrilateral \(MATH, \overline{HM} \cong \overline{AT}, \overline{HT} \cong \overline{AM}, \overline{HE} \perp \overline{MEA}, \text{ and } \overline{HA} \perp \overline{AT} \) (given); \(\angle HEA \) and \(\angle TAH \) are right angles (perpendicular lines form right angles); \(\angle HEA \cong \angle TAH \) (all right angles are congruent); \(MATH \) is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); \(\overline{MA} \parallel \overline{TH} \) (opposite sides of a parallelogram are parallel); \(\angle THA \cong \angle EAH \) (alternate interior angles of parallel lines and a transversal are congruent); \(\triangle HEA \sim \triangle TAH \) (AA); \(\frac{HA}{TH} = \frac{HE}{TA} \) (corresponding sides of similar triangles are in proportion); \(TA \cdot HA = HE \cdot TH \) (product of means equals product of extremes).

PTS: 6 REF: 061935geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs
0819geo

Answer Section

1. **ANS:** 2
 PTS: 2
 TOP: Line Dilations
 REF: 081901geo
 NAT: G.SRT.A.1

2. **ANS:** 3
 \[M_x = \frac{-5 - 1}{2} = \frac{-6}{2} = -3 \quad M_y = \frac{5 - 1}{2} = \frac{4}{2} = 2 \]
 PTS: 2
 TOP: Quadrilaterals in the Coordinate Plane
 KEY: general

3. **ANS:** 3
 \[-9 + \frac{1}{3}(9 - 9) = -9 + \frac{1}{3}(18) = -9 + 6 = -3 \quad 8 + \frac{1}{3}(-4 - 8) = 8 + \frac{1}{3}(-12) = 8 - 4 = 4 \]
 PTS: 2
 TOP: Directed Line Segments

4. **ANS:** 1
 PTS: 2
 TOP: Centroid, Orthocenter, Incenter and Circumcenter

5. **ANS:** 3

 ![Diagram](image)

 PTS: 2
 TOP: Exterior Angle Theorem

6. **ANS:** 4
 \[x^2 - 8x + y^2 + 6y = 39 \]
 \[x^2 - 8x + 16 + y^2 + 6y + 9 = 39 + 16 + 9 \]
 \[(x - 4)^2 + (y + 3)^2 = 64 \]
 PTS: 2
 TOP: Equations of Circles
 KEY: completing the square

7. **ANS:** 2

 ![Diagram](image)

 PTS: 2
 TOP: Interior and Exterior Angles of Polygons

1
8 ANS: 1
\[m = \frac{-A}{B} = \frac{-3}{2} \quad m_{\perp} = \frac{2}{3} \]

PTS: 2 REF: 081908geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

9 ANS: 2 PTS: 2 REF: 081909geo NAT: G.CO.A.5
TOP: Compositions of Transformations KEY: identify

10 ANS: 1
A dilation by a scale factor of 4 centered at the origin preserves parallelism and \((0, -2) \rightarrow (0, -8)\).

PTS: 2 REF: 081910geo NAT: G.SRT.A.1 TOP: Line Dilations

11 ANS: 4 PTS: 2 REF: 081911geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects

12 ANS: 4
\[
\left(\frac{360 - 120}{360}\right)(\pi)(9^2) = 54\pi
\]

PTS: 2 REF: 081912geo NAT: G.C.B.5 TOP: Sectors

13 ANS: 3 PTS: 2 REF: 081913geo NAT: G.CO.C.11
TOP: Special Quadrilaterals

14 ANS: 2
\[
\frac{4}{3}(\pi) \left(\frac{1.68}{2}\right)^3 \times 0.6523 \approx 1.62
\]

PTS: 2 REF: 081914geo NAT: G.MG.A.2 TOP: Density

15 ANS: 2
\[
tan 36 = \frac{x}{8} \quad 5.8 + 1.5 \approx 7
\]
\[
x \approx 5.8
\]

PTS: 2 REF: 081915geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

16 ANS: 1 PTS: 2 REF: 081916geo NAT: G.SRT.B.5
TOP: Similarity KEY: leg

17 ANS: 4
\[
(8 \times 2) + (3 \times 2) - \left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19
\]

PTS: 2 REF: 081917geo NAT: G.MG.A.3 TOP: Compositions of Polygons and Circles
KEY: area
18. \[
\begin{align*}
10 &= 15 \\
\frac{10}{x} &= \frac{15}{12} \\
x &= 8
\end{align*}
\]

