1 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, \(x \), to the nearest foot.

2 In the diagram below, circle \(O \) has a radius of 10.

If \(\angle AOB = 72^\circ \), find the area of shaded sector \(AOB \), in terms of \(\pi \).

3 Which information is not sufficient to prove that a parallelogram is a square?
 1) The diagonals are both congruent and perpendicular.
 2) The diagonals are congruent and one pair of adjacent sides are congruent.
 3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
 4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

4 What are the coordinates of point \(C \) on the directed segment from \(A(-8,4) \) to \(B(10,-2) \) that partitions the segment such that \(AC:CB \) is 2:1?
 1) (1,1)
 2) (-2,2)
 3) (2,-2)
 4) (4,0)

5 In the diagram of quadrilateral \(ABCD \) with diagonal \(\overline{AC} \) shown below, segments \(GH \) and \(EF \) are drawn, \(AE \cong CG, BE \cong DG, AH \cong CF \), and \(AD \cong CB \).

Prove: \(EF \cong GH \)
6 In $\triangle ABC$ below, angle C is a right angle.

Which statement must be true?
1) $\sin A = \cos B$
2) $\sin A = \tan B$
3) $\sin B = \tan A$
4) $\sin B = \cos B$

7 In the diagram below of $\triangle ABC$, D is a point on BA, E is a point on BC, and DE is drawn.

If $BD = 5$, $DA = 12$, and $BE = 7$, what is the length of BC so that $AC \parallel DE$?
1) 23.8
2) 16.8
3) 15.6
4) 8.6

8 In the diagram below, $\triangle ABE \cong \triangle CBD$.

Prove: $\triangle AFD \cong \triangle CFE$

9 In the diagram below of circle O, chords JT and ER intersect at M.

If $EM = 8$ and $RM = 15$, the lengths of JM and TM could be
1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5
10. In the diagram below of circle K, secant \overline{PLKE} and tangent \overline{PZ} are drawn from external point P.

If $m\angle Z = 56^\circ$, determine and state the degree measure of angle P.

11. A countertop for a kitchen is modeled with the dimensions shown below. An 18-inch by 21-inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?
1) 26
2) 23
3) 22
4) 19

12. Triangles ABC and RST are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle ABC \cong \triangle RST$?
1) a line reflection over $y = x$
2) a rotation of 180° centered at (1,0)
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y = 1$

13. The line $-3x + 4y = 8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?
1) $y = \frac{4}{3}x + 8$
2) $y = \frac{3}{4}x + 8$
3) $y = -\frac{3}{4}x - 8$
4) $y = -\frac{4}{3}x - 8$
14 Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

15 The coordinates of the vertices of parallelogram \(CDEH \) are \(C(-5,5) \), \(D(2,5) \), \(E(-1,-1) \), and \(H(-8,-1) \). What are the coordinates of \(P \), the point of intersection of diagonals \(CE \) and \(DH \)?

1) \((-2,3)\)
2) \((-2,2)\)
3) \((-3,2)\)
4) \((-3,-2)\)

16 The expression \(\sin 57^\circ \) is equal to

1) \(\tan 33^\circ \)
2) \(\cos 33^\circ \)
3) \(\tan 57^\circ \)
4) \(\cos 57^\circ \)

17 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

18 After a dilation with center \((0,0)\), the image of \(DB \) is \(D'B' \). If \(DB = 4.5 \) and \(D'B' = 18 \), the scale factor of this dilation is

1) \(\frac{1}{5} \)
2) 5
3) \(\frac{1}{4} \)
4) 4
19 What is an equation of a circle whose center is (1,4) and diameter is 10?
 1) $x^2 - 2x + y^2 - 8y = 8$
 2) $x^2 + 2x + y^2 + 8y = 8$
 3) $x^2 - 2x + y^2 - 8y = 83$
 4) $x^2 + 2x + y^2 + 8y = 83$

20 What is an equation of the image of the line $y = \frac{3}{2}x - 4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?
 1) $y = \frac{9}{8}x - 4$
 2) $y = \frac{9}{8}x - 3$
 3) $y = \frac{3}{2}x - 4$
 4) $y = \frac{3}{2}x - 3$

21 Given points A, B, and C, use a compass and straightedge to construct point D so that $ABCD$ is a parallelogram. [Leave all construction marks.]

22 As shown in the diagram below, secants \overrightarrow{PWR} and \overrightarrow{PTS} are drawn to circle O from external point P.

![Diagram]

If $\angle RPS = 35^\circ$ and $\angle RS = 121^\circ$, determine and state $\angle WT$.

23 Parallelogram $ABCD$ is adjacent to rhombus $DEFG$, as shown below, and FC intersects AGD at H.

![Diagram]

If $\angle B = 118^\circ$ and $\angle AHC = 138^\circ$, determine and state $\angle GFH$.
24 Square $MATH$ has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square $MATH$ around side \overline{AT}?
1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

25 Using the construction below, state the degree measure of $\angle CAD$. Explain why.

26 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

27 On the set of axes below, $\triangle ABC$, altitude \overline{CG}, and median \overline{CM} are drawn.

Which expression represents the area of $\triangle ABC$?
1) $\frac{(BC)(AC)}{2}$
2) $\frac{(GC)(BC)}{2}$
3) $\frac{(CM)(AB)}{2}$
4) $\frac{(GC)(AB)}{2}$

28 Circle O with a radius of 9 is drawn below. The measure of central angle $\angle AOC$ is 120°.

What is the area of the shaded sector of circle O?
1) 6π
2) 12π
3) 27π
4) 54π
29 Given: Quadrilateral $MATH$, $HM \cong AT$, $HT \cong AM$, $HE \perp MEA$, and $HA \perp AT$

Prove: $TA \cdot HA = HE \cdot TH$

30 In quadrilateral $QRST$, diagonals QS and RT intersect at M. Which statement would always prove quadrilateral $QRST$ is a parallelogram?

1) $\angle TQR$ and $\angle QRS$ are supplementary.
2) $QM \cong SM$ and $QT \cong RS$
3) $QR \cong TS$ and $QT \cong RS$
4) $QR \cong TS$ and $QT \parallel RS$

31 After a dilation centered at the origin, the image of CD is $C'D'$. If the coordinates of the endpoints of these segments are $C(6,-4)$, $D(2,-8)$, $C'(9,-6)$, and $D'(3,-12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

32 Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.

33 A vendor is using an 8-ft by 8-ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft.

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768

34 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

35 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone
36 In the diagram of equilateral triangle ABC shown below, E and F are the midpoints of AC and BC, respectively.

If $EF = 2x + 8$ and $AB = 7x - 2$, what is the perimeter of trapezoid $ABFE$?
1) 36
2) 60
3) 100
4) 120

37 The coordinates of the endpoints of QS are $Q(-9,8)$ and $S(9,-4)$. Point R is on QS such that $QR:RS$ is in the ratio of 1:2. What are the coordinates of point R?
1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

38 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^2 + y^2 = 8x - 6y + 39$?
1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center $(4,-3)$ and radius 8

39 If the altitudes of a triangle meet at one of the triangle’s vertices, then the triangle is
1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

40 On the set of axes below, $\triangle ABC$ has vertices at $A(-2,0)$, $B(2,-4)$, $C(4,2)$, and $\triangle DEF$ has vertices at $D(4,0)$, $E(-4,8)$, $F(-8,-4)$.

Which sequence of transformations will map $\triangle ABC$ onto $\triangle DEF$?
1) a dilation of $\triangle ABC$ by a scale factor of 2 centered at point A
2) a dilation of $\triangle ABC$ by a scale factor of $\frac{1}{2}$ centered at point A
3) a dilation of $\triangle ABC$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of $\triangle ABC$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin
41 The coordinates of the vertices of \(\triangle ABC \) are \(A(1,2), B(-5,3), \) and \(C(-6,-3) \). Prove that \(\triangle ABC \) is isosceles. State the coordinates of point \(D \) such that quadrilateral \(ABCD \) is a square. Prove that your quadrilateral \(ABCD \) is a square. [The use of the set of axes below is optional.]

42 On the set of axes below, \(\triangle ABC \) is graphed with coordinates \(A(-2,-1), B(3,-1), \) and \(C(-2,-4) \).

Triangle \(QRS \), the image of \(\triangle ABC \), is graphed with coordinates \(Q(-5,2), R(-5,7), \) and \(S(-8,2) \).

Describe a sequence of transformations that would map \(\triangle ABC \) onto \(\triangle QRS \).

43 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

<table>
<thead>
<tr>
<th>County</th>
<th>2000 Census Population</th>
<th>2000 Land Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broome</td>
<td>200,536</td>
<td>706.82</td>
</tr>
<tr>
<td>Dutchess</td>
<td>280,150</td>
<td>801.59</td>
</tr>
<tr>
<td>Niagara</td>
<td>219,846</td>
<td>522.95</td>
</tr>
<tr>
<td>Saratoga</td>
<td>200,635</td>
<td>811.84</td>
</tr>
</tbody>
</table>

Which county had the greatest population density?
1) Broome 3) Niagara
2) Dutchess 4) Saratoga
44 Triangle ABC is shown below. Using a compass and straightedge, construct the dilation of $\triangle ABC$ centered at B with a scale factor of 2. [Leave all construction marks.]

Is the image of $\triangle ABC$ similar to the original triangle? Explain why.

45 The area of a sector of a circle with a radius measuring 15 cm is 75π cm2. What is the measure of the central angle that forms the sector?
1) 72°
2) 120°
3) 144°
4) 180°

46 In the diagram below of right triangle ABC, $AC = 8$, and $AB = 17$.

Which equation would determine the value of angle A?
1) $\sin A = \frac{8}{17}$
2) $\tan A = \frac{8}{15}$
3) $\cos A = \frac{15}{17}$
4) $\tan A = \frac{15}{8}$

47 In parallelogram $PQRS$, \overline{QP} is extended to point T and \overline{ST} is drawn.

If $ST \cong SP$ and $\angle R = 130^\circ$, what is $\angle PST$?
1) 130°
2) 80°
3) 65°
4) 50°
48 As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, \(d\), from the bottom of the stairs to the bottom of the ramp.

49 Given circle \(O\) with radius \(OA\), use a compass and straightedge to construct an equilateral triangle inscribed in circle \(O\). [Leave all construction marks.]

50 Triangle \(A'B'C'\) is the image of triangle \(ABC\) after a dilation with a scale factor of \(\frac{1}{2}\) and centered at point \(A\). Is triangle \(ABC\) congruent to triangle \(A'B'C'\)? Explain your answer.

51 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of \(8\frac{1}{4}\) feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of \(\frac{1}{2}\) foot from the top.

52 If the line represented by \(y = -\frac{1}{4}x - 2\) is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?

1) The slope is \(-\frac{1}{4}\) and the \(y\)-intercept is \(-8\).
2) The slope is \(-\frac{1}{4}\) and the \(y\)-intercept is \(-2\).
3) The slope is \(-1\) and the \(y\)-intercept is \(-8\).
4) The slope is \(-1\) and the \(y\)-intercept is \(-2\).
53 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
 1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
 2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
 3) a cylinder with a radius of 5 inches and a height of 6 inches
 4) a cylinder with a radius of 6 inches and a height of 5 inches

54 In rhombus $TIGE$, diagonals TG and IE intersect at R. The perimeter of $TIGE$ is 68, and $TG = 16$.

What is the length of diagonal IE?
 1) 15
 2) 30
 3) 34
 4) 52

55 A quadrilateral must be a parallelogram if
 1) one pair of sides is parallel and one pair of angles is congruent
 2) one pair of sides is congruent and one pair of angles is congruent
 3) one pair of sides is both parallel and congruent
 4) the diagonals are congruent

56 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

57 Write an equation of the line that is parallel to the line whose equation is $3y + 7 = 2x$ and passes through the point (2,6).
58 In right triangle PRT, $\angle P = 90^\circ$, altitude PQ is drawn to hypotenuse RT, $RT = 17$, and $PR = 15$.

Determine and state, to the nearest tenth, the length of RQ.

59 In right triangle ABC shown below, point D is on AB and point E is on CB such that $AC \parallel DE$.

If $AB = 15$, $BC = 12$, and $EC = 7$, what is the length of BD?
1) 8.75
2) 6.25
3) 5
4) 4

60 Triangles JOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{EJ} \cong \overline{MS}$. Which mapping would not always lead to $\triangle JOE \cong \triangle SAM$?
1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) \overline{EO} maps onto \overline{MA}
4) \overline{JO} maps onto \overline{SA}

61 In parallelogram $ABCD$ shown below, $\angle DAC = 98^\circ$ and $\angle ACD = 36^\circ$.

What is the measure of angle B? Explain why.

62 On the set of axes below, $\triangle DEF$ has vertices at the coordinates $D(1, -1)$, $E(3, 4)$, and $F(4, 2)$, and point G has coordinates $(3, 1)$. Owen claims the median from point E must pass through point G. Is Owen correct? Explain why.
63 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?

65 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm.

How many cubic centimeters are in the volume of the cone?
1) 12.5\pi
2) 13.5\pi
3) 30.0\pi
4) 37.5\pi

64 On the set of axes below, triangle ABC is graphed. Triangles A'B'C' and A''B''C'', the images of triangle ABC, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps \(\triangle ABC\) onto \(\triangle A'B'C'\) and then maps \(\triangle A'B'C'\) onto \(\triangle A''B''C''\).
1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

66 Given right triangle \(\triangle ABC\) with a right angle at \(C\), \(m\angle B = 61^\circ\). Given right triangle \(\triangle RST\) with a right angle at \(T\), \(m\angle R = 29^\circ\).

Which proportion in relation to \(\triangle ABC\) and \(\triangle RST\) is not correct?
1) \(\frac{AB}{RS} = \frac{RT}{AC}\)
2) \(\frac{BC}{ST} = \frac{AB}{RS}\)
3) \(\frac{BC}{ST} = \frac{AC}{RT}\)
4) \(\frac{AB}{AC} = \frac{RS}{RT}\)
67 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

![Walking_path_grid](image)

68 In right triangle \(RST \), altitude \(TV \) is drawn to hypotenuse \(RS \). If \(RV = 12 \) and \(RT = 18 \), what is the length of \(SV \)?

1) \(6\sqrt{5} \)
2) \(15 \)
3) \(6\sqrt{6} \)
4) \(27 \)

69 The equation of a circle is \(x^2 + 8x + y^2 - 12y = 144 \). What are the coordinates of the center and the length of the radius of the circle?

1) center \((4, -6)\) and radius 12
2) center \((-4, 6)\) and radius 12
3) center \((4, -6)\) and radius 14
4) center \((-4, 6)\) and radius 14

70 In the diagram below of \(\triangle ACD \), \(DB \) is a median to \(AC \), and \(AB \cong DB \).

![Triangle_DAB](image)

If \(m\angle DAB = 32^\circ \), what is \(m\angle BDC \)?

1) \(32^\circ \)
2) \(52^\circ \)
3) \(58^\circ \)
4) \(64^\circ \)
71. In the diagram below of right triangle ABC, altitude CD intersects hypotenuse AB at D.

Which equation is always true?

1) $\frac{AD}{AC} = \frac{CD}{BC}$
2) $\frac{AD}{BD} = \frac{CD}{CD}$
3) $\frac{AC}{CD} = \frac{BC}{CD}$
4) $\frac{AD}{AC} = \frac{AC}{BD}$

72. In the diagram of quadrilateral $NAVY$ below, $m\angle YNA = 30^\circ$, $m\angle YAN = 38^\circ$, $m\angle AVY = 94^\circ$, and $m\angle VAY = 46^\circ$.

Which segment has the shortest length?

1) \overline{AY}
2) \overline{NY}
3) \overline{VA}
4) \overline{VY}

73. On the set of axes below, \overline{AB} is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $\overline{PA} \cong \overline{AA'}$
2) $\overline{AB} \parallel \overline{A'B'}$
3) $\overline{AB} = \overline{A'B'}$
4) $\frac{5}{2}(\overline{A'B'}) = \overline{AB}$

74. Which equation represents a line parallel to the line whose equation is $-2x + 3y = -4$ and passes through the point $(1,3)$?

1) $y - 3 = -\frac{3}{2}(x - 1)$
2) $y - 3 = \frac{2}{3}(x - 1)$
3) $y + 3 = -\frac{3}{2}(x + 1)$
4) $y + 3 = \frac{2}{3}(x + 1)$
75 In the diagram below, BC connects points B and C on the congruent sides of isosceles triangle ADE, such that $\triangle ABC$ is isosceles with vertex angle A.

If $AB = 10$, $BD = 5$, and $DE = 12$, what is the length of BC?
1) 6
2) 7
3) 8
4) 9

76 In right triangle ABC, $\angle C = 90^\circ$ and $AC \neq BC$. Which trigonometric ratio is equivalent to $\sin B$?
1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

77 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm?
1) 8192.0
2) 13,653.3
3) 32,768.0
4) 54,613.3

78 In rhombus $VENU$, diagonals VN and EU intersect at S. If $VN = 12$ and $EU = 16$, what is the perimeter of the rhombus?
1) 80
2) 40
3) 20
4) 10

79 In the diagram below, chords PQ and RS of circle O intersect at T.
Which relationship must always be true?
1) $RT = TQ$
2) $RT = TS$
3) $RT + TS = PT + TQ$
4) $RT \times TS = PT \times TQ$

80 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?
1) 543
2) 555
3) 1086
4) 1110
81 In the diagram below of parallelogram \(ABCD\), \(AFGB\), \(CF\) bisects \(\angle DCB\), \(DG\) bisects \(\angle ADC\), and \(CF\) and \(DG\) intersect at \(E\).

If \(m\angle B = 75^\circ\), then the measure of \(\angle EFA\) is
1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°

82 Which transformation carries the parallelogram below onto itself?

1) a reflection over \(y = x\)
2) a reflection over \(y = -x\)
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

83 In circle \(O\) two secants, \(\overline{ABP}\) and \(\overline{CDP}\), are drawn to external point \(P\). If \(m\overline{AC} = 72^\circ\), and \(m\overline{BD} = 34^\circ\), what is the measure of \(\angle P\)?
1) 19°
2) 38°
3) 53°
4) 106°

84 A triangle has vertices \(A(-2,4), B(6,2),\) and \(C(1,-1)\). Prove that \(\triangle ABC\) is an isosceles right triangle. [The use of the set of axes below is optional.]

85 What is the volume of a hemisphere that has a diameter of 12.6 cm, to the nearest tenth of a cubic centimeter?
1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2
86 In the diagram below of right triangle KMI, altitude IG is drawn to hypotenuse KM.

If $KG = 9$ and $IG = 12$, the length of IM is
1) 15
2) 16
3) 20
4) 25

87 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?
1) 1.10
2) 1.62
3) 2.48
4) 3.81

88 What is an equation of a line that is perpendicular to the line whose equation is $2y + 3x = 1$?
1) $y = -\frac{2}{3}x + \frac{5}{2}$
2) $y = \frac{3}{2}x + 2$
3) $y = \frac{2}{3}x + 1$
4) $y = -\frac{3}{2}x + \frac{1}{2}$

89 In the diagram below, AC and BD intersect at E.

Which information is always sufficient to prove $\triangle ABE \cong \triangle CDE$?
1) $AB \parallel CD$
2) $AB \cong CD$ and $BE \cong DE$
3) E is the midpoint of AC.
4) BD and AC bisect each other.

90 In $\triangle ABC$ shown below, $\angle ACB$ is a right angle, E is a point on AC, and ED is drawn perpendicular to hypotenuse AB.

If $AB = 9$, $BC = 6$, and $DE = 4$, what is the length of AE?
1) 5
2) 6
3) 7
4) 8
91 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?
1) 180° rotation counterclockwise about the origin
2) reflection over the line $y = \frac{1}{2} x + 1$
3) reflection over the line $y = 0$
4) reflection over the line $x = 0$

92 Chelsea is sitting 8 feet from the foot of a tree. From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?
1) 8
2) 7
3) 6
4) 4

93 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?
1) 6.3
2) 7.0
3) 12.9
4) 13.6

94 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of $3.95 per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft. Nancy fills her pool with a water delivery service at a rate of $200 per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.

[1ft³ water = 7.48 gallons]

95 On the set of axes below, $\triangle ABC \cong \triangle DEF$. Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle DEF$.
96 In the diagram below, \(\triangle ABC \) with sides 13, 15, and 16, is mapped onto \(\triangle DEF \) after a clockwise rotation of 90° about point \(P \).

If \(DE = 2x - 1 \), what is the value of \(x \)?
1) 7
2) 7.5
3) 8
4) 8.5

98 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of 6 \(\frac{1}{2} \) feet and a height of 12 inches. The pool is filled with water to \(\frac{2}{3} \) of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.

99 Riley plotted \(A(-1,6), B(3,8), C(6,-1), \) and \(D(1,0) \) to form a quadrilateral. Prove that Riley’s quadrilateral \(ABCD \) is a trapezoid. [The use of the set of axes on the next page is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley’s definition to prove that \(ABCD \) is not an isosceles trapezoid.
100 Determine and state the area of triangle \(PQR \), whose vertices have coordinates \(P(-2, -5) \), \(Q(3, 5) \), and \(R(6, 1) \). [The use of the set of axes below is optional.]

101 On the set of axes below, \(\triangle ABC \cong \triangle STU \).

Which equation is always true?
1) \(\angle 1 = \angle 3 + \angle 2 \)
2) \(\angle 5 = \angle 3 - \angle 2 \)
3) \(\angle 6 = \angle 3 - \angle 2 \)
4) \(\angle 7 = \angle 3 + \angle 2 \)

102 In the diagram below of triangle \(ABC \), \(\overline{AC} \) is extended through point \(C \) to point \(D \), and \(\overline{BE} \) is drawn to \(\overline{AC} \).

Which transformation would not carry this rhombus onto itself?
1) a reflection over the shorter diagonal
2) a reflection over the longer diagonal
3) a clockwise rotation of 90° about the intersection of the diagonals
4) a counterclockwise rotation of 180° about the intersection of the diagonals

Describe a sequence of rigid motions that maps \(\triangle ABC \) onto \(\triangle STU \).
104 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
1) 1,632
2) 408
3) 102
4) 92

105 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?
1) 13
2) 9694
3) 13,536
4) 30,456

106 In the diagram below, \(\overline{AC} \approx \overline{DF} \) and points \(A, C, D, \) and \(F \) are collinear on line \(\ell \).

Let \(\triangle D'E'F' \) be the image of \(\triangle DEF \) after a translation along \(\ell \), such that point \(D \) is mapped onto point \(A \). Determine and state the location of \(F' \). Explain your answer. Let \(\triangle D''E''F'' \) be the image of \(\triangle D'E'F' \) after a reflection across line \(\ell \). Suppose that \(E'' \) is located at \(B \). Is \(\triangle DEF \) congruent to \(\triangle ABC \)? Explain your answer.

107 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm, and the density of each brick is 1920 kg / m³. The maximum capacity of the contractor’s trailer is 900 kg. Can the trailer hold the weight of 500 bricks? Justify your answer.

108 The vertices of \(\triangle ABC \) have coordinates \(A(-2,-1), B(10,-1), \) and \(C(4,4) \). Determine and state the area of \(\triangle ABC \). [The use of the set of axes below is optional.]

A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.
110 In the diagram of parallelogram \(FRED\) shown below, \(ED\) is extended to \(A\), and \(AF\) is drawn such that \(AF \cong DF\).

[Diagram of parallelogram]

If \(m \angle R = 124^\circ\), what is \(m \angle AFD\)?
1) 124°
2) 112°
3) 68°
4) 56°

111 In the diagram below, triangles \(XYZ\) and \(UVZ\) are drawn such that \(\angle X \cong \angle U\) and \(\angle XZY \cong \angle UZV\).

[Diagram of triangles]

Describe a sequence of similarity transformations that shows \(\triangle XYZ\) is similar to \(\triangle UVZ\).

112 A circle has a center at \((1, -2)\) and radius of 4. Does the point \((3.4, 1.2)\) lie on the circle? Justify your answer.

113 In parallelogram \(ABCD\) shown below, diagonals \(AC\) and \(BD\) intersect at \(E\).

[Diagram of parallelogram]

Prove: \(\angle ACD \cong \angle CAB\)

114 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

[Diagram of water glass]

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.
115 Construct an equilateral triangle inscribed in circle \(T \) shown below. [Leave all construction marks.]

116 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?
1) 73
2) 77
3) 133
4) 230

117 Which transformation of \(\overline{OA} \) would result in an image parallel to \(\overline{OA} \)?

1) a translation of two units down
2) a reflection over the \(x \)-axis
3) a reflection over the \(y \)-axis
4) a clockwise rotation of 90° about the origin

118 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

119 The coordinates of vertices \(A \) and \(B \) of \(\triangle ABC \) are \(A(3, 4) \) and \(B(3, 12) \). If the area of \(\triangle ABC \) is 24 square units, what could be the coordinates of point \(C \)?
1) \((3, 6)\)
2) \((8, -3)\)
3) \((-3, 8)\)
4) \((6, 3)\)

120 Triangle \(RST \) is graphed on the set of axes below.

How many square units are in the area of \(\triangle RST \)?
1) \(9\sqrt{3} + 15\)
2) \(9\sqrt{5} + 15\)
3) 45
4) 90
121 In the diagram of circle A shown below, chords CD and EF intersect at G, and chords CE and FD are drawn.

Which statement is not always true?
1) $CG \cong FG$
2) $\angle CEG \cong \angle FDG$
3) $\frac{CE}{EG} = \frac{FD}{DG}$
4) $\triangle CEG \sim \triangle FDG$

122 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?
1) $AB = DE$ and $BC = EF$
2) $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
3) There is a sequence of rigid motions that maps \overline{AB} onto \overline{DE}, \overline{BC} onto \overline{EF}, and \overline{AC} onto \overline{DF}.
4) There is a sequence of rigid motions that maps point A onto point D, \overline{AB} onto \overline{DE}, and $\angle B$ onto $\angle E$.

123 Find the value of R that will make the equation $\sin 73^\circ = \cos R$ true when $0^\circ < R < 90^\circ$. Explain your answer.

124 The endpoints of \overline{DEF} are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $DE:EF = 2:3$.

125 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
1) octagon
2) decagon
3) hexagon
4) pentagon

126 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio $1:5$. What are the coordinates of point P?
1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2}, -4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4, -\frac{1}{2}\right)$

127 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line
1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line
128 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

129 Which sequence of transformations will map $\triangle ABC$ onto $\triangle A'B'C'$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

130 Quadrilateral $ABCD$ with diagonals AC and BD is shown in the diagram below.

Which information is not enough to prove $ABCD$ is a parallelogram?
1) $AB \cong CD$ and $AB \parallel DC$
2) $AB \cong CD$ and $BC \cong DA$
3) $AB \cong CD$ and $BC \parallel AD$
4) $AB \parallel DC$ and $BC \parallel AD$

131 The coordinates of the vertices of $\triangle RST$ are $R(−2,−3)$, $S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle RST$?
1) right
2) acute
3) obtuse
4) equiangular

132 Line segment $A'B'$, whose endpoints are $(4,−2)$ and $(16,14)$, is the image of AB after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of AB?
1) 5
2) 10
3) 20
4) 40
133 Line segment EA is the perpendicular bisector of ZT, and ZE and TE are drawn.

Which conclusion can not be proven?
1) EA bisects angle ZET.
2) Triangle EZT is equilateral.
3) EA is a median of triangle EZT.
4) Angle Z is congruent to angle T.

134 In the diagram of parallelogram $ABCD$ below, $BE \perp CED$, $DF \perp BFC$, $CE \cong CF$.

Prove $ABCD$ is a rhombus.

135 A sequence of transformations maps rectangle $ABCD$ onto rectangle $A'B'C'D'$, as shown in the diagram below.

Which sequence of transformations maps $ABCD$ onto $A'B'C'D'$ and then maps $A'B'C'D'$ onto $A''B''C''D''$?
1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

136 In scalene triangle ABC shown in the diagram below, $m\angle C = 90^\circ$.

Which equation is always true?
1) $\sin A = \sin B$
2) $\cos A = \cos B$
3) $\cos A = \sin C$
4) $\sin A = \cos B$
137 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?

1) \(\frac{8\pi}{3} \)
2) \(\frac{16\pi}{3} \)
3) \(\frac{32\pi}{3} \)
4) \(\frac{64\pi}{3} \)

138 In the diagram below, \(ABCD \) is a parallelogram, \(AB \) is extended through \(B \) to \(E \), and \(CE \) is drawn.

If \(CE \cong BE \) and \(m\angle D = 112^\circ \), what is \(m\angle E \)?

1) 44^\circ
2) 56^\circ
3) 68^\circ
4) 112^\circ

139 Triangles \(RST \) and \(XYZ \) are drawn below. If \(RS = 6, ST = 14, XY = 9, YZ = 21, \) and \(\angle S \cong \angle Y \), is \(\triangle RST \) similar to \(\triangle XYZ \)? Justify your answer.

140 Line \(\ell \) is mapped onto line \(m \) by a dilation centered at the origin with a scale factor of 2. The equation of line \(\ell \) is \(3x - y = 4 \). Determine and state an equation for line \(m \).

141 In parallelogram \(QRST \) shown below, diagonal \(TR \) is drawn, \(U \) and \(V \) are points on \(TS \) and \(QR \), respectively, and \(UV \) intersects \(TR \) at \(W \).

If \(m\angle S = 60^\circ \), \(m\angle SRT = 83^\circ \), and \(m\angle TWU = 35^\circ \), what is \(m\angle WVQ \)?

1) 37^\circ
2) 60^\circ
3) 72^\circ
4) 83^\circ

142 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54^\circ
2) 72^\circ
3) 108^\circ
4) 360^\circ

29
143 The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?
1) $2AB = AD$
2) $AD \perp DE$
3) $AC = CE$
4) $BC \parallel DE$

144 In the diagram of $\triangle ADC$ below, $EB \parallel DC$, $AE = 9$, $ED = 5$, and $AB = 9.2$.

What is the length of AC, to the nearest tenth?
1) 5.1
2) 5.2
3) 14.3
4) 14.4

145 In the coordinate plane, the vertices of $\triangle RST$ are $R(6, -1)$, $S(1, -4)$, and $T(-5, 6)$. Prove that $\triangle RST$ is a right triangle. State the coordinates of point P such that quadrilateral $RSTP$ is a rectangle. Prove that your quadrilateral $RSTP$ is a rectangle. [The use of the set of axes below is optional.]

146 Line segment NY has endpoints $N(-11, 5)$ and $Y(5, -7)$. What is the equation of the perpendicular bisector of NY?
1) $y + 1 = \frac{4}{3}(x + 3)$
2) $y + 1 = -\frac{3}{4}(x + 3)$
3) $y - 6 = \frac{4}{3}(x - 8)$
4) $y - 6 = -\frac{3}{4}(x - 8)$
147 Which figure can have the same cross section as a sphere?

1)

2)

3)

4)

148 In $\triangle ABC$, where $\angle C$ is a right angle, $\cos A = \frac{\sqrt{21}}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$

2) $\frac{\sqrt{21}}{2}$

3) $\frac{2}{5}$

4) $\frac{5}{\sqrt{21}}$

149 In circle O, diameter \overline{AB}, chord \overline{BC}, and radius \overline{OC} are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector COB:

Amy $\frac{3}{10} \cdot \pi \cdot (BC)^2$

Beth $\frac{108}{360} \cdot \pi \cdot (OC)^2$

Carl $\frac{3}{10} \cdot \pi \cdot \left(\frac{1}{2} AB\right)^2$

Dex $\frac{108}{360} \cdot \pi \cdot \left(\frac{1}{2} AB\right)^2$

Which students wrote correct formulas?

1) Amy and Dex

2) Beth and Carl

3) Carl and Amy

4) Dex and Beth

150 Which equation represents a line that is perpendicular to the line represented by $2x - y = 7$?

1) $y = \frac{1}{2} x + 6$

2) $y = \frac{1}{2} x + 6$

3) $y = -2x + 6$

4) $y = 2x + 6$
151 Given \(MN \) shown below, with \(M(-6,1) \) and \(N(3,-5) \), what is an equation of the line that passes through point \(P(6,1) \) and is parallel to \(MN \)?

1) \(y = -\frac{2}{3}x + 5 \)
2) \(y = -\frac{2}{3}x - 3 \)
3) \(y = \frac{3}{2}x + 7 \)
4) \(y = \frac{3}{2}x - 8 \)

152 In the diagram below, \(m\angle BDC = 100^\circ \), \(m\angle A = 50^\circ \), and \(m\angle DBC = 30^\circ \).

Which statement is true?
1) \(\triangle ABD \) is obtuse.
2) \(\triangle ABC \) is isosceles.
3) \(m\angle ABD = 80^\circ \)
4) \(\triangle ABD \) is scalene.

153 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60-foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of \(\theta \), the projection angle.

154 In the diagram below, \(\triangle ABC \sim \triangle DEF \).

If \(AB = 6 \) and \(AC = 8 \), which statement will justify similarity by SAS?
1) \(DE = 9, DF = 12, \) and \(\angle A \cong \angle D \)
2) \(DE = 8, DF = 10, \) and \(\angle A \cong \angle D \)
3) \(DE = 36, DF = 64, \) and \(\angle C \cong \angle F \)
4) \(DE = 15, DF = 20, \) and \(\angle C \cong \angle F \)
155 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

156 In the diagram below, EF intersects AB and CD at G and H, respectively, and GI is drawn such that $GH \cong IH$.

If $m\angle EGB = 50^\circ$ and $m\angle DIG = 115^\circ$, explain why $AB \parallel CD$.

157 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where $AB = 3$, $BC = 5.5$, $AC = 4.5$, $DE = 6$, $FD = 9$, and $EF = 11$.

Which relationship must always be true?

1) $\frac{m\angle A}{m\angle D} = \frac{1}{2}$
2) $\frac{m\angle C}{m\angle F} = \frac{2}{1}$
3) $\frac{m\angle A}{m\angle C} = \frac{m\angle F}{m\angle D}$
4) $\frac{m\angle B}{m\angle E} = \frac{m\angle C}{m\angle F}$

158 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

159 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.
160 Triangle $\triangle XYZ$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle ABC$ is congruent to $\triangle XYZ$.

161 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?
1) 6.8
2) 6.9
3) 18.7
4) 18.8

162 Point P is on segment AB such that $AP:PB$ is 4:5. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

163 In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0)$, $B(3,0)$, $C(4.5,0)$, $D(0,6)$, and $E(0,4)$.

The ratio of the lengths of \overline{BE} to \overline{CD} is
1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

164 The line $3y = -2x + 8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?
1) $2x + 3y = 5$
2) $2x - 3y = 5$
3) $3x + 2y = 5$
4) $3x - 2y = 5$

165 Two right triangles must be congruent if
1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal
166 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $ABCD \parallel EFG$?
1) $\angle CFG \cong \angle FCB$
2) $\angle ABF \cong \angle BFC$
3) $\angle EFB \cong \angle CFB$
4) $\angle CBF \cong \angle GFC$

167 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?
1) 10
2) 25
3) 50
4) 75

168 Given right triangles ABC and DEF where $\angle C$ and $\angle F$ are right angles, $AC \cong DF$ and $CB \cong FE$. Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

169 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television’s screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

170 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $AC = 8.5$ feet, $BF = 25$ feet, and $m \angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.
171 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $50,000.

172 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

173 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°. If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

174 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below. To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

175 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.
176 On the set of axes below, rectangle $ABCD$ can be proven congruent to rectangle $KLMN$ using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

177 The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?
1) $\overline{BC} \cong \overline{DE}$
2) $\overline{AB} \cong \overline{DF}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

178 Using a compass and straightedge, construct and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of AC and $A'C'$.

179 Which transformation would not always produce an image that would be congruent to the original figure?
1) translation
2) dilation
3) rotation
4) reflection

180 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?
1) 34
2) 20
3) 15
4) 4
181 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

182 Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?
1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y = x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

183 Segment CD is the perpendicular bisector of AB at E. Which pair of segments does not have to be congruent?
1) AD, BD
2) AC, BC
3) AE, BE
4) DE, CE

184 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm. To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?
1) 236
2) 282
3) 564
4) 945
185 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?
1) 15
2) 16
3) 31
4) 32

186 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $37.83 for the molds and charges $1.95 for each candle, what is Walter's profit after selling 100 candles?

187 In \(\triangle ABC \), the complement of \(\angle B \) is \(\angle A \). Which statement is always true?
1) \(\tan \angle A = \tan \angle B \)
2) \(\sin \angle A = \sin \angle B \)
3) \(\cos \angle A = \tan \angle B \)
4) \(\sin \angle A = \cos \angle B \)

188 Triangles \(\triangle ABC \) and \(\triangle DEF \) are drawn below.

If \(AB = 9, BC = 15, DE = 6, EF = 10 \), and \(\angle B \cong \angle E \), which statement is true?
1) \(\angle CAB \cong \angle DEF \)
2) \(\frac{AB}{CB} = \frac{FE}{DE} \)
3) \(\triangle ABC \sim \triangle DEF \)
4) \(\frac{AB}{DE} = \frac{FE}{CB} \)

189 In the diagram below, \(BC \) is the diameter of circle \(A \).

Point \(D \), which is unique from points \(B \) and \(C \), is plotted on circle \(A \). Which statement must always be true?
1) \(\triangle BCD \) is a right triangle.
2) \(\triangle BCD \) is an isosceles triangle.
3) \(\triangle BAD \) and \(\triangle CBD \) are similar triangles.
4) \(\triangle BAD \) and \(\triangle CAD \) are congruent triangles.
190 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

191 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

192 In the diagram below of circle O with diameter BC and radius OA, chord DC is parallel to chord BA.

If \(\angle BCD = 30^\circ \), determine and state \(\angle AOB \).

193 As shown in the diagram below, AB and CD intersect at E, and AC \(\parallel BD \).

Given \(\triangle AEC \sim \triangle BED \), which equation is true?

1) \(\frac{CE}{DE} = \frac{EB}{EA} \)
2) \(\frac{AE}{BE} = \frac{AC}{BD} \)
3) \(\frac{EC}{AE} = \frac{BE}{ED} \)
4) \(\frac{ED}{EC} = \frac{AC}{BD} \)

194 In the diagram of \(\triangle ABC \), points D and E are on \(AB \) and \(CB \), respectively, such that \(AC \parallel DE \).

If \(AD = 24 \), \(DB = 12 \), and \(DE = 4 \), what is the length of \(AC \)?

1) 8
2) 12
3) 16
4) 72
195 The grid below shows \(\triangle ABC\) and \(\triangle DEF\).

Let \(\triangle A'B'C'\) be the image of \(\triangle ABC\) after a rotation about point \(A\). Determine and state the location of \(B'\) if the location of point \(C'\) is \((8, -3)\). Explain your answer. Is \(\triangle DEF\) congruent to \(\triangle A'B'C'\)? Explain your answer.

196 Triangle \(\triangle ABC\) is graphed on the set of axes below. Graph and label \(\triangle A'B'C'\), the image of \(\triangle ABC\) after a reflection over the line \(x = 1\).

197 In the diagram below, secant \(\overline{ACD}\) and tangent \(\overline{AB}\) are drawn from external point \(A\) to circle \(O\).

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. \((AC \cdot AD = AB^2)\)

198 The graph below shows \(\overline{AB}\), which is a chord of circle \(O\). The coordinates of the endpoints of \(\overline{AB}\) are \(A(3, 3)\) and \(B(3, -7)\). The distance from the midpoint of \(\overline{AB}\) to the center of circle \(O\) is 2 units.

What could be a correct equation for circle \(O\)?
1) \((x - 1)^2 + (y + 2)^2 = 29\)
2) \((x + 5)^2 + (y - 2)^2 = 29\)
3) \((x - 1)^2 + (y - 2)^2 = 25\)
4) \((x - 5)^2 + (y + 2)^2 = 25\)
199 Given: \(\triangle XYZ, XY \cong ZY \), and \(\overline{YW} \) bisects \(\angle XYZ \). Prove that \(\angle YWZ \) is a right angle.

200 In the diagram below, \(\triangle ABC \) has coordinates \(A(1,1), B(4,1), \) and \(C(4,5) \). Graph and label \(\triangle A'B'C' \), the image of \(\triangle ABC \) after the translation five units to the right and two units up followed by the reflection over the line \(y = 0 \).

201 If \(x^2 + 4x + y^2 - 6y - 12 = 0 \) is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

202 In \(\triangle CED \) as shown below, points \(A \) and \(B \) are located on sides \(CE \) and \(ED \), respectively. Line segment \(AB \) is drawn such that \(AE = 3.75, AC = 5, EB = 4.5, \) and \(BD = 6 \).

Explain why \(\overline{AB} \) is parallel to \(\overline{CD} \).

203 A company is creating an object from a wooden cube with an edge length of 8.5 cm. A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) \((8.5)^3 - \pi(4)^2(8) \)
2) \((8.5)^3 - \pi(4)^2(8) \)
3) \((8.5)^3 - \frac{1}{3} \pi(8)^2(8) \)
4) \((8.5)^3 - \frac{1}{3} \pi(4)^2(8) \)

204 The line \(y = 2x - 4 \) is dilated by a scale factor of \(\frac{3}{2} \) and centered at the origin. Which equation represents the image of the line after the dilation?

1) \(y = 2x - 4 \)
2) \(y = 2x - 6 \)
3) \(y = 3x - 4 \)
4) \(y = 3x - 6 \)
Given: ΔABC
Prove: m∠1 + m∠2 + m∠3 = 180°
Fill in the missing reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ΔABC</td>
<td>(1) Given</td>
</tr>
<tr>
<td>(2) Through point C, draw (\overline{DCE}) parallel to (AB).</td>
<td>(2)</td>
</tr>
<tr>
<td>(3) m∠1 = m∠ACD, m∠3 = m∠BCE</td>
<td>(3)</td>
</tr>
<tr>
<td>(4) m∠ACD + m∠2 + m∠BCE = 180°</td>
<td>(4)</td>
</tr>
<tr>
<td>(5) m∠1 + m∠2 + m∠3 = 180°</td>
<td>(5)</td>
</tr>
</tbody>
</table>
206 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

207 What are the coordinates of the center and length of the radius of the circle whose equation is

\[x^2 + 6x + y^2 - 4y = 23 \]?

1) (3, −2) and 36
2) (3, −2) and 6
3) (−3, 2) and 36
4) (−3, 2) and 6

208 In the diagram below of circle O, points K, A, T, I, and E are on the circle, \(\triangle KAE \) and \(\triangle ITE \) are drawn, \(KE \cong EI \), and \(\angle EKA \cong \angle EIT \).

Which statement about \(\triangle KAE \) and \(\triangle ITE \) is always true?
1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

209 In the diagram below, quadrilateral \(ABCD \) is inscribed in circle \(P \).

What is \(m\angle ADC \)?
1) 70°
2) 72°
3) 108°
4) 110°
210 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

212 If the rectangle below is continuously rotated about side w, which solid figure is formed?

![Rectangle Diagram]

1) pyramid
2) rectangular prism
3) cone
4) cylinder

213 Given: $\triangle ABE$ and $\triangle CBD$ shown in the diagram below with $DB \cong BE$

Which statement is needed to prove $\triangle ABE \cong \triangle CBD$ using only SAS \cong SAS?

1) $\angle CDB \cong \angle AEB$
2) $\angle AFD \cong \angle EFC$
3) $\frac{AD}{CE} \cong \frac{CD}{BE}$
4) $\frac{AE}{CD} \cong \frac{BE}{AD}$

214 Line $y = 3x - 1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y = 3x - 8$
2) $y = 3x - 4$
3) $y = 3x - 2$
4) $y = 3x - 1$
215 Prove the sum of the exterior angles of a triangle is 360°.

216 Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

217 The diagram below shows parallelogram $LMNO$ with diagonal LN, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$.

Explain why $m\angle NLO$ is 40 degrees.

218 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

219 Given: Circle O, chords AB and CD intersect at E.

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $AE \cdot EB = CE \cdot ED$.

220 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches
221 In the diagram below of circle O, the area of the shaded sector AOC is 12π in2 and the length of OA is 6 inches. Determine and state $m\angle AOC$.

222 In the diagram of right triangle ABC shown below, $AB = 14$ and $AC = 9$.

What is the measure of $\angle A$, to the nearest degree?
1) 33
2) 40
3) 50
4) 57

223 The equation of a circle is $x^2 + y^2 + 6y = 7$. What are the coordinates of the center and the length of the radius of the circle?
1) center $(0, 3)$ and radius 4
2) center $(0, -3)$ and radius 4
3) center $(0, 3)$ and radius 16
4) center $(0, -3)$ and radius 16

224 Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below.

225 In the diagram of $\triangle LAC$ and $\triangle DNC$ below, $LA \cong DN$, $CA \cong CN$, and $DAC \perp LCN$.

a) Prove that $\triangle LAC \cong \triangle DNC$.
b) Describe a sequence of rigid motions that will map $\triangle LAC$ onto $\triangle DNC$.
226 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?
1) 10.0
2) 11.5
3) 17.3
4) 23.1

227 The diagonals of rhombus TEAM intersect at P(2,1). If the equation of the line that contains diagonal TA is \(y = -x + 3 \), what is the equation of a line that contains diagonal EM?
1) \(y = x - 1 \)
2) \(y = x - 3 \)
3) \(y = -x - 1 \)
4) \(y = -x - 3 \)

228 In the diagram below, lines \(\ell, m, n, \) and \(p \) intersect line \(r \).

Which statement is true?
1) \(\ell \parallel n \)
2) \(\ell \parallel p \)
3) \(m \parallel p \)
4) \(m \parallel n \)

229 As graphed on the set of axes below, \(\triangle A'B'C' \) is the image of \(\triangle ABC \) after a sequence of transformations.

Is \(\triangle A'B'C' \) congruent to \(\triangle ABC \)? Use the properties of rigid motion to explain your answer.

230 In the diagram below, radius \(OA \) is drawn in circle \(O \). Using a compass and a straightedge, construct a line tangent to circle \(O \) at point \(A \). [Leave all construction marks.]
231 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

<table>
<thead>
<tr>
<th>Type of Wood</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>0.373</td>
</tr>
<tr>
<td>Hemlock</td>
<td>0.431</td>
</tr>
<tr>
<td>Elm</td>
<td>0.554</td>
</tr>
<tr>
<td>Birch</td>
<td>0.601</td>
</tr>
<tr>
<td>Ash</td>
<td>0.638</td>
</tr>
<tr>
<td>Maple</td>
<td>0.676</td>
</tr>
<tr>
<td>Oak</td>
<td>0.711</td>
</tr>
</tbody>
</table>

232 In the diagram below, \(FE \) bisects \(AC \) at \(B \), and \(GE \) bisects \(BD \) at \(C \). Which statement is always true?

1) \(AB \cong DC \)
2) \(FB \cong EB \)
3) \(BD \) bisects \(GE \) at \(C \).
4) \(AC \) bisects \(FE \) at \(B \).

233 Explain why \(\cos(x) = \sin(90 - x) \) for \(x \) such that \(0 < x < 90 \).

234 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

235 In the diagram of \(\triangle ABC \) shown below, use a compass and straightedge to construct the median to \(AB \). [Leave all construction marks.]
236. In the diagram below of circle O, \overline{OB} and \overline{OC} are radii, and chords \overline{AB}, \overline{BC}, and \overline{AC} are drawn.

Which statement must always be true?
1) $\angle BAC \cong \angle BOC$
2) $m\angle BAC = \frac{1}{2} m\angle BOC$
3) ΔBAC and ΔBOC are isosceles.
4) The area of ΔBAC is twice the area of ΔBOC.

237. In the diagram below of circle O, the area of the shaded sector LOM is 2π cm2.

If the length of \overline{NL} is 6 cm, what is $m\angle N$?
1) 10°
2) 20°
3) 40°
4) 80°

238. Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
1) $(x,y) \rightarrow (y,x)$
2) $(x,y) \rightarrow (x,-y)$
3) $(x,y) \rightarrow (4x,4y)$
4) $(x,y) \rightarrow (x + 2,y - 5)$

239. In the diagram below, $\Delta ERM \sim \Delta JTM$.

Which statement is always true?
1) $\cos J = \frac{RM}{RE}$
2) $\cos R = \frac{JM}{JT}$
3) $\tan T = \frac{RM}{EM}$
4) $\tan E = \frac{TM}{JM}$

240. In parallelogram $ABCD$, diagonals \overline{AC} and \overline{BD} intersect at E. Which statement does not prove parallelogram $ABCD$ is a rhombus?
1) $\overline{AC} \cong \overline{DB}$
2) $\overline{AB} \cong \overline{BC}$
3) $\overline{AC} \perp \overline{DB}$
4) \overline{AC} bisects $\angle DCB$
241 In the diagram below, \(\triangle A'B'C' \) is the image of \(\triangle ABC \) after a transformation.

Describe the transformation that was performed. Explain why \(\triangle A'B'C' \sim \triangle ABC \).

242 Lines \(AE \) and \(BD \) are tangent to circles \(O \) and \(P \) at \(A, E, B, \) and \(D \), as shown in the diagram below. If \(AC:CE = 5:3 \), and \(BD = 56 \), determine and state the length of \(CD \).

243 In triangle \(CHR \), \(O \) is on \(HR \), and \(D \) is on \(CR \) so that \(\angle H \cong \angle RDO \).

If \(RD = 4 \), \(RO = 6 \), and \(OH = 4 \), what is the length of \(CD \)?
1) \(2 \frac{2}{3} \)
2) \(6 \frac{2}{3} \)
3) 11
4) 15

244 Which object is formed when right triangle \(RST \) shown below is rotated around leg \(RS \)?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone
245 The center of circle Q has coordinates $(3, -2)$. If circle Q passes through $R(7, 1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

246 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri’s principle to explain why the volumes of these two stacks of quarters are equal.

247 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

248 Which expression is always equivalent to $\sin x$ when $0^\circ < x < 90^\circ$?

1) $\cos(90^\circ - x)$
2) $\cos(45^\circ - x)$
3) $\cos(2x)$
4) $\cos x$

249 In $\triangle SCU$ shown below, points T and O are on SU and CU, respectively. Segment OT is drawn so that $\angle C \cong \angle OTU$.

If $TU = 4$, $OU = 5$, and $OC = 7$, what is the length of ST?

1) 5.6
2) 8.75
3) 11
4) 15

250 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man’s head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9
251 In the diagram below, \(\triangle ABC \sim \triangle ADE \).

Which measurements are justified by this similarity?
1) \(AD = 3, AB = 6, AE = 4, \) and \(AC = 12 \)
2) \(AD = 5, AB = 8, AE = 7, \) and \(AC = 10 \)
3) \(AD = 3, AB = 9, AE = 5, \) and \(AC = 10 \)
4) \(AD = 2, AB = 6, AE = 5, \) and \(AC = 15 \)

252 What are the coordinates of the point on the directed line segment from \(K(-5,-4) \) to \(L(5,1) \) that partitions the segment into a ratio of 3 to 2?
1) \((-3,-3)\)
2) \((-1,-2)\)
3) \(0,-\frac{3}{2}\)
4) \((1,-1)\)

253 Kevin’s work for deriving the equation of a circle is shown below.

\[
x^2 + 4x = -(y^2 - 20)
\]

\text{STEP 1} \quad x^2 + 4x = -y^2 + 20
\text{STEP 2} \quad x^2 + 4x + 4 = -y^2 + 20 - 4
\text{STEP 3} \quad (x + 2)^2 = -y^2 + 20 - 4
\text{STEP 4} \quad (x + 2)^2 + y^2 = 16

In which step did he make an error in his work?
1) Step 1
2) Step 2
3) Step 3
4) Step 4

254 In the diagram below, \(\triangle ABC \) and \(\triangle XYZ \) are graphed.

Use the properties of rigid motions to explain why \(\triangle ABC \cong \triangle XYZ \).

255 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
1) 3591
2) 65
3) 55
4) 4

256 In isosceles \(\triangle MNP \), line segment \(NO \) bisects vertex \(\angle MNP \), as shown below. If \(MP = 16 \), find the length of \(MO \) and explain your answer.
257 In circle O shown below, diameter AC is perpendicular to CD at point C, and chords AB, BC, AE, and CE are drawn. Which statement is not always true?

1) $\angle ACB \cong \angle BCD$
2) $\angle ABC \cong \angle ACD$
3) $\angle BAC \cong \angle DCB$
4) $\angle CBA \cong \angle AEC$

258 The coordinates of the endpoints of AB are $A(-6,-5)$ and $B(4,0)$. Point P is on AB. Determine and state the coordinates of point P, such that $AP:PB$ is 2:3. [The use of the set of axes below is optional.]

259 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^2 + y^2 - 4x + 8y + 11 = 0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

260 Triangle ABC has vertices with $A(x,3)$, $B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle ABC a right triangle. Justify why $\triangle ABC$ is a right triangle. [The use of the set of axes below is optional.]

261 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent
262 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

263 In the diagram below, which single transformation was used to map triangle A onto triangle B?

1) line reflection
2) rotation
3) dilation
4) translation

264 An equation of a line perpendicular to the line represented by the equation \(y = -\frac{1}{2}x - 5 \) and passing through (6, -4) is

1) \(y = -\frac{1}{2}x + 4 \)
2) \(y = -\frac{1}{2}x - 1 \)
3) \(y = 2x + 14 \)
4) \(y = 2x - 16 \)

265 Given: D is the image of A after a reflection over \(CH \).

\(CH \) is the perpendicular bisector of \(BCE \)

\(\Delta ABC \) and \(\Delta DEC \) are drawn

Prove: \(\Delta ABC \cong \Delta DEC \)

266 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432
267 Use a compass and straightedge to construct an inscribed square in circle \(T \) shown below. [Leave all construction marks.]

268 Given: Parallelogram \(ABCD \), \(EFG \), and diagonal \(DFB \)

Prove: \(\triangle DEF \sim \triangle BGF \)

269 In the diagram below, \(CD \) is the image of \(AB \) after a dilation of scale factor \(k \) with center \(E \).

Which ratio is equal to the scale factor \(k \) of the dilation?

1) \(\frac{EC}{EA} \)
2) \(\frac{BA}{EA} \)
3) \(\frac{EA}{BA} \)
4) \(\frac{EA}{EC} \)

270 Using a compass and straightedge, construct an altitude of triangle \(ABC \) below. [Leave all construction marks.]
271 In the diagram below, congruent figures 1, 2, and 3 are drawn. Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?
1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

272 In the diagram shown below, AC is tangent to circle O at A and to circle P at C. OP intersects AC at B, $OA = 4$, $AB = 5$, and $PC = 10$.

273 In the diagram below, CD is the altitude drawn to the hypotenuse AB of right triangle ABC.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?
1) $AD = 2$ and $DB = 36$
2) $AD = 3$ and $AB = 24$
3) $AD = 6$ and $DB = 12$
4) $AD = 8$ and $AB = 17$

274 In the diagram of right triangle ABC, CD intersects hypotenuse AB at D.

If $AD = 4$ and $DB = 6$, which length of AC makes $CD \perp AB$?
1) $2\sqrt{6}$
2) $2\sqrt{10}$
3) $2\sqrt{15}$
4) $4\sqrt{2}$

What is the length of BC?
1) 6.4
2) 8
3) 12.5
4) 16
275 A quadrilateral has vertices with coordinates \((-3, 1), (0, 3), (5, 2),\) and \((-1, -2)\). Which type of quadrilateral is this?
1) rhombus
2) rectangle
3) square
4) trapezoid

276 In the diagram below, \(\triangle ABC\) has vertices \(A(4,5), B(2,1),\) and \(C(7,3)\).

What is the slope of the altitude drawn from \(A\) to \(BC\)?
1) \(\frac{2}{5}\)
2) \(\frac{3}{2}\)
3) \(\frac{1}{2}\)
4) \(\frac{5}{2}\)

277 The ratio of similarity of \(\triangle BOY\) to \(\triangle GRL\) is 1:2.
If \(BO = x + 3\) and \(GR = 3x - 1\), then the length of \(GR\) is
1) 5
2) 7
3) 10
4) 20

278 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?
1) \(x = 5\)
2) \(y = 2\)
3) \(y = x\)
4) \(x + y = 4\)

279 The endpoints of one side of a regular pentagon are \((-1, 4)\) and \((2, 3)\). What is the perimeter of the pentagon?
1) \(\sqrt{10}\)
2) \(5\sqrt{10}\)
3) \(5\sqrt{2}\)
4) \(25\sqrt{2}\)
280 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?

1)
2)
3)
4)

281 Given: Parallelogram \(ANDR \) with \(AW \) and \(DE \) bisecting \(NWD \) and \(REA \) at points \(W \) and \(E \), respectively

Prove that \(\triangle ANW \cong \triangle DRE \). Prove that quadrilateral \(AWDE \) is a parallelogram.

282 Quadrilateral \(ABCD \) is graphed on the set of axes below.

When \(ABCD \) is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral \(A'B'C'D' \). Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and \(C' \) (1, 2)
2) no and \(D' \) (2, 4)
3) yes and \(A' \) (6, 2)
4) yes and \(B' \) (−3, 4)

283 Given: Quadrilateral \(ABCD \) with diagonals \(AC \) and \(BD \) that bisect each other, and \(\angle 1 \equiv \angle 2 \)

Prove: \(\triangle ACD \) is an isosceles triangle and \(\triangle AEB \) is a right triangle

284 After a reflection over a line, \(\triangle A'B'C' \) is the image of \(\triangle ABC \). Explain why triangle \(ABC \) is congruent to triangle \(\triangle A'B'C' \).
285 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle \(A \) intercepts an arc of length \(\pi \), and angle \(B \) intercepts an arc of length \(\frac{13\pi}{8} \).

Dominic thinks that angles \(A \) and \(B \) have the same radian measure. State whether Dominic is correct or not. Explain why.

286 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is 0.697 g/cm\(^3\), and the cost, per kilogram, of ice is $3.83. Determine and state the cost of the ice needed to make 50 snow cones.

287 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
288 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

289 Quadrilateral $ABCD$ has diagonals AC and BD. Which information is not sufficient to prove $ABCD$ is a parallelogram?
1) AC and BD bisect each other.
2) $AB \cong CD$ and $BC \cong AD$
3) $AB \cong CD$ and $AB \parallel CD$
4) $AB \cong CD$ and $BC \parallel AD$

290 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

Prove: $\triangle AED \cong \triangle CEB$
Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

291 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

292 In the diagram below of circle O, diameter AB and radii OC and OD are drawn. The length of AB is 12 and the measure of $\angle COD$ is 20 degrees.

If $AC \cong BD$, find the area of sector BOD in terms of π.
293 If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?
1) $3A'B' = AB$
2) $B'C' = 3BC$
3) $m\angle A' = 3(m\angle A)$
4) $3(m\angle C') = m\angle C$

294 In the diagram below, \overline{DC}, \overline{AC}, \overline{DOB}, \overline{CB}, and \overline{AB} are chords of circle O, FDE is tangent at point D, and radius \overline{AO} is drawn. Sam decides to apply this theorem to the diagram: “An angle inscribed in a semi-circle is a right angle.”

Which angle is Sam referring to?
1) $\angle AOB$
2) $\angle BAC$
3) $\angle DCB$
4) $\angle FDB$

295 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5.

Use transformations to explain why circles A and B are similar.

296 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?
1) 1
2) 2
3) 3
4) 4

297 Triangle FGH is inscribed in circle O, the length of radius OH is 6, and $FH \cong OG$.

What is the area of the sector formed by angle FOH?
1) 2π
2) $\frac{3}{2}\pi$
3) 6π
4) 24π

298 If $\triangle A'B'C'$ is the image of $\triangle ABC$, under which transformation will the triangles not be congruent?
1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin
299 Using the information given below, which set of triangles can *not* be proven similar?

![Triangles](image)

1) 2) 3) 4)

300 The equation of line h is $2x + y = 1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m?

1) $y = -2x + 1$
2) $y = -2x + 4$
3) $y = 2x + 4$
4) $y = 2x + 1$

301 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

302 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

303 In the diagram below, $\triangle ABC \sim \triangle DEC$.

![Diagram](image)

If $AC = 12$, $DC = 7$, $DE = 5$, and the perimeter of $\triangle ABC$ is 30, what is the perimeter of $\triangle DEC$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5
304 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?
1) 3.3
2) 3.5
3) 4.7
4) 13.3

305 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

306 Given \(\Delta ABC \cong \Delta DEF \), which statement is not always true?
1) \(BC \cong DF \)
2) \(m \angle A = m \angle D \)
3) area of \(\Delta ABC \) = area of \(\Delta DEF \)
4) perimeter of \(\Delta ABC \) = perimeter of \(\Delta DEF \)

307 In \(\triangle RST \) shown below, altitude \(SU \) is drawn to \(RT \) at \(U \).

If \(SU = h \), \(UT = 12 \), and \(RT = 42 \), which value of \(h \) will make \(\triangle RST \) a right triangle with \(\angle RST \) as a right angle?
1) \(6\sqrt{3} \)
2) \(6\sqrt{10} \)
3) \(6\sqrt{14} \)
4) \(6\sqrt{35} \)

308 In the diagram below, the circle shown has radius 10. Angle \(B \) intercepts an arc with a length of \(2\pi \).

What is the measure of angle \(B \), in radians?
1) \(10 + 2\pi \)
2) \(20\pi \)
3) \(\frac{\pi}{5} \)
4) \(\frac{5}{\pi} \)
309 In the diagram below, \(\overline{DB} \) and \(\overline{AF} \) intersect at point \(C \), and \(\overline{AD} \) and \(\overline{FBE} \) are drawn.

If \(AC = 6 \), \(DC = 4 \), \(FC = 15 \), \(\angle D = 65^\circ \), and \(\angle CBE = 115^\circ \), what is the length of \(CB \)?
1) 10
2) 12
3) 17
4) 22.5

310 The vertices of \(\triangle JKL \) have coordinates \(J(5,1) \), \(K(-2,-3) \), and \(L(-4,1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?
1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the \(x \)-axis
4) a dilation with a scale factor of 2 and centered at the origin

311 In right triangle \(ABC \) with the right angle at \(C \), \(\sin A = 2x + 0.1 \) and \(\cos B = 4x - 0.7 \). Determine and state the value of \(x \). Explain your answer.

312 Given: \(\triangle AEC \), \(\triangle DEF \), and \(\overline{FE} \perp \overline{CE} \)

What is a correct sequence of similarity transformations that shows \(\triangle AEC \sim \triangle DEF \)?
1) a rotation of 180 degrees about point \(E \) followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point \(E \) followed by a horizontal translation
3) a rotation of 180 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)
4) a counterclockwise rotation of 90 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)

313 The diagram below shows two similar triangles.

If \(\tan \theta = \frac{3}{7} \), what is the value of \(x \), to the nearest tenth?
1) 1.2
2) 5.6
3) 7.6
4) 8.8
314 In quadrilateral $BLUE$ shown below, $BE \cong UL$.

Which information would be sufficient to prove quadrilateral $BLUE$ is a parallelogram?

1) $BL \parallel EU$
2) $LU \parallel BE$
3) $BE \cong BL$
4) $LU \cong EU$

315 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

316 When instructed to find the length of HJ in right triangle HJG, Alex wrote the equation $\sin 28^\circ = \frac{HJ}{20}$ while Marlene wrote $\cos 62^\circ = \frac{HJ}{20}$. Are both students’ equations correct? Explain why.

317 The diagram below shows circle O with diameter AB. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]
318 In the diagram below, if $\triangle ABE \cong \triangle CDF$ and \overline{AEFC} is drawn, then it could be proven that quadrilateral $ABCD$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

319 The vertices of square $RSTV$ have coordinates $R(-1,5)$, $S(-3,1)$, $T(-7,3)$, and $V(-5,7)$. What is the perimeter of $RSTV$?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4\sqrt{20}$
4) $4\sqrt{40}$

320 The vertices of $\triangle PQR$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle PQR$ are distance and angle measure preserved?

1) $(x,y) \rightarrow (2x,3y)$
2) $(x,y) \rightarrow (x+2,3y)$
3) $(x,y) \rightarrow (2x,y+3)$
4) $(x,y) \rightarrow (x+2,y+3)$

321 After a counterclockwise rotation about point X, scalene triangle ABC maps onto $\triangle RST$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{CB} \cong \overline{TR}$
4) $\overline{CA} \cong \overline{TS}$

322 What is an equation of circle O shown in the graph below?

1) $x^2 + 10x + y^2 + 4y = -13$
2) $x^2 - 10x + y^2 - 4y = -13$
3) $x^2 + 10x + y^2 + 4y = -25$
4) $x^2 - 10x + y^2 - 4y = -25$
323 In a right triangle, \(\sin(40 - x)^\circ = \cos(3x)^\circ \). What is the value of \(x \)?
1) 10
2) 15
3) 20
4) 25

324 Given: Parallelogram \(ABCD \), \(BF \perp AFD \), and \(DE \perp BEC \).

Prove: \(BEDF \) is a rectangle

325 In the diagram of right triangle \(ADE \) below, \(BC \parallel DE \).

Which ratio is always equivalent to the sine of \(\angle A \)?
1) \(\frac{AD}{DE} \)
2) \(\frac{AE}{AD} \)
3) \(\frac{BC}{AB} \)
4) \(\frac{AB}{AC} \)

326 A parallelogram must be a rhombus if its diagonals
1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other

327 The line whose equation is \(3x - 5y = 4 \) is dilated by a scale factor of \(\frac{5}{3} \) centered at the origin. Which statement is correct?
1) The image of the line has the same slope as the pre-image but a different \(y \)-intercept.
2) The image of the line has the same \(y \)-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same \(y \)-intercept as the pre-image.
4) The image of the line has a different slope and a different \(y \)-intercept from the pre-image.

328 In the diagram below of circle \(O \), \(GO = 8 \) and \(m\angle GOJ = 60^\circ \).

What is the area, in terms of \(\pi \), of the shaded region?
1) \(\frac{4\pi}{3} \)
2) \(\frac{20\pi}{3} \)
3) \(\frac{32\pi}{3} \)
4) \(\frac{160\pi}{3} \)
Geometry Regents Exam Questions at Random
www.jmap.org

329 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) \(y + 2x = 0 \)
2) \(y - 2x = 0 \)
3) \(2y + x = 0 \)
4) \(2y - x = 0 \)

330 Under which transformation would \(\triangle A'B'C' \), the image of \(\triangle ABC \), not be congruent to \(\triangle ABC \)?
1) reflection over the \(y \)-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

331 The coordinates of the endpoints of \(\overline{AB} \) are \(A(-8, -2) \) and \(B(16, 6) \). Point \(P \) is on \(AB \). What are the coordinates of point \(P \), such that \(AP:PB \) is 3:5?
1) \((1, 1) \)
2) \((7, 3) \)
3) \((9.6, 3.6) \)
4) \((6.4, 2.8) \)

332 Quadrilateral \(ABCD \) is inscribed in circle \(O \), as shown below.

If \(m\angle A = 80^\circ \), \(m\angle B = 75^\circ \), \(m\angle C = (y + 30)^\circ \), and \(m\angle D = (x - 10)^\circ \), which statement is true?
1) \(x = 85 \) and \(y = 50 \)
2) \(x = 90 \) and \(y = 45 \)
3) \(x = 110 \) and \(y = 75 \)
4) \(x = 115 \) and \(y = 70 \)

333 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.
334 The equation of a circle is $x^2 + y^2 - 6x + 2y = 6$. What are the coordinates of the center and the length of the radius of the circle?
1) center $(-3, 1)$ and radius 4
2) center $(3, -1)$ and radius 4
3) center $(-3, 1)$ and radius 16
4) center $(3, -1)$ and radius 16

335 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

336 The line represented by the equation $4y = 3x + 7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?
1) $3x - 4y = 9$
2) $3x + 4y = 9$
3) $4x - 3y = 9$
4) $4x + 3y = 9$

337 The diagram below shows parallelogram $ABCD$ with diagonals AC and BD intersecting at E.

What additional information is sufficient to prove that parallelogram $ABCD$ is also a rhombus?
1) BD bisects AC.
2) AB is parallel to CD.
3) AC is congruent to BD.
4) AC is perpendicular to BD.

338 Given: RS and TV bisect each other at point X TR and SV are drawn

Prove: $TR \parallel SV$
339 Triangle ABC and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$, after a dilation of scale factor 2 centered at point D.

340 In circle A below, chord BC and diameter DAE intersect at F.

If $\angle CD = 46^\circ$ and $\angle DB = 102^\circ$, what is $\angle CFE$?

341 In the circle below, AB is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

342 Given $\triangle ABC$ with $\angle B = 62^\circ$ and side AC extended to D, as shown below.

Which value of x makes $\overline{AB} \cong \overline{CB}$?

1) 59º
2) 62º
3) 118º
4) 121º
343 In square $GEOM$, the coordinates of G are $(2, -2)$ and the coordinates of O are $(-4, 2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

344 Triangle $A'B'C'$ is the image of $\triangle ABC$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?

I. $\triangle ABC \cong \triangle A'B'C'$
II. $\triangle ABC \sim \triangle A'B'C'$
III. $AB \parallel A'B'$$
IV. AA' = BB'$
1) II, only
2) I and II
3) II and III
4) II, III, and IV

345 The vertices of quadrilateral $MATH$ have coordinates $M(-4, 2), A(-1, -3), T(9, 3),$ and $H(6, 8)$. Prove that quadrilateral $MATH$ is a parallelogram. Prove that quadrilateral $MATH$ is a rectangle. [The use of the set of axes below is optional.]

346 If $ABCD$ is a parallelogram, which statement would prove that $ABCD$ is a rhombus?

1) $\angle ABC \cong \angle CDA$
2) $AC \cong BD$
3) $AC \perp BD$
4) $AB \perp CD$

347 Parallelogram $ABCD$ has coordinates $A(0, 7)$ and $C(2, 1)$. Which statement would prove that $ABCD$ is a rhombus?

1) The midpoint of AC is $(1, 4)$.
2) The length of BD is $\sqrt{40}$.
3) The slope of BD is $\frac{1}{3}$.
4) The slope of AB is $\frac{1}{3}$.
348 Given: \(\triangle ABC, \triangle AEC, \triangle BDE \) with \(\angle ABE \cong \angle CBE \), and \(\angle ADE \cong \angle CDE \)
Prove: \(BDE \) is the perpendicular bisector of \(AC \)

Fill in the missing statement and reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\triangle ABC, \triangle AEC, \triangle BDE) with (\angle ABE \cong \angle CBE), and (\angle ADE \cong \angle CDE)</td>
<td>1 Given</td>
</tr>
<tr>
<td>2 (BD \cong BD)</td>
<td>2</td>
</tr>
<tr>
<td>3 (\angle BDA) and (\angle ADE) are supplementary. (\angle BDC) and (\angle CDE) are supplementary.</td>
<td>3 Linear pairs of angles are supplementary.</td>
</tr>
<tr>
<td>4</td>
<td>4 Supplements of congruent angles are congruent.</td>
</tr>
<tr>
<td>5 (\triangle ABD \cong \triangle CBD)</td>
<td>5 ASA</td>
</tr>
<tr>
<td>6 (AD \cong CD, AB \cong CB)</td>
<td>6</td>
</tr>
<tr>
<td>7 (BDE) is the perpendicular bisector of (AC).</td>
<td>7</td>
</tr>
</tbody>
</table>

349 As shown in the diagram below, \(ABC \parallel EFG \) and \(BF \cong EF \).

If \(m\angle CBF = 42.5^\circ \), then \(m\angle EBF \) is
1) 42.5°
2) 68.75°
3) 95°
4) 137.5°

350 In parallelogram \(ABCD \) shown below, the bisectors of \(\angle ABC \) and \(\angle DCB \) meet at \(E \), a point on \(AD \).

If \(m\angle A = 68^\circ \), determine and state \(m\angle BEC \).
351 In the diagram below, triangle ACD has points B and E on sides AC and AD, respectively, such that $BE \parallel CD$, $AB = 1$, $BC = 3.5$, and $AD = 18$.

What is the length of AE, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

352 Given square $RSTV$, where $RS = 9$ cm. If square $RSTV$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of $RSTV$ after the dilation?

1) 12
2) 27
3) 36
4) 108

353 In $\triangle ABC$ shown below, side AC is extended to point D with $m\angle DAB = (180 - 3x)^\circ$, $m\angle B = (6x - 40)^\circ$, and $m\angle C = (x + 20)^\circ$.

What is $m\angle BAC$?

1) 20°
2) 40°
3) 60°
4) 80°

354 If $\triangle ABC$ is mapped onto $\triangle DEF$ after a line reflection and $\triangle DEF$ is mapped onto $\triangle XYZ$ after a translation, the relationship between $\triangle ABC$ and $\triangle XYZ$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

355 In the diagram below, $AC = 7.2$ and $CE = 2.4$.

Which statement is not sufficient to prove $\triangle ABC \sim \triangle EDC$?

1) $AB \parallel ED$
2) $DE = 2.7$ and $AB = 8.1$
3) $CD = 3.6$ and $BC = 10.8$
4) $DE = 3.0$, $AB = 9.0$, $CD = 2.9$, and $BC = 8.7$

356 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]
357 Rectangle $A'B'C'D'$ is the image of rectangle $ABCD$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A'B'C'D'$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $ABCD$.
2) Rectangle $A'B'C'D'$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $ABCD$.
3) Rectangle $A'B'C'D'$ has an area that is $\frac{2}{3}$ the area of rectangle $ABCD$.
4) Rectangle $A'B'C'D'$ has an area that is $\frac{3}{2}$ the area of rectangle $ABCD$.

358 In the diagram of $\triangle ABC$ below, \overline{DE} is parallel to \overline{AB}, $CD = 15$, $AD = 9$, and $AB = 40$.

The length of \overline{DE} is

1) 15
2) 24
3) 25
4) 30

359 In quadrilateral $ABCD$, $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$, and \overline{BF} and \overline{DE} are perpendicular to diagonal \overline{AC} at points F and E.

Prove: $\overline{AE} \cong \overline{CF}$

360 The equation of a circle is $x^2 + y^2 - 12y + 20 = 0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0, 6)$ and radius 4
2) center $(0, -6)$ and radius 4
3) center $(0, 6)$ and radius 16
4) center $(0, -6)$ and radius 16

361 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

362 What is an equation of a line which passes through $(6, 9)$ and is perpendicular to the line whose equation is $4x - 6y = 15$?

1) $y - 9 = -\frac{3}{2}(x - 6)$
2) $y - 9 = \frac{2}{3}(x - 6)$
3) $y + 9 = -\frac{3}{2}(x + 6)$
4) $y + 9 = \frac{2}{3}(x + 6)$
363 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?
1) 60°
2) 108°
3) 216°
4) 540°

364 Quadrilateral $PQRS$ has vertices $P(-2,3)$, $Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $PQRS$ is a rhombus. Prove that $PQRS$ is not a square. [The use of the set of axes below is optional.]

365 Which figure always has exactly four lines of reflection that map the figure onto itself?
1) square
2) rectangle
3) regular octagon
4) equilateral triangle

366 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6-foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.
367 In the diagram shown below, PA is tangent to circle T at A, and secant PBC is drawn where point B is on circle T.

![Diagram of tangent and secant](image)

If $PB = 3$ and $BC = 15$, what is the length of PA?
1) $3\sqrt{5}$
2) $3\sqrt{6}$
3) 3
4) 9

368 In regular hexagon $ABCDEF$ shown below, AD, BE, and CF all intersect at G.

![Diagram of regular hexagon](image)

When $\triangle ABG$ is reflected over BG and then rotated 180° about point G, $\triangle ABG$ is mapped onto
1) $\triangle FEG$
2) $\triangle AFG$
3) $\triangle CBG$
4) $\triangle DEG$

369 In the diagram below, tangent DA and secant DBC are drawn to circle O from external point D, such that $AC \simeq BC$.

![Diagram of tangent and secant](image)

If $m\overset{\frown}{BC} = 152^\circ$, determine and state $m\angle D$.

370 Triangle ABC, with vertices at $A(0,0)$, $B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

![Diagram of triangle ABC](image)

Which figure is formed when $\triangle ABC$ is rotated continuously about BC?
371 In right triangle ABC shown below, altitude \overline{CD} is drawn to hypotenuse \overline{AB}. Explain why $\triangle ABC \sim \triangle ACD$.

372 The image of $\triangle DEF$ is $\triangle D'E'F'$. Under which transformation will the triangles not be congruent?
1) a reflection through the origin
2) a reflection over the line $y = x$
3) a dilation with a scale factor of 1 centered at (2,3)
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

373 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $0.29 per kilogram, and has a density of 7.95 g/cm³. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

374 Given: Right triangle ABC with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

375 The diagram shows rectangle $ABCD$, with diagonal BD.

What is the perimeter of rectangle $ABCD$, to the nearest tenth?
1) 28.4
2) 32.8
3) 48.0
4) 62.4
376 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is \(150\pi\). Which line could the rectangle be rotated around?
1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

377 The diagram below shows two figures. Figure \(A\) is a right triangular prism and figure \(B\) is an oblique triangular prism. The base of figure \(A\) has a height of 5 and a length of 8 and the height of prism \(A\) is 14. The base of figure \(B\) has a height of 8 and a length of 5 and the height of prism \(B\) is 14.

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

378 In the diagram of \(\triangle ABC\) below, points \(D\) and \(E\) are on sides \(AB\) and \(CB\) respectively, such that \(\overline{DE} \parallel \overline{AC}\).

If \(EB\) is 3 more than \(DB\), \(AB = 14\), and \(CB = 21\), what is the length of \(AD\)?
1) 6
2) 8
3) 9
4) 12

379 In right triangle \(ABC\), \(\angle C = 90^\circ\). If \(\cos B = \frac{5}{13}\), which function also equals \(\frac{5}{13}\)?
1) \(\tan A\)
2) \(\tan B\)
3) \(\sin A\)
4) \(\sin B\)

380 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?
1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width
381 Given: Parallelogram $ABCD$ with diagonal AC drawn

Prove: $\triangle ABC \cong \triangle CDA$

382 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a
1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

383 On the set of axes below, the vertices of $\triangle PQR$ have coordinates $P(-6,7)$, $Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle PQR$?
1) 10
2) 20
3) 25
4) 50

384 Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?
1) cone
2) sphere
3) cylinder
4) hemisphere

385 A fabricator is hired to make a 27-foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?
1) 151
2) 795
3) 1808
4) 2025
386 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?
1) 68.6
2) 80.9
3) 109.8
4) 244.4

387 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm.

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

388 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path FS is 400 feet. The angle formed by path TF and path FS is 72°. The angle formed by path TC and path CS is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

389 A circle whose center is the origin passes through the point (−5,12). Which point also lies on this circle?
1) (10,3)
2) (−12,13)
3) (11,2√12)
4) (−8,5√21)
390 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0, -1)$ and $T(4, 6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH.

391 In the diagram below, secants RST and RQP, drawn from point R, intersect circle O at $S, T, Q,$ and P.

If $RS = 6$, $ST = 4$, and $RP = 15$, what is the length of RQ?

392 Which rotation about its center will carry a regular decagon onto itself?
1) 54°
2) 162°
3) 198°
4) 252°

393 Line MN is dilated by a scale factor of 2 centered at the point $(0, 6)$. If MN is represented by

$$y = -3x + 6,$$

which equation can represent $M'N'$, the image of MN?
1) $y = -3x + 12$
2) $y = -3x + 6$
3) $y = -6x + 12$
4) $y = -6x + 6$

394 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [1 ft³=7.48 gallons]
395 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?
1) triangle
2) rectangle
3) pentagon
4) hexagon

396 Rhombus $STAR$ has vertices $S(-1,2)$, $T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus $STAR$?
1) $\sqrt{34}$
2) $4\sqrt{34}$
3) $\sqrt{10}$
4) $4\sqrt{10}$

397 In a circle with a diameter of 32, the area of a sector is $\frac{512\pi}{3}$. The measure of the angle of the sector, in radians, is
1) $\frac{\pi}{3}$
2) $\frac{4\pi}{3}$
3) $\frac{16\pi}{3}$
4) $\frac{64\pi}{3}$

398 In the diagram below, \overline{AC} has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on \overline{AC} and $AB:BC = 1:2$, what are the coordinates of B?
1) $(2,-2)$
2) $\left(\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

399 In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ}.

Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.
400 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [1 ft³ = 7.48 gallons]

401 In the diagram below, $\triangle ABC \cong \triangle DEF$.

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?
1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

402 In triangle ABC, points D and E are on sides \overline{AB} and \overline{BC}, respectively, such that $DE \parallel AC$, and $AD:DB = 3:5$.

If $DB = 6.3$ and $AC = 9.4$, what is the length of DE, to the nearest tenth?
1) 3.8
2) 5.6
3) 5.9
4) 15.7
403 The graph below shows two congruent triangles, ABC and $A'B'C'$. Which rigid motion would map $\triangle ABC$ onto $\triangle A'B'C'$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y = x$

404 In the diagram below of circle O, chord DF bisects chord BC at E.

If $BC = 12$ and FE is 5 more than DE, then FE is

1) 13
2) 9
3) 6
4) 4

405 Quadrilateral $MATH$ has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral $MATH$ is always true?

1) $MT \cong AH$
2) $MT \perp AH$
3) $\angle MHT \cong \angle ATH$
4) $\angle MAT \cong \angle MHT$

406 Triangle PQR has vertices $P(-3,-1)$, $Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of PQ and RQ, respectively. Use coordinate geometry to prove that AB is parallel to PR and is half the length of PR. [The use of the set of axes below is optional.]

407 In right triangle ABC, $\angle A = 32^\circ$, $\angle B = 90^\circ$, and $AC = 6.2 \text{ cm}$. What is the length of \overline{BC}, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7
408 In the diagram below, a sequence of rigid motions maps $ABCD$ onto $JKLM$.

If $m\angle A = 82^\circ$, $m\angle B = 104^\circ$, and $m\angle L = 121^\circ$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

409 The pyramid shown below has a square base, a height of 7, and a volume of 84.

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

410 Which set of statements would describe a parallelogram that can always be classified as a rhombus?

I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

411 In the diagram below, rectangle $ABCD$ has vertices whose coordinates are $A(7,1)$, $B(9,3)$, $C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y = x$
2) a reflection over the line $y = -x + 10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$
412 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

413 Isosceles trapezoid ABCD has bases DC and AB with nonparallel legs AD and BC. Segments AE, BE, CE, and DE are drawn in trapezoid ABCD such that \(\angle CDE \cong \angle DCE \), \(AE \perp DE \), and \(BE \perp CE \).

Prove \(\triangle ADE \cong \triangle BCE \) and prove \(\triangle AEB \) is an isosceles triangle.

414 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?
1) 17,869
2) 24,937
3) 39,074
4) 67,349

415 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm. The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is 2.7 g/cm³, and the cost of aluminum is $0.38 per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?
416 The diagram below shows circle O with radii OA and OB. The measure of angle AOB is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc AB, in inches?
1) $\frac{120}{360}(6\pi)$
2) $120(6)$
3) $\frac{1}{3}(36\pi)$
4) $\frac{1}{3}(12\pi)$

417 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R'J'M'$?
1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

418 Line segment RW has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on RW such that $RP:PW$ is 2:3. What are the coordinates of point P?
1) (2,9)
2) (0,11)
3) (2,14)
4) (10,2)

419 In the diagram of $\triangle RST$ below, $m\angle T = 90^\circ$, $RS = 65$, and $ST = 60$.

What is the measure of $\angle S$, to the nearest degree?
1) 23°
2) 43°
3) 47°
4) 67°

420 Line n is represented by the equation $3x + 4y = 20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point (4,2). [The use of the set of axes below is optional.] Explain your answer.
421 Triangle ABC and triangle ADE are graphed on the set of axes below.

Describe a transformation that maps triangle ABC onto triangle ADE. Explain why this transformation makes triangle ADE similar to triangle ABC.

422 In the diagram below of \(\triangle ABC \), \(D \), \(E \), and \(F \) are the midpoints of \(AB \), \(BC \), and \(CA \), respectively.

What is the ratio of the area of \(\triangle CFE \) to the area of \(\triangle CAB \)?
1) 1:1
2) 1:2
3) 1:3
4) 1:4

423 In the diagram below, \(\triangle ADE \) is the image of \(\triangle ABC \) after a reflection over the line \(AC \) followed by a dilation of scale factor \(\frac{AE}{AC} \) centered at point A.

Which statement must be true?
1) \(m \angle BAC \cong m \angle AED \)
2) \(m \angle ABC \cong m \angle ADE \)
3) \(m \angle DAE \cong \frac{1}{2} m \angle BAC \)
4) \(m \angle ACB \cong \frac{1}{2} m \angle DAB \)

424 In right triangle \(ABC \), hypotenuse \(AB \) has a length of 26 cm, and side \(BC \) has a length of 17.6 cm. What is the measure of angle \(B \), to the nearest degree?
1) 48°
2) 47°
3) 43°
4) 34°
425 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?
1) a reflection over the x-axis
2) a reflection over the line $x = 4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

426 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?
1) 180
2) 405
3) 540
4) 1215

427 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?
1) 1.2
2) 3.5
3) 4.7
4) 14.1

428 Triangle $A'B'C'$ is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle $A'B'C'$? Explain why.

429 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be
1) 10°
2) 150°
3) 225°
4) 252°

430 In a right triangle, the acute angles have the relationship $\sin(2x + 4) = \cos(46)$. What is the value of x?
1) 20
2) 21
3) 24
4) 25

431 Given $\triangle MRO$ shown below, with trapezoid $PTRO$, $MR = 9$, $MP = 2$, and $PO = 4$.

What is the length of TR?
1) 4.5
2) 5
3) 3
4) 6
432 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?
1) 35
2) 58
3) 82
4) 175

433 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle EDF$, and has already proven $\overline{AB} \cong \overline{DE}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle ABC \cong \triangle DEF$?
1) $\overline{AC} \cong \overline{DF}$ and SAS
2) $\overline{BC} \cong \overline{EF}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle CBA \cong \angle FED$ and ASA

434 Which equation represents a line that is perpendicular to the line represented by $y = \frac{2}{3}x + 1$?
1) $3x + 2y = 12$
2) $3x - 2y = 12$
3) $y = \frac{3}{2}x + 2$
4) $y = -\frac{2}{3}x + 4$

435 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $3.25 per cubic foot. How much money will it cost Ian to replace the two concrete sections?

436 Trapezoids $ABCD$ and $A'B'C'D'$ are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $ABCD$ onto trapezoid $A'B'C'D'$.
437 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

438 What is an equation of a line that is perpendicular to the line whose equation is \(2y = 3x - 10\) and passes through \((-6, 1)\)?

1) \(y = \frac{2}{3} x - 5\)
2) \(y = \frac{2}{3} x - 3\)
3) \(y = \frac{2}{3} x + 1\)
4) \(y = \frac{2}{3} x + 10\)

439 Given: Trapezoid \(JKLM\) with \(JK \parallel ML\)

Using a compass and straightedge, construct the altitude from vertex \(J\) to \(ML\). [Leave all construction marks.]

440 In the diagram below of circle \(O\), chord \(CD\) is parallel to diameter \(AOB\) and \(m\overline{CD} = 130\).

What is \(m\overline{AC}\)?
1) 25
2) 50
3) 65
4) 115

441 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm. What is the height, in centimeters, of the pyramid if its volume is 82.8 cm³?

1) 6
2) 2
3) 9
4) 18
Geometry Regents Exam Questions at Random
www.jmap.org

442 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3\frac{3}{4}$
2) 5
3) 15
4) $24\frac{3}{4}$

443 Identify which sequence of transformations could map pentagon $ABCDE$ onto pentagon $A'B'C'D'E'$, as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

444 In $\triangle ABC$, BD is the perpendicular bisector of ADC. Based upon this information, which statements below can be proven?

I. BD is a median.
II. BD bisects $\angle ABC$.
III. $\triangle ABC$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

445 In the diagram below, $AB \parallel DEF$, AE and BD intersect at C, $\angle B = 43^\circ$, and $\angle CEF = 152^\circ$.

Which statement is true?

1) $\angle D = 28^\circ$
2) $\angle A = 43^\circ$
3) $\angle ACD = 71^\circ$
4) $\angle BCE = 109^\circ$

446 In the diagram below of right triangle ABC, altitude BD is drawn to hypotenuse AC.

If $BD = 4$, $AD = x - 6$, and $CD = x$, what is the length of CD?

1) 5
2) 2
3) 8
4) 11
447 The 2010 U.S. Census populations and population densities are shown in the table below.

<table>
<thead>
<tr>
<th>State</th>
<th>Population Density (people/mi²)</th>
<th>Population in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>350.6</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Illinois</td>
<td>231.1</td>
<td>12,830,632</td>
</tr>
<tr>
<td>New York</td>
<td>411.2</td>
<td>19,378,102</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>283.9</td>
<td>12,702,379</td>
</tr>
</tbody>
</table>

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania

448 Triangle \(ABC\) has vertices at \(A(-5,2), B(-4,7),\) and \(C(-2,7),\) and triangle \(DEF\) has vertices at \(D(3,2), E(2,7),\) and \(F(0,7).\) Graph and label \(\triangle ABC\) and \(\triangle DEF\) on the set of axes below. Determine and state the single transformation where \(\triangle DEF\) is the image of \(\triangle ABC.\) Use your transformation to explain why \(\triangle ABC \cong \triangle DEF.\)

449 In the diagram below of parallelogram \(ROCK,\) \(m\angle C\) is 70° and \(m\angle ROS\) is 65°. What is \(m\angle KSO?\)

1) 45°
2) 110°
3) 115°
4) 135°

450 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately 180 in³. After being fully inflated, its volume is approximately 294 in³. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?
451 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).

452 In the diagram below, \(\overline{DE} \) divides \(\overline{AB} \) and \(\overline{AC} \) proportionally, \(m\angle C = 26^\circ \), \(m\angle A = 82^\circ \), and \(DF \) bisects \(\angle BDE \).

The measure of angle \(DFB \) is
1) \(36^\circ \)
2) \(54^\circ \)
3) \(72^\circ \)
4) \(82^\circ \)

453 In the diagram below, \(\angle GRS \cong \angle ART \), \(GR = 36 \), \(SR = 45 \), \(AR = 15 \), and \(RT = 18 \).

Which triangle similarity statement is correct?
1) \(\triangle GRS \sim \triangle ART \) by AA.
2) \(\triangle GRS \sim \triangle ART \) by SAS.
3) \(\triangle GRS \sim \triangle ART \) by SSS.
4) \(\triangle GRS \) is not similar to \(\triangle ART \).

454 Parallelogram \(HAND \) is drawn below with diagonals \(HN \) and \(AD \) intersecting at \(S \).

Which statement is always true?
1) \(AN = \frac{1}{2} AD \)
2) \(AS = \frac{1}{2} AD \)
3) \(\angle AHS \cong \angle ANS \)
4) \(\angle HDS \cong \angle NDS \)
455 Line segment CD is the altitude drawn to hypotenuse EF in right triangle ECF. If $EC = 10$ and $EF = 24$, then, to the nearest tenth, ED is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

456 In the diagram below, AF, and DB intersect at C, and AD and FBE are drawn such that $m\angle D = 65^\circ$, $m\angle CBE = 115^\circ$, $DC = 7.2$, $AC = 9.6$, and $FC = 21.6$.

What is the length of CB?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

457 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

458 Bob places an 18-foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

459 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $ABCDEF$. [Leave all construction marks.]

If chords FB and FC are drawn, which type of triangle, according to its angles, would $\triangle FBC$ be? Explain your answer.
460 In the diagram below, DE, DF, and EF are midsegments of $\triangle ABC$.

![Diagram of triangle with midsegments]

The perimeter of quadrilateral $ADEF$ is equivalent to
1) $AB + BC + AC$
2) $\frac{1}{2} AB + \frac{1}{2} AC$
3) $2AB + 2AC$
4) $AB + AC$

461 In circle M below, diameter AC, chords AB and BC, and radius MB are drawn.

![Diagram of circle with chords and radius]

Which statement is not true?
1) $\triangle ABC$ is a right triangle.
2) $\triangle ABM$ is isosceles.
3) $m\angle BC = m\angle BMC$
4) $m\angle AB = \frac{1}{2} m\angle ACB$

462 The equation of a circle is $x^2 + y^2 - 6y + 1 = 0$. What are the coordinates of the center and the length of the radius of this circle?
1) center $(0,3)$ and radius $= 2\sqrt{2}$
2) center $(0,-3)$ and radius $= 2\sqrt{2}$
3) center $(0,6)$ and radius $= \sqrt{35}$
4) center $(0,-6)$ and radius $= \sqrt{35}$

463 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?
1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

464 An equation of circle O is $x^2 + y^2 + 4x - 8y = -16$. The statement that best describes circle O is the
1) center is $(2,-4)$ and is tangent to the x-axis
2) center is $(2,-4)$ and is tangent to the y-axis
3) center is $(-2,4)$ and is tangent to the x-axis
4) center is $(-2,4)$ and is tangent to the y-axis

465 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^2 + y^2 - 6x = 56 - 8y$.

In the diagram below of triangle MNO, $\angle M$ and $\angle O$ are bisected by MS and OR, respectively. Segments MS and OR intersect at T, and $m\angle N = 40^\circ$.

If $m\angle TMR = 28^\circ$, the measure of angle OTS is

1) 40°
2) 50°
3) 60°
4) 70°

In the diagram below of circle O, chords \overline{AB} and \overline{CD} intersect at E.

If $m\overarc{AC} = 72^\circ$ and $m\angle AEC = 58^\circ$, how many degrees are in $m\angle DB$?

1) 108°
2) 65°
3) 44°
4) 14°

In the diagram below of $\triangle ABC$, $\angle ABC$ is a right angle, $AC = 12$, $AD = 8$, and altitude BD is drawn.

What is the length of BC?

1) $4\sqrt{2}$
2) $4\sqrt{3}$
3) $4\sqrt{5}$
4) $4\sqrt{6}$

A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96
470 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

471 On the graph below, point $A(3,4)$ and BC with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B' and C' after BC undergoes a dilation centered at point A with a scale factor of 2?
1) $B'(5,2)$ and $C'(1,-2)$
2) $B'(6,1)$ and $C'(0,-1)$
3) $B'(5,0)$ and $C'(1,-2)$
4) $B'(5,2)$ and $C'(3,0)$

472 Triangle ABC has vertices with coordinates $A(-1,-1), B(4,0),$ and $C(0,4)$. Prove that $\triangle ABC$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

473 In triangle SRK below, medians $\overline{SC}, \overline{KE},$ and \overline{RL} intersect at M.

Which statement must always be true?
1) $3(MC) = SC$
2) $MC = \frac{1}{3}(SM)$
3) $RM = 2MC$
4) $SM = KM$
474 Kirstie is testing values that would make triangle KLM a right triangle when LN is an altitude, and $KM = 16$, as shown below.

Which lengths would make triangle KLM a right triangle?
1) $LM = 13$ and $KN = 6$
2) $LM = 12$ and $NM = 9$
3) $KL = 11$ and $KN = 7$
4) $LN = 8$ and $NM = 10$

475 Which transformation would not carry a square onto itself?
1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

476 Triangle ABC and triangle DEF are drawn below.

If $AB \cong DE$, $AC \cong DF$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle ABC onto triangle DEF.

477 Yolanda is making a springboard to use for gymnastics. She has 8-inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, x?
1) 2.3
2) 8.3
3) 27.0
4) 28.2

478 In the diagram below of isosceles triangle ABC, $AB \cong CB$ and angle bisectors AD, BF, and CE are drawn and intersect at X.

If $m\angle BAC = 50^\circ$, find $m\angle AXC$.

479 In the two distinct acute triangles ABC and DEF, $\angle B \cong \angle E$. Triangles ABC and DEF are congruent when there is a sequence of rigid motions that maps
1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) AC onto DF, and BC onto EF
3) $\angle C$ onto $\angle F$, and BC onto EF
4) point A onto point D, and AB onto DE
480 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?
1) 15
2) 16
3) 18
4) 19

481 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?
1) 5.2
2) 6.5
3) 13.1
4) 26.2

483 In the diagram below, $m\overline{ABC} = 268°$.

What is the number of degrees in the measure of $\angle ABC$?
1) 134°
2) 92°
3) 68°
4) 46°

484 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm. Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.
485 In the diagram below, \overline{AKS}, \overline{NKC}, \overline{AN}, and \overline{SC} are drawn such that $\overline{AN} \cong \overline{SC}$.

Which additional statement is sufficient to prove $\triangle KAN \cong \triangle KSC$ by AAS?
1) AS and NC bisect each other.
2) K is the midpoint of NC.
3) $AS \perp CN$
4) $AN \parallel SC$

486 The coordinates of the endpoints of directed line segment ABC are $A(−8,7)$ and $C(7,−13)$. If $AB:BC = 3:2$, the coordinates of B are
1) $(1,−5)$
2) $(-2,−1)$
3) $(-3,0)$
4) $(3,−6)$

487 Point Q is on \overline{MN} such that $MQ:QN = 2:3$. If M has coordinates $(3,5)$ and N has coordinates $(8,−5)$, the coordinates of Q are
1) $(5,1)$
2) $(5,0)$
3) $(6,−1)$
4) $(6,0)$

488 In the diagram below of right triangle AED, $BC || DE$.

Which statement is always true?
1) $\frac{AC}{BC} = \frac{DE}{AE}$
2) $\frac{AB}{AD} = \frac{BC}{DE}$
3) $\frac{AC}{CE} = \frac{BC}{DE}$
4) $\frac{DE}{BC} = \frac{DB}{AB}$

489 Triangle QRS is graphed on the set of axes below.

On the same set of axes, graph and label $\triangle Q'R'S'$, the image of $\triangle QRS$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q'R' \parallel QR$.
490 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, \(HA, FG, \) and \(DE \), are congruent, and all three step runs, \(HG, FE, \) and \(DC \), are congruent. Each step rise is perpendicular to the step run it joins. The measure of \(\angle CAB = 36^\circ \) and \(\angle CBA = 90^\circ \).

If each step run is parallel to \(AB \) and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of \(AC \), to the nearest inch.

491 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, \(x \), of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

492 In the coordinate plane, the vertices of triangle \(PAT \) are \(P(-1,-6), A(-4,5), \) and \(T(5,-2) \). Prove that \(\triangle PAT \) is an isosceles triangle. State the coordinates of \(R \) so that quadrilateral \(PART \) is a parallelogram. Prove that quadrilateral \(PART \) is a parallelogram. [The use of the set of axes below is optional.]

493 In the diagram below, \(GI \) is parallel to \(NT \), and \(IN \) intersects \(GT \) at \(A \).

Prove: \(\triangle GIA \sim \triangle TNA \)
494 In the diagram below, \(AD\) intersects \(BE\) at \(C\), and \(AB \parallel DE\).

If \(CD = 6.6\) cm, \(DE = 3.4\) cm, \(CE = 4.2\) cm, and \(BC = 5.25\) cm, what is the length of \(AC\), to the nearest hundredth of a centimeter?
1) 2.70
2) 3.34
3) 5.28
4) 8.25

495 In the diagram below of \(\triangle PQR\), \(ST\) is drawn parallel to \(PR\), \(PS = 2\), \(SQ = 5\), and \(TR = 5\).

What is the length of \(QR\)?
1) 7
2) 2
3) \(12\frac{1}{2}\)
4) \(17\frac{1}{2}\)

496 The coordinates of the endpoints of \(AB\) are \(A(2,3)\) and \(B(5,-1)\). Determine the length of \(A'B'\), the image of \(AB\), after a dilation of \(\frac{1}{2}\) centered at the origin. [The use of the set of axes below is optional.]

497 Directed line segment \(DE\) has endpoints \(D(-4,-2)\) and \(E(1,8)\). Point \(F\) divides \(DE\) such that \(DF:FE\) is 2:3. What are the coordinates of \(F\)?
1) \((-3,0)\)
2) \((-2,2)\)
3) \((-1,4)\)
4) \((2,4)\)
498 Quadrilateral *MATH* and its image *M"A"T"H"* are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral *MATH* onto quadrilateral *M"A"T"H"*.

499 In the diagram below, right triangle *ABC* has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around *AB*?
1) 32π
2) 48π
3) 96π
4) 144π

500 Triangle *DAN* is graphed on the set of axes below. The vertices of Δ*DAN* have coordinates *D*(−6,−1), *A*(6,3), and *N*(−3,10).

What is the area of Δ*DAN*?
1) 60
2) 120
3) 20\sqrt{13}
4) 40\sqrt{13}

501 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches. Determine and state the volume of the basketball, to the nearest cubic inch.

502 What is an equation of the line that passes through the point (6,8) and is perpendicular to a line with equation *y* = \(\frac{3}{2}x + 5\)?
1) *y* − 8 = \(\frac{3}{2}(x − 6)\)
2) *y* − 8 = −\(\frac{2}{3}(x − 6)\)
3) *y* + 8 = \(\frac{3}{2}(x + 6)\)
4) *y* + 8 = −\(\frac{2}{3}(x + 6)\)
503 In the diagram below, XS and YR intersect at Z. Segments XY and RS are drawn perpendicular to YR to form triangles XYZ and SRZ.

Which statement is always true?
1) $(XY)(SR) = (XZ)(RZ)$
2) $\triangle XYZ \cong \triangle SRZ$
3) $XS \cong YR$
4) $\frac{XY}{SR} = \frac{YZ}{RZ}$

504 In the diagram below, line m is parallel to line n. Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?
1) a dilation
2) a rotation
3) a reflection
4) a translation

505 In the figure shown below, quadrilateral $TAEO$ is circumscribed around circle D. The midpoint of TA is R, and $HO \cong PE$.

If $AP = 10$ and $EO = 12$, what is the perimeter of quadrilateral $TAEO$?
1) 56
2) 64
3) 72
4) 76

506 A right cylinder is cut perpendicular to its base. The shape of the cross section is a
1) circle
2) cylinder
3) rectangle
4) triangular prism

507 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?
1) triangle
2) trapezoid
3) hexagon
4) rectangle
508 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm. The thickness of the chocolate of each sphere is 0.5 cm. Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is 1.308 g/cm³, determine and state, to the nearest gram, the total mass of the chocolate in the box.

509 In the diagram below, two concentric circles with center \(O \), and radii \(OC, OD, OGE \), and \(ODF \) are drawn.

If \(OC = 4 \) and \(OE = 6 \), which relationship between the length of arc \(EF \) and the length of arc \(CD \) is always true?

1) The length of arc \(EF \) is 2 units longer than the length of arc \(CD \).
2) The length of arc \(EF \) is 4 units longer than the length of arc \(CD \).
3) The length of arc \(EF \) is 1.5 times the length of arc \(CD \).
4) The length of arc \(EF \) is 2.0 times the length of arc \(CD \).

510 In the accompanying diagram of right triangle \(ABC \), altitude \(BD \) is drawn to hypotenuse \(AC \).

Which statement must always be true?

1) \(\frac{AD}{AB} = \frac{BC}{AC} \)
2) \(\frac{AD}{AB} = \frac{AB}{AC} \)
3) \(\frac{BD}{BC} = \frac{AB}{AD} \)
4) \(\frac{AB}{BC} = \frac{BD}{AC} \)

511 In the diagram below of circle \(O \), tangent \(\overrightarrow{EC} \) is drawn to diameter \(AC \). Chord \(BC \) is parallel to secant \(ADE \), and chord \(AB \) is drawn.

Prove: \(\frac{BC}{CA} = \frac{AB}{EC} \)
512 The graph below shows $\triangle ABC$ and its image, $\triangle A'B'C'$. Describe a sequence of rigid motions which would map $\triangle ABC$ onto $\triangle A'B'C'$.

513 In the diagram below, $AEFB \parallel CGD$, and GE and GF are drawn.

If $m \angle EFG = 32^\circ$ and $m \angle AEG = 137^\circ$, what is $m \angle EGF$?
1) 11°
2) 43°
3) 75°
4) 105°

514 In the graph below, $\triangle ABC$ has coordinates $A(-9,2)$, $B(-6,-6)$, and $C(-3,-2)$, and $\triangle RST$ has coordinates $R(-2,9)$, $S(5,6)$, and $T(2,3)$. Is $\triangle ABC$ congruent to $\triangle RST$? Use the properties of rigid motions to explain your reasoning.

515 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to $y = \frac{1}{2}x + 8$?
1) $y = \frac{1}{2}x$
2) $y = -2x - 3$
3) $y = \frac{1}{2}x + 3$
4) $y = -2x + 3$
516 Using a compass and straightedge, construct the median to side AC in $\triangle ABC$ below. [Leave all construction marks.]

517 In the diagram below, $AB \parallel DFC$, $EDA \parallel CBG$, and EFB and AG are drawn.

Which statement is always true?
1) $\triangle DEF \cong \triangle CBF$
2) $\triangle BAG \cong \triangle BAE$
3) $\triangle BAG \sim \triangle AEB$
4) $\triangle DEF \sim \triangle AEB$

518 In the diagram below of $\triangle HAR$ and $\triangle NTY$, angles H and N are right angles, and $\triangle HAR \sim \triangle NTY$.

If $AR = 13$ and $HR = 12$, what is the measure of angle Y, to the nearest degree?
1) 23°
2) 25°
3) 65°
4) 67°

519 Using a compass and straightedge, construct the line of reflection over which triangle RST reflects onto triangle $R'S'T'$. [Leave all construction marks.]
520 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

521 If $\sin(2x + 7)^\circ = \cos(4x - 7)^\circ$, what is the value of x?
1) 7
2) 15
3) 21
4) 30

522 In circle O, secants \overline{ADB} and \overline{AEC} are drawn from external point A such that points $D, B, E, and C$ are on circle O. If $AD = 8$, $AE = 6$, and EC is 12 more than BD, the length of BD is
1) 6
2) 22
3) 36
4) 48

523 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

524 In the diagram of rhombus $PQRS$ below, the diagonals \overline{PR} and \overline{QS} intersect at point T, $PR = 16$, and $QS = 30$. Determine and state the perimeter of $PQRS$.

525 Aliyah says that when the line $4x + 3y = 24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y = \frac{-4}{3}x + 16$. Is Aliyah correct? Explain why.

[The use of the set of axes below is optional.]
1. ANS:
\[
\tan 30 = \frac{y}{440} \quad \tan 38.8 = \frac{h}{440} \quad 353.8 - 254 \approx 100
\]
\[
y \approx 254 \quad h \approx 353.8
\]
PTS: 4 REF: 061934geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

2. ANS:
\[
\frac{72}{360} \pi \left(10^2\right) = 20\pi
\]
PTS: 2 REF: 061928geo NAT: G.C.B.5 TOP: Sectors

3. ANS: 3 PTS: 2 REF: 061924geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

4. ANS: 4
\[
-8 + \frac{2}{3} (10 - 8) = -8 + \frac{2}{3} (18) = -8 + 12 = 4 \quad 4 + \frac{2}{3} (-2 - 4) = 4 + \frac{2}{3} (-6) = 4 - 4 = 0
\]
PTS: 2 REF: 061919geo NAT: G.GPE.B.6 TOP: Directed Line Segments

5. ANS:
Quadrilateral \(ABCD\) with diagonal \(AC\), segments \(GH\) and \(EF\), \(AE \cong CG\), \(BE \cong DG\), \(AH \cong CF\), and \(AD \cong CB\) (given); \(HF \cong HF\), \(AC \cong AC\) (reflexive property); \(AH + HF \cong CF + HF\), \(AE + BE \cong CG + DG\) (segment addition); \(\triangle ABC \cong \triangle CDA\) (SSS); \(\angle EAF \cong \angle GCH\) (CPCTC); \(\triangle AEF \cong \triangle CGH\) (SAS); \(\overline{EF} \cong \overline{GH}\) (CPCTC).
PTS: 6 REF: 011935geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

6. ANS: 1 PTS: 2 REF: 081919geo NAT: G.SRT.C.7 TOP: Cofunctions

7. ANS: 1
\[
5x = 12 \cdot 7 \quad 16.8 + 7 = 23.8
\]
\[
5x = 84 \quad x = 16.8
\]
PTS: 2 REF: 061911geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

8. ANS:
\(\triangle ABE \cong \triangle CBD\) (given); \(\angle A \cong \angle C\) (CPCTC); \(\angle AFD \cong \angle CFE\) (vertical angles are congruent); \(\overline{AB} \cong \overline{CB}\), \(\overline{DB} \cong \overline{EB}\) (CPCTC); \(\overline{AD} \cong \overline{CE}\) (segment subtraction); \(\triangle AFD \cong \triangle CFE\) (AAS)
PTS: 4 REF: 081933geo NAT: G.SRT.B.5 TOP: Triangle Proofs

KEY: proof
9 ANS: 3
8 \cdot 15 = 16 \cdot 7.5

PTS: 2 REF: 061913geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, length

10 ANS: 34
\frac{124 - 56}{2} = 34

PTS: 2 REF: 081930geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

11 ANS: 4
(8 \times 2) + (3 \times 2) - \left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19

PTS: 2 REF: 081917geo NAT: G.MG.A.3 TOP: Compositions of Polygons and Circles
KEY: area

12 ANS: 2 PTS: 2
REF: 081909geo NAT: G.CO.A.5
TOP: Compositions of Transformations KEY: identify

13 ANS: 2
The slope of \(-3x + 4y = 8\) is \frac{3}{4}.

PTS: 2 REF: 061907geo NAT: G.SRT.A.1 TOP: Line Dilations

14 ANS: 1 PTS: 2
REF: 011918geo NAT: G.MG.A.3
TOP: Compositions of Polygons and Circles KEY: area

15 ANS: 3
M_x = \frac{-5 + (-1)}{2} = -\frac{6}{2} = -3 \quad M_y = \frac{5 + (-1)}{2} = \frac{4}{2} = 2

PTS: 2 REF: 081902geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

16 ANS: 2
90 - 57 = 33

PTS: 2 REF: 061909geo NAT: G.SRT.C.7 TOP: Cofunctions
KEY: pyramids

17 ANS: 2
V = \frac{1}{3} \cdot (8)^2 \cdot 6 = 128

PTS: 2 REF: 061906geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids

18 ANS: 4
\frac{18}{4.5} = 4

PTS: 2 REF: 011901geo NAT: G.SRT.A.1 TOP: Line Dilations
19 ANS: 1

\[(x - 1)^2 + (y - 4)^2 = \left(\frac{10}{2}\right)^2\]

\[x^2 - 2x + 1 + y^2 - 8y + 16 = 25\]

\[x^2 - 2x + y^2 - 8y = 8\]

PTS: 2 REF: 011920geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: write equation, given center and radius

20 ANS: 4

The line \(y = \frac{3}{2}x - 4\) does not pass through the center of dilation, so the dilated line will be distinct from \(y = \frac{3}{2}x - 4\). Since a dilation preserves parallelism, the line \(y = \frac{3}{2}x - 4\) and its image will be parallel, with slopes of \(\frac{3}{2}\). To obtain the \(y\)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{4}\), can be applied to the \(y\)-intercept, \((0, -4)\). Therefore, \(0 \cdot \frac{3}{4}, -4 \cdot \frac{3}{4}\) \(\rightarrow\) \((0, -3)\). So the equation of the dilated line is \(y = \frac{3}{2}x - 3\).

PTS: 2 REF: 011924geo NAT: G.SRT.A.1 TOP: Line Dilations

21 ANS:

![Diagram of geometric shapes]

PTS: 2 REF: 011929geo NAT: G.CO.D.12 TOP: Constructions
KEY: equilateral triangles

22 ANS:

\[\frac{121 - x}{2} = 35\]

\[121 - x = 70\]

\[x = 51\]

PTS: 2 REF: 011927geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
23 ANS:

![Diagram](image)

\[\text{ANS: } 20^\circ \]

24 ANS: 4 PTS: 2 REF: 081911geo NAT: G.GMD.B.4

TOP: Rotations of Two-Dimensional Objects

25 ANS:

30° \(\triangle CAD \) is an equilateral triangle, so \(\angle CAB = 60^\circ \). Since \(AD \) is an angle bisector, \(\angle CAD = 30^\circ \).

PTS: 2 REF: 081929geo NAT: G.CO.D.12 TOP: Constructions

KEY: equilateral triangles

26 ANS:

\[
\cos 68 = \frac{10}{x}
\]

\[x \approx 27 \]

PTS: 2 REF: 061927geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

27 ANS: 4 PTS: 2 REF: 011921geo NAT: G.GPE.B.4

TOP: Triangles in the Coordinate Plane

28 ANS: 4

\[
\left(\frac{360 - 120}{360} \right) \times \left(\frac{9^2}{2} \right) = 54\pi
\]

PTS: 2 REF: 081912geo NAT: G.C.B.5 TOP: Sectors

29 ANS:

Quadrilateral \(MATH, HM \cong AT, HT \cong AM, HE \perp MEA \), and \(HA \perp AT \) (given); \(\angle HEA \) and \(\angle TAH \) are right angles (perpendicular lines form right angles); \(\angle HEA \cong \angle TAH \) (all right angles are congruent); \(MATH \) is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); \(MA \parallel TH \) (opposite sides of a parallelogram are parallel); \(\angle TAH \cong \angle EAH \) (alternate interior angles of parallel lines and a transversal are congruent); \(\triangle HEA \sim \triangle TAH \) (AA); \(\frac{HA}{TH} = \frac{HE}{TA} \) (corresponding sides of similar triangles are in proportion); \(TA \cdot HA = HE \cdot TH \) (product of means equals product of extremes).

PTS: 6 REF: 061935geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

30 ANS: 3 PTS: 2 REF: 081913geo NAT: G.CO.C.11

TOP: Special Quadrilaterals
31 ANS: 1
\[
\frac{9}{6} = \frac{3}{2}
\]

PTS: 2 REF: 061905geo NAT: G.SRT.A.1 TOP: Line Dilations

32 ANS: 2 PTS: 2 REF: 011912geo NAT: G.CO.C.11
TOP: Parallelograms

33 ANS: 2
\[
8 \times 8 \times 9 + \frac{1}{3} (8 \times 8 \times 3) = 640
\]

PTS: 2 REF: 011909geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

34 ANS: 4
\[
sin x = \frac{10}{12}
\]
\[
x \approx 56
\]

PTS: 2 REF: 061922geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

35 ANS: 2 PTS: 2 REF: 061903geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects

36 ANS: 3
\[
2(2x + 8) = 7x - 2 \quad AB = 7(6) - 2 = 40. \quad Since \overline{EF} \text{ is a midsegment, } EF = \frac{40}{2} = 20. \quad Since \triangle ABC \text{ is equilateral,}
\]
\[
4x + 16 = 7x - 2
\]
\[
18 = 3x
\]
\[
6 = x
\]
\[
AE = BF = \frac{40}{2} = 20. \quad 40 + 20 + 20 + 20 = 100
\]

PTS: 2 REF: 061923geo NAT: G.CO.C.10 TOP: Midsegments

37 ANS: 3
\[
-9 + \frac{1}{3} (9 - 9) = -9 + \frac{1}{3} (18) = -9 + 6 = -3
\]
\[
8 + \frac{1}{3} (-4 - 8) = 8 + \frac{1}{3} (-12) = 8 - 4 = 4
\]

PTS: 2 REF: 081903geo NAT: G.GPE.B.6 TOP: Directed Line Segments

38 ANS: 4
\[
x^2 - 8x + y^2 + 6y = 39
\]
\[
x^2 - 8x + 16 + y^2 + 6y + 9 = 39 + 16 + 9
\]
\[
(x - 4)^2 + (y + 3)^2 = 64
\]

PTS: 2 REF: 081906geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

39 ANS: 1 PTS: 2 REF: 081904geo NAT: G.CO.C.10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
40 ANS: 3 PTS: 2 REF: 011903geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

41 ANS:

\[AB = \sqrt{(-5 - 1)^2 + (3 - 2)^2} = \sqrt{37}, \quad BC = \sqrt{(-5 - 6)^2 + (3 - 3)^2} = \sqrt{37} \] (because \(AB = BC \), \(\triangle ABC \) is isosceles). \(AD = \sqrt{(1 - 0)^2 + (2 - 4)^2} = \sqrt{37}, \quad CD = \sqrt{(-6 - 0)^2 + (-3 - 4)^2} = \sqrt{37}, \)

\[
m_{\overline{AB}} = \frac{3 - 2}{-5 - 1} = -\frac{1}{6}, \quad m_{\overline{CD}} = \frac{3 - 3}{-5 - 6} = 6 \] (\(ABCD \) is a square because all four sides are congruent, consecutive sides are perpendicular since slopes are opposite reciprocals and so \(\angle B \) is a right angle).

PTS: 6 REF: 081935geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

42 ANS:

\[R_{(-5,2),90^\circ} \circ T_{-3,1} \circ r_{x-axis} \]

PTS: 2 REF: 011928geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

43 ANS: 3

Broome: \(\frac{200536}{706.82} \approx 284 \) Dutchess: \(\frac{280150}{801.59} \approx 349 \) Niagara: \(\frac{219846}{522.95} \approx 420 \) Saratoga: \(\frac{200635}{811.84} \approx 247 \)

PTS: 2 REF: 061902geo NAT: G.MG.A.2 TOP: Density

44 ANS:

Yes, because a dilation preserves angle measure.

PTS: 4 REF: 081932geo NAT: G.CO.D.12 TOP: Constructions KEY: congruent and similar figures

45 ANS: 2

\[\frac{x}{360} (15)^2 \pi = 75\pi \]

\[x = 120 \]

PTS: 2 REF: 011914geo NAT: G.C.B.5 TOP: Sectors

46 ANS: 4

\[\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{15}{8} \]

PTS: 2 REF: 011917geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
47 ANS: 2

48 ANS:
\[\sin 4.76 = \frac{1.5}{x} \quad \tan 4.76 = \frac{1.5}{x} \quad 18 - \frac{16}{12} \approx 16.7 \]

\[x \approx 18.1 \quad x \approx 18 \]

PTS: 2 REF: 061931geo NAT: G.CO.D.13 TOP: Constructions

50 ANS:
No, because dilations do not preserve distance.

51 ANS:
\[\left(\frac{2.5}{3} \right) \left(\pi \left(\frac{8.25}{2} \right) \right)^2 \approx 134 \]

PTS: 2 REF: 081931geo NAT: G.GMD.A.3 TOP: Volume

52 ANS: 1

A dilation by a scale factor of 4 centered at the origin preserves parallelism and \((0,-2) \rightarrow (0,-8)\).

53 ANS: 3

TOP: Rotations of Two-Dimensional Objects
54 ANS: 2
\[ER = \sqrt{17^2 - 8^2} = 15 \]

PTS: 2 REF: 061917geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

55 ANS: 3 PTS: 2 REF: 061912geo NAT: G.CO.C.11
TOP: Parallelograms

56 ANS:
\[\left((10 \times 6) + \sqrt{7(7 - 6)(7 - 4)(7 - 4)} \right)(6.5) \approx 442 \]

PTS: 4 REF: 081934geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

57 ANS:
\[3y + 7 = 2x \quad y - 6 = \frac{2}{3}(x - 2) \]
\[3y = 2x - 7 \]
\[y = \frac{2}{3}x - \frac{7}{3} \]

PTS: 2 REF: 011925geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

58 ANS:
\[17x = 15^2 \]
\[17x = 225 \]
\[x \approx 13.2 \]

PTS: 2 REF: 061930geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

59 ANS: 2
\[\frac{x}{15} = \frac{5}{12} \]
\[x = 6.25 \]

PTS: 2 REF: 011906geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

60 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo NAT: G.CO.B.7 TOP: Triangle Congruency

61 ANS:
\[\angle D = 46^\circ \text{ because the angles of a triangle equal } 180^\circ. \quad \angle B = 46^\circ \text{ because opposite angles of a parallelogram are congruent.} \]

ANS:
No. The midpoint of DF is \(\left(\frac{1+4}{2}, \frac{-1+2}{2} \right) = (2.5,0.5) \). A median from point E must pass through the midpoint.

PTS: 2
REF: 011930geo
NAT: G.GPE.B.4
TOP: Triangles in the Coordinate Plane

ANS:
\[\sin^{-1} \left(\frac{5}{25} \right) \approx 11.5 \]

PTS: 2
REF: 081926geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

ANS: 4
PTS: 2
REF: 061901geo
NAT: G.CO.A.5
TOP: Compositions of Transformations
KEY: identify

ANS: 1
\[h = \sqrt{6.5^2 - 2.5^2} = 6, \ V = \frac{1}{3} \pi (2.5)^2 6 = 12.5\pi \]

PTS: 2
REF: 011923geo
NAT: G.GMD.A.3
TOP: Volume
KEY: cones

ANS: 1
\(\triangle ABC \sim \triangle RST \)

PTS: 2
REF: 011908geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: basic

ANS: 1
\[2 \times (90 \times 10) + (\pi)(30^2) - (\pi)(20^2) \approx 3371 \]

PTS: 2
REF: 011931geo
NAT: G.MG.A.3
TOP: Compositions of Polygons and Circles
KEY: area

ANS: 2
\[18^2 = 12(x + 12) \]
\[324 = 12(x + 12) \]
\[27 = x + 12 \]
\[x = 15 \]

PTS: 2
REF: 081920geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: leg

ANS: 4
\[x^2 + 8x + 16 + y^2 - 12y + 36 = 144 + 16 + 36 \]
\[(x+4)^2 + (y-6)^2 = 196 \]

PTS: 2
REF: 061920geo
NAT: G.GPE.A.1
TOP: Equations of Circles
KEY: completing the square
\[\angle N \text{ is the smallest angle in } \triangle NYA, \text{ so side } \overline{AY} \text{ is the shortest side of } \triangle NYA. \quad \angle VYA \text{ is the smallest angle in } \triangle VYA, \text{ so side } \overline{VA} \text{ is the shortest side of both triangles.} \]

\[m = \frac{-(−2)}{3} = \frac{2}{3} \]

\[10 = \frac{15}{12} \]

\[x = 8 \]

\[\sqrt{40^2 - \left(\frac{64}{2}\right)^2} = 24 \quad V = \frac{1}{3} (64)^2 \cdot 24 = 32768 \]

\[\sqrt{8^2 + 6^2} = 10 \text{ for one side} \]
\[
\tan 11.87 = \frac{x}{0.5(5280)}
\]

\[x \approx 555\]

PTS: 2
REF: 011913geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side

81 ANS: 2

PTS: 2
REF: 081907geo
NAT: G.CO.C.11
TOP: Interior and Exterior Angles of Polygons

82 ANS: 4
PTS: 2
REF: 061904geo
NAT: G.CO.A.3
TOP: Mapping a Polygon onto Itself

83 ANS: 1

\[
\frac{72 - 34}{2} = 19
\]

PTS: 2
REF: 061918geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
Triangle with vertices $A(-2,4)$, $B(6,2)$, and $C(1,-1)$ (given); $m_{\overrightarrow{AC}} = -\frac{5}{3}$, $m_{\overrightarrow{BC}} = \frac{3}{5}$, definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle ABC$ is a right triangle (if a triangle has a right angle, it is a right triangle); $\overrightarrow{AC} \cong \overrightarrow{BC} = \sqrt{34}$ (distance formula); $\triangle ABC$ is an isosceles triangle (an isosceles triangle has two congruent sides).

85 ANS: 1

$$V = \frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{1}{2} \times \frac{4}{3} \pi \cdot \left(\frac{12.6}{2} \right)^3 \approx 523.7$$

86 ANS: 3

$$12^2 = 9 \cdot GM \quad IM^2 = 16 \cdot 25$$

$$GM = 16 \quad IM = 20$$

87 ANS: 2

$$\frac{4}{3} \pi \times \left(\frac{1.68}{2} \right)^3 \times 0.6523 \approx 1.62$$

88 ANS: 1

$$m = \frac{-A}{B} = -\frac{3}{2} \quad m_\perp = \frac{2}{3}$$
89 ANS: 4

\[\frac{4}{x} = \frac{6}{9} \]
\[x = 6 \]

PTS: 2 REF: 061908geo NAT: G.SRT.B.5 TOP: Triangle Proofs
KEY: statements

90 ANS: 2

\[\tan 36^\circ = \frac{x}{8} \approx 5.8 + 1.5 \approx 7 \]
\[x \approx 5.8 \]

PTS: 2 REF: 061915geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

91 ANS: 4 PTS: 2 REF: 081923geo NAT: G.CO.A.3
TOP: Mapping a Polygon onto Itself

92 ANS: 2

\[\cos 65^\circ = \frac{x}{15} \]
\[x \approx 6.3 \]

PTS: 2 REF: 081915geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

93 ANS: 1

\[\cos 65^\circ = \frac{x}{15} \]
\[x \approx 6.3 \]

PTS: 2 REF: 081915geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

94 ANS:

\[\text{Theresa. } (30 \times 15 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{3.95}{100 \text{ g}} = \$465.35, \quad (\pi \times 12^2 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{200}{6000 \text{ g}} = \$394.79 \]

PTS: 4 REF: 011933geo NAT: G.GMD.A.3 TOP: Volume
KEY: cylinders

95 ANS:

\(r_{y=2} \circ r_{y\text{-axis}} \)

PTS: 2 REF: 081927geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify
96 ANS: 4
\[2x - 1 = 16\]
\[x = 8.5\]

KEY: graphics

97 ANS: 1
\[-1 + \frac{1}{3}(8 - 1) = -1 + \frac{1}{3}(9) = -1 + 3 = 2 - 3 + \frac{1}{3}(9 - 3) = -3 + \frac{1}{3}(12) = -3 + 4 = 1\]

PTS: 2 REF: 011915geo NAT: G.GPE.B.6 TOP: Directed Line Segments
KEY: cylinders

98 ANS:
\[V = \frac{2}{3} \pi \left(\frac{6.5}{2}\right)^2\]
\[\approx 22 \cdot 7.48 \approx 165\]

PTS: 4 REF: 061933geo NAT: G.GMD.A.3 TOP: Volume
KEY: grids

99 ANS:
\[m_{AD} = \frac{0 - 6}{1 - (-1)} = -3\]
\[AD \parallel BC\] because their slopes are equal. \(ABCD\) is a trapezoid

\[m_{BC} = \frac{-1 - 8}{6 - 3} = -3\]
because it has a pair of parallel sides. \(AC = \sqrt{(-1 - 6)^2 + (6 - 1)^2} = \sqrt{98}\) \(ABCD\) is not an isosceles trapezoid

\[BD = \sqrt{(8 - 0)^2 + (3 - 1)^2} = \sqrt{68}\]
because its diagonals are not congruent.

PTS: 4 REF: 061932geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
100 ANS:
\[
\frac{1}{2} (5)(10) = 25
\]

PTS: 2 REF: 061926geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

101 ANS:
\[R_{90^\circ} \text{ or } T_{2,-6} \circ R_{(-4,2),90^\circ} \text{ or } R_{270^\circ} \circ r_{\text{x-axis}} \circ r_{\text{y-axis}}\]

PTS: 2 REF: 061929geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify

103 ANS: 3 PTS: 2 REF: 011904geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself
Geometry Regents at Random

Answer Section

104 ANS: 3
\[V = 12 \cdot 8.5 \cdot 4 = 408 \]
\[W = 408 \cdot 0.25 = 102 \]

PTS: 2 REF: 061507geo NAT: G.MG.A.2 TOP: Density

105 ANS: 2
\[C = \pi d \]
\[V = \pi \left(\frac{2.25}{\pi} \right)^2 \cdot 8 \approx 12.8916 \]
\[W = 12.8916 \cdot 752 \approx 9694 \]

PTS: 2 REF: 081617geo NAT: G.MG.A.2 TOP: Density

106 ANS: 2
Translations preserve distance. If point \(D \) is mapped onto point \(A \), point \(F \) would map onto point \(C \).
\(\triangle DEF \cong \triangle ABC \) as \(AC \cong DF \) and points are collinear on line \(\ell \) and a reflection preserves distance.

PTS: 4 REF: 081534geo NAT: G.CO.B.7 TOP: Triangle Congruency

107 ANS: No, the weight of the bricks is greater than 900 kg. \(500 \times (5.1 \text{ cm} \times 10.2 \text{ cm} \times 20.3 \text{ cm}) = 528,003 \text{ cm}^3 \).
\[528,003 \text{ cm}^3 \times \frac{1 \text{ m}^3}{1000000 \text{ cm}^3} = 0.528003 \text{ m}^3 \]
\[\frac{1920 \text{ kg}}{\text{m}^3} \times 0.528003 \text{ m}^3 \approx 1013 \text{ kg} \]

PTS: 2 REF: fall1406geo NAT: G.MG.A.2 TOP: Density

108 ANS:
\[\frac{1}{2} (5)(12) = 30 \]

PTS: 2 REF: 081928geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane
109 ANS: \[
\frac{360}{6} = 60
\]

PTS: 2 REF: 081627geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

110 ANS: 3

111 ANS: Triangle \(\triangle XYZ \) is the image of \(\triangle XYZ \) after a rotation about point \(Z \) such that \(\overline{ZX} \) coincides with \(\overline{ZU} \). Since rotations preserve angle measure, \(\overline{ZY} \) coincides with \(\overline{ZV} \), and corresponding angles \(X \) and \(Y \), after the rotation, remain congruent, so \(\overline{XY} \parallel \overline{UV} \). Then, dilate \(\triangle XYZ \) by a scale factor of \(\frac{ZU}{ZX} \) with its center at point \(Z \). Since dilations preserve parallelism, \(\overline{XY} \) maps onto \(\overline{UV} \). Therefore, \(\triangle XYZ \sim \triangle UVZ \).

PTS: 2 REF: spr1406geo NAT: G.SRT.A.2 TOP: Compositions of Transformations

112 ANS: Yes.
\[
(x - 1)^2 + (y + 2)^2 = 4^2
\]
\[
(3.4 - 1)^2 + (1.2 + 2)^2 = 16
\]
\[
5.76 + 10.24 = 16
\]
\[
16 = 16
\]

PTS: 2 REF: 081630geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane

113 ANS: Parallelogram \(ABCD \), diagonals \(\overline{AC} \) and \(\overline{BD} \) intersect at \(E \) (given). \(\overline{DC} \parallel \overline{AB}; \overline{DA} \parallel \overline{CB} \) (opposite sides of a parallelogram are parallel). \(\angle ACD \equiv \angle CAB \) (alternate interior angles formed by parallel lines and a transversal are congruent).

114 ANS:

Similar triangles are required to model and solve a proportion.
\[\frac{x + 5}{1.5} = \frac{x}{1} \]
\[\frac{1}{3} \pi (1.5)^2 (15) - \frac{1}{3} \pi (1)^2 (10) \approx 24.9 \]
\[x + 5 = 1.5x \]
\[5 = .5x \]
\[10 = x \]
\[10 + 5 = 15 \]

PTS: 6 REF: 061636geo NAT: G.GMD.A.3 TOP: Volume
KEY: cones

115 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D.13 TOP: Constructions

116 ANS: 4

\[2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5 \]
\[230 \approx s \]

PTS: 2 REF: 081521geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids

KEY: graphics

118 ANS:

\[\tan x = \frac{10}{4} \]
\[x \approx 68 \]

PTS: 2 REF: 061630geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

119 ANS: 3

\[A = \frac{1}{2} ab \]
\[3 - 6 = -3 = x \]
\[24 = \frac{1}{2} a(8) \]
\[\frac{4 + 12}{2} = 8 = y \]
\[a = 6 \]

PTS: 2 REF: 081615geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane
\[\sqrt{45} = 3\sqrt{5} \quad a = \frac{1}{2} \left(3\sqrt{5} \right) \left(6\sqrt{5} \right) = \frac{1}{2} (18)(5) = 45 \]
\[\sqrt{180} = 6\sqrt{5} \]

120 ANS: 3

PTS: 2 REF: 061622geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

121 ANS: 1 PTS: 2 REF: 061508geo NAT: G.C.A.2
TOP: Chords, Secants and Tangents KEY: inscribed

122 ANS: 3 PTS: 2 REF: 061524geo NAT: G.CO.B.7
TOP: Triangle Congruency

123 ANS:

\[73 + R = 90 \quad \text{Equal cofunctions are complementary.} \]
\[R = 17 \]

PTS: 2 REF: 061628geo NAT: G.SRT.C.7 TOP: Cofunctions

124 ANS:

\[\frac{2}{5} \cdot (16 - 1) = 6 \quad \frac{2}{5} \cdot (14 - 4) = 4 \quad (1 + 6, 4 + 4) = (7, 8) \]

PTS: 2 REF: 081531geo NAT: G.GPE.B.6 TOP: Directed Line Segments

125 ANS: 1

\[\frac{360^\circ}{45^\circ} = 8 \]

PTS: 2 REF: 061510geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

126 ANS: 4

\[x = -6 + \frac{1}{6} (6 - -6) = -6 + 2 = -4 \quad y = -2 + \frac{1}{6} (7 - -2) = -2 + \frac{9}{6} = -\frac{1}{2} \]

PTS: 2 REF: 081618geo NAT: G.GPE.B.6 TOP: Directed Line Segments

127 ANS: 2 PTS: 2 REF: 011610geo NAT: G.SRT.A.1
TOP: Line Dilations

128 ANS:

\[\frac{40000}{\pi \left(\frac{51}{2} \right)^2} \approx 19.6 \quad \frac{72000}{\pi \left(\frac{75}{2} \right)^2} \approx 16.3 \quad \text{Dish A} \]

PTS: 2 REF: 011630geo NAT: G.MG.A.2 TOP: Density

130 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C.11 TOP: Parallelograms

131 ANS: 1
\[m_{RT} = \frac{5 - 3}{4 - 2} = \frac{4}{2} = 2 \quad m_{ST} = \frac{5 - 8}{4 - 2} = \frac{-3}{2} = -1.5 \]
Slopes are opposite reciprocals, so lines form a right angle.

PTS: 2 REF: 011618geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

132 ANS: 4
\[\sqrt{(32 - 8)^2 + (28 - 4)^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40 \]

PTS: 2 REF: 081621geo NAT: G.SRT.A.1 TOP: Line Dilations

133 ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C.10 TOP: Triangle Proofs

134 ANS:
Parallelogram \(ABCD, BE \perp CED, DF \perp BFC, CE \equiv CF\) (given). \(\angle BEC \equiv \angle DFC\) (perpendicular lines form right angles, which are congruent). \(\angle FCD \equiv \angle BCE\) (reflexive property). \(\triangle BEC \equiv \triangle DFC\) (ASA). \(\overline{BC} \equiv \overline{CD}\) (CPCTC). \(ABCD\) is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

136 ANS: 4 PTS: 2 REF: 061512geo NAT: G.SRT.C.7 TOP: Cofunctions

137 ANS: 3
\[\frac{60}{360} \cdot 8^2 \pi = \frac{1}{6} \cdot 64 \pi = \frac{32 \pi}{3} \]

PTS: 2 REF: 061624geo NAT: G.C.B.5 TOP: Sectors

138 ANS: 1
\[180 - (68 \cdot 2) \]

PTS: 2 REF: 081624geo NAT: G.CO.C.11 TOP: Interior and Exterior Angles of Polygons
139 ANS:
\[\frac{6}{14} = \frac{9}{21} \text{ SAS} \]

126 = 126

PTS: 2 REF: 081529geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

140 ANS:
\[\ell: y = 3x - 4 \]
\[m: y = 3x - 8 \]

PTS: 2 REF: 011631geo NAT: G.SRT.A.1 TOP: Line Dilations

141 ANS: 3

142 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

143 ANS: 4 PTS: 2 REF: 081506geo NAT: G.SRT.A.2 TOP: Dilations

144 ANS: 3
\[\frac{9}{5} = \frac{9.2}{x} \]
\[5.1 + 9.2 = 14.3 \]

\[9x = 46 \]
\[x \approx 5.1 \]

PTS: 2 REF: 061511geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem
Since the slopes of \overline{TS} and \overline{SR} are opposite reciprocals, they are perpendicular and form a right angle. $\triangle RST$ is a right triangle because $\angle S$ is a right angle. $P(0,9)$

$m_{RT} = -\frac{10}{6} = -\frac{5}{3}$

$m_{PT} = \frac{3}{5}$

Since the slopes of all four adjacent sides (\overline{TS} and \overline{SR}, \overline{SR} and \overline{RP}, \overline{PT} and \overline{TS}, \overline{RP} and \overline{PT}) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $RSTP$ is a rectangle because it has four right angles.

$m = \left(\frac{-11 + 5}{2}, \frac{5 + -7}{2}\right) = (-3, -1)$

$m = \frac{5 - -7}{-11 - 5} = \frac{12}{-16} = -\frac{3}{4}$

$m_{\perp} = -\frac{1}{2}$
151 ANS: 1
\[m = -\frac{2}{3} \quad 1 = \left(-\frac{2}{3} \right) 6 + b \]
\[1 = -4 + b \]
\[5 = b \]

PTS: 2 REF: 081510geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

152 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C.10 TOP: Interior and Exterior Angles of Triangles

153 ANS:
\[\tan x = \frac{12}{75} \quad \tan y = \frac{72}{75} \quad 43.83 - 9.09 \approx 34.7 \]
\[x \approx 9.09 \quad y \approx 43.83 \]

PTS: 4 REF: 081634geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

154 ANS: 1
\[\frac{6}{8} = \frac{9}{12} \]

PTS: 2 REF: 011613geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

155 ANS: 1 PTS: 2 REF: 081605geo NAT: G.CO.A.5
TOP: Rotations KEY: grids

156 ANS:
Since linear angles are supplementary, \(m\angle GIH = 65^\circ \). Since \(\overline{GH} \cong \overline{HI} \), \(m\angle GHI = 50^\circ \) \((180 - (65 + 65))\). Since \(\angle EGB \cong \angle GHI \), the corresponding angles formed by the transversal and lines are congruent and \(AB \parallel CD \).

PTS: 4 REF: 061532geo NAT: G.CO.C.9 TOP: Lines and Angles

157 ANS: 4 PTS: 2 REF: 081514geo NAT: G.SRT.A.2
TOP: Compositions of Transformations KEY: grids

158 ANS: 1 PTS: 2 REF: 081603geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects
\[
\frac{1.65}{4.15} = \frac{x}{16.6}
\]

\[4.15x = 27.39\]

\[x = 6.6\]

PTS: 2 REF: 061531geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

160 ANS:

\[\triangle ABC \cong \triangle DEF\]

PTS: 4 REF: 011634geo NAT: G.CO.D.12 TOP: Constructions
KEY: congruent and similar figures

161 ANS: 4

\[\sin 70 = \frac{x}{20}\]

\[x \approx 18.8\]

PTS: 2 REF: 061611geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: without graphics

162 ANS:

\[4 + \frac{4}{9}(22 - 4) = 2 + \frac{4}{9}(2 - 2) = 12, 2\]

\[4 + \frac{4}{9}(18) = 2 + \frac{4}{9}(0)\]

\[4 + 8 = 2 + 0\]

\[12 = 2\]

PTS: 2 REF: 061626geo NAT: G.GPE.B.6 TOP: Directed Line Segments
The line \(3y = -2x + 8\) does not pass through the center of dilation, so the dilated line will be distinct from \(3y = -2x + 8\). Since a dilation preserves parallelism, the line \(3y = -2x + 8\) and its image \(2x + 3y = 5\) are parallel, with slopes of \(\frac{2}{3}\).

Alternate interior angles

\[
\frac{16}{9} = \frac{x}{20.6} \quad D = \sqrt{36.6^2 + 20.6^2} \approx 42
\]

\[x \approx 36.6\]
170 ANS:
\[\tan 47 = \frac{x}{8.5}\]
Cone: \(V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6\)
Cylinder: \(V = \pi (8.5)^2 (25) \approx 5674.5\)
Hemisphere:
\[x \approx 9.115\]
\[V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3 \right) \approx 1286.3\]
\(689.6 + 5674.5 + 1286.3 \approx 7650\)
No, because \(7650 \cdot 62.4 = 477,360\)
\(477,360 \cdot .85 = 405,756\), which is greater than 400,000.

171 ANS:
\[r = 25 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 0.25 \text{ m}\]
\(V = \pi (0.25 \text{ m})^2 (10 \text{ m}) = 0.625 \pi \text{ m}^3\)
\(W = 0.625 \pi \text{ m} \left(\frac{380 \text{ K}}{1 \text{ m}^3} \right) \approx 746.1 \text{ K}\)
\[n = \frac{$50,000}{($4.75 \text{ K})} = 14.1\]
15 trees

PTS: 4 REF: spr1412geo NAT: G.MG.A.2 TOP: Density

172 ANS: 1
\[\frac{1}{2} \left(\frac{4}{3} \pi \cdot 5^3 \cdot 62.4 \approx 16,336\right)\]

PTS: 2 REF: 061620geo NAT: G.MG.A.2 TOP: Density

173 ANS: 3
\[\tan 34 = \frac{T}{20}\]
\(T \approx 13.5\)

PTS: 2 REF: 061505geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: graphics

174 ANS: 2
\(x\) is \(\frac{1}{2}\) the circumference. \(\frac{C}{2} = \frac{10 \pi}{2} \approx 16\)

PTS: 2 REF: 061523geo NAT: G.GMD.A.1 TOP: Circumference

175 ANS:
\[x = \sqrt{.55^2 -.25^2} \approx 0.49\]
No, \(.49^2 = .25 \cdot .9604 + .25 < 1.5\)
\(.9604 = y\)

PTS: 4 REF: 061534geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

176 ANS: 3 PTS: 2 REF: 061616geo NAT: G.CO.A.2 TOP: Identifying Transformations
KEY: graphics
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

The length of $A'C'$ is twice AC.

x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05.

$x \approx 1051.3 \quad y \approx 77.4$

$V = \pi \left(\frac{6.7}{2} \right)^2 (4 \cdot 6.7) \approx 945$
185 ANS: 1
\[
\frac{1000}{20\pi} \approx 15.9
\]

PTS: 2 REF: 011623geo NAT: G.GMD.A.1 TOP: Circumference

186 ANS:
\[
V = \frac{1}{3} \pi \left(\frac{3}{2} \right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \quad 1885 \cdot 0.52 \cdot 0.10 = 98.02 \quad 1.95(100) - (37.83 + 98.02) = 59.15
\]

PTS: 6 REF: 081536geo NAT: G.MG.A.2 TOP: Density

187 ANS: 4 PTS: 2 REF: 011609geo NAT: G.SRT.C.7 TOP: Cofunctions

188 ANS: 3
\[
\frac{AB}{BC} = \frac{DE}{EF}
\]
\[
\frac{9}{15} = \frac{6}{10}
\]
\[
90 = 90
\]

PTS: 2 REF: 061515geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

189 ANS: 1
The other statements are true only if \(\overrightarrow{AD} \perp \overrightarrow{BC}\).

PTS: 2 REF: 081623geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents KEY: inscribed

190 ANS:
\[
\frac{\pi \cdot 11.25^2 \cdot 33.5}{231} \approx 57.7
\]

191 ANS:
\[
\sin 70 = \frac{30}{L}
\]
\[
L \approx 32
\]

PTS: 2 REF: 011629geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side KEY: graphics
ANS:
\[180 - 2(30) = 120 \]

PTS: 2 REF: 011626geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: parallel lines

ANS: 2 PTS: 2 REF: 081519geo NAT: G.SRT.B.5
TOP: Similarity KEY: basic

ANS: 2
\[
\frac{12}{4} = \frac{36}{x} \\
12x = 144 \\
x = 12
\]

PTS: 2 REF: 061621geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

ANS:
\[\triangle DEF \cong \triangle A'B'C' \] because \(\triangle DEF \) is a reflection of \(\triangle A'B'C' \) and reflections preserve distance.

PTS: 4 REF: 081633geo NAT: G.CO.A.5 TOP: Rotations
KEY: grids

ANS:

PTS: 2 REF: 011625geo NAT: G.CO.A.5 TOP: Reflections
KEY: grids
ANS:
Circle O, secant \overline{ACD}, tangent \overline{AB} (Given). Chords \overline{BC} and \overline{BD} are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overline{BC} \cong \overline{BC}$ (Reflexive property). $m\angle BDC = \frac{1}{2} m\widehat{BC}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $m\angle CBA = \frac{1}{2} m\widehat{BC}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle BDC \cong \angle CBA$ (Angles equal to half of the same arc are congruent).

$\triangle ABC \sim \triangle ADB$ (AA). $\frac{AB}{AC} = \frac{AD}{AB}$ (Corresponding sides of similar triangles are proportional). $AC \cdot AD = AB^2$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6
REF: spr1413geo
NAT: G.SRT.B.5
TOP: Circle Proofs

198 ANS: 1

Since the midpoint of \overline{AB} is $(3, -2)$, the center must be either $(5, -2)$ or $(1, -2)$.

$$r = \sqrt{2^2 + 5^2} = \sqrt{29}$$

PTS: 2
REF: 061623geo
NAT: G.GPE.A.1
TOP: Equations of Circles
KEY: other

199 ANS:

ΔXYZ, $\overline{XY} \cong \overline{ZY}$, and \overline{YW} bisects $\angle XYZ$ (Given). ΔXYZ is isosceles (Definition of isosceles triangle). \overline{YW} is an altitude of ΔXYZ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{YW} \perp \overline{XZ}$ (Definition of altitude). $\angle YWZ$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo
NAT: G.CO.C.10
TOP: Triangle Proofs
200 ANS:

\[x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9 \]
\[(x + 2)^2 + (y - 3)^2 = 25 \]

PTS: 2 REF: 081626geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: grids

201 ANS: 3

\[x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9 \]
\[(x + 2)^2 + (y - 3)^2 = 25 \]

PTS: 2 REF: 081509geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

202 ANS:

\[\frac{3.75}{5} = \frac{4.5}{6} \]
\[AB \text{ is parallel to } CD \text{ because } AB \text{ divides the sides proportionately.} \]
\[39.375 = 39.375 \]

PTS: 2 REF: 061627geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

203 ANS: 4 PTS: 2 REF: 061606geo NAT: G.GMD.A.3

TOP: Volume KEY: compositions

204 ANS: 2

The line \(y = 2x - 4 \) does not pass through the center of dilation, so the dilated line will be distinct from \(y = 2x - 4 \). Since a dilation preserves parallelism, the line \(y = 2x - 4 \) and its image will be parallel, with slopes of 2. To obtain the \(y \)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{2} \), can be applied to the \(y \)-intercept, \((0, -4) \). Therefore, \(\left(0 \cdot \frac{3}{2}, -4 \cdot \frac{3}{2} \right) \rightarrow (0, -6) \). So the equation of the dilated line is \(y = 2x - 6 \).

PTS: 2 REF: fall1403geo NAT: G.SRT.A.1 TOP: Line Dilations

205 ANS:

(2) Euclid’s Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

206 ANS:
\[
\tan 3.47 = \frac{M}{6336} \quad \tan 0.64 = \frac{A}{20,493}
\]
\[
M \approx 384 \\
4960 + 384 = 5344 \\
A \approx 229 \\
5344 - 229 = 5115
\]

PTS: 6
REF: fall1413geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side
KEY: advanced

207 ANS: 4
\[
x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 9 + 4
\]
\[
(x + 3)^2 + (y - 2)^2 = 36
\]

PTS: 2
REF: 011617geo
NAT: G.GPE.A.1
TOP: Equations of Circles
KEY: completing the square

208 ANS: 4
PTS: 2
REF: 011905geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents
KEY: inscribed

209 ANS: 3
PTS: 2
REF: 081515geo
NAT: G.C.A.3
TOP: Inscribed Quadrilaterals

210 ANS:
\[
\frac{120}{230} = \frac{x}{315}
\]
\[
x = 164
\]

PTS: 2
REF: 081527geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: basic

211 ANS:
\[
x = \frac{2}{3} (4 - 2) = 4 - 2 + 4 = 2 \quad J(2,5)
\]
\[
y = \frac{2}{3} (7 - 1) = 4 \quad 1 + 4 = 5
\]

PTS: 2
REF: 011627geo
NAT: G.GPE.B.6
TOP: Directed Line Segments
The line $y = 3x - 1$ passes through the center of dilation, so the dilated line is not distinct.

As the sum of the measures of the angles of a triangle is 180°, $m\angle ABC + m\angle BCA + m\angle CAB = 180^\circ$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $m\angle ABC + m\angle FBC = 180^\circ$, $m\angle BCA + m\angle DCA = 180^\circ$, and $m\angle CAB + m\angle EAB = 180^\circ$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

$M = 180 - (47 + 57) = 76$ Rotations do not change angle measurements.

$180 - (118 + 22) = 40$.

$\tan 7 = \frac{125}{x}$, $\tan 16 = \frac{125}{y}$, $1018 - 436 \approx 582$

$x \approx 1018$, $y \approx 436$

Circle O, chords \overline{AB} and \overline{CD} intersect at E (Given); Chords \overline{CB} and \overline{AD} are drawn (auxiliary lines drawn); $\angle CEB \cong \angle AED$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent); $\triangle BCE \sim \triangle DAE$ (AA); $\frac{AE}{CE} = \frac{ED}{EB}$ (Corresponding sides of similar triangles are proportional); $AE \cdot EB = CE \cdot ED$ (The product of the means equals the product of the extremes).
221 ANS:
\[A = 6^2 \pi = 36\pi \quad 36\pi \cdot \frac{x}{360} = 12\pi \]
\[x = 360 \cdot \frac{12}{36} \]
\[x = 120 \]

PTS: 2 REF: 061529geo NAT: G.C.B.5 TOP: Sectors

222 ANS: 3
\[\cos A = \frac{9}{14} \]
\[A \approx 50^\circ \]

PTS: 2 REF: 011616geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

223 ANS: 2
\[x^