PTS: 2
REF: 081918geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: basic

19. ANS: 1
TOP: Cofunctions

20. ANS: 2
\[
18^2 = 12(x + 12)
\]
\[
324 = 12(x + 12)
\]
\[
27 = x + 12
\]
\[
x = 15
\]

PTS: 2
REF: 081920geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: leg

21. ANS: 3
\[
\sqrt{40^2 - \left(\frac{64}{2}\right)^2} = 24
\]
\[
V = \frac{1}{3} (64)^2 \cdot 24 = 32768
\]

PTS: 2
REF: 081921geo
NAT: G.GMD.A.3
TOP: Volume
KEY: pyramids

22. ANS: 4
TOP: Chords, Secants and Tangents

23. ANS: 4
TOP: Mapping a Polygon onto Itself

24. ANS: 1
\[
\cos 65^\circ = \frac{x}{15}
\]
\[
x \approx 6.3
\]

PTS: 2
REF: 081924geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side

25. ANS:
\[
\angle D = 46^\circ \text{ because the angles of a triangle equal } 180^\circ. \quad \angle B = 46^\circ \text{ because opposite angles of a parallelogram are congruent.}
\]

PTS: 2
REF: 081925geo
NAT: G.CO.C.11
TOP: Interior and Exterior Angles of Polygons

26. ANS:
\[
\sin^{-1} \left(\frac{5}{25} \right) = 11.5
\]

PTS: 2
REF: 081926geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle
27 ANS:
\[r_y = 2 \quad r_{y-axis} \]

PTS: 2 REF: 081927geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify

28 ANS:

\[
\frac{1}{2} (5)(12) = 30
\]

PTS: 2 REF: 081928geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

29 ANS:

\[30^\circ \triangle CAD \text{ is an equilateral triangle, so } \angle CAB = 60^\circ. \text{ Since } AD \text{ is an angle bisector, } \angle CAD = 30^\circ. \]

PTS: 2 REF: 081929geo NAT: G.CO.D.12 TOP: Constructions
KEY: equilateral triangles

30 ANS:

\[\frac{124 - 56}{2} = 34 \]

PTS: 2 REF: 081930geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

31 ANS:

\[
\left(\frac{2.5}{3} \right) \left(\pi \right) \left(\frac{8.25}{2} \right)^2 (3) \approx 134
\]

PTS: 2 REF: 081931geo NAT: G.GMD.A.3 TOP: Volume
KEY: cylinders

32 ANS:

Yes, because a dilation preserves angle measure.

PTS: 4 REF: 081932geo NAT: G.CO.D.12 TOP: Constructions
KEY: congruent and similar figures

33 ANS:

\[\triangle ABE \cong \triangle CBD \text{ (given)}; \angle A \cong \angle C \text{ (CPCTC)}; \angle AFD \cong \angle CFE \text{ (vertical angles are congruent)}; \overline{AB} \cong \overline{CB}, \overline{DB} \cong \overline{EB} \text{ (CPCTC)}; \overline{AD} \cong \overline{CE} \text{ (segment subtraction)}; \triangle AFD \cong \triangle CFE \text{ (AAS)} \]

PTS: 4 REF: 081933geo NAT: G.SRT.B.5 TOP: Triangle Proofs
KEY: proof
34 ANS:
\[
\left((10 \times 6) + \sqrt{7(7 - 6)(7 - 4)(7 - 4)} \right)(6.5) \approx 442
\]

PTS: 4 REF: 081934geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

35 ANS:
\[
AB = \sqrt{(-5 - 1)^2 + (3 - 2)^2} = \sqrt{37}, \quad BC = \sqrt{(-5 - 6)^2 + (3 - 3)^2} = \sqrt{37} \quad \text{(because } AB = BC, \triangle ABC \text{ is isosceles)}.
\]
\[
(0, -4). \quad AD = \sqrt{(1 - 0)^2 + (2 - 4)^2} = \sqrt{37}, \quad CD = \sqrt{(-6 - 0)^2 + (-3 - 4)^2} = \sqrt{37},
\]
\[
m_{AB} = \frac{3 - 2}{-5 - 1} = -\frac{1}{6}, \quad m_{CD} = \frac{3 - (-3)}{-5 - (-6)} = 6 (ABCD \text{ is a square because all four sides are congruent, consecutive sides are perpendicular since slopes are opposite reciprocals and so } \angle B \text{ is a right angle}).
\]

PTS: 6 REF: 081935geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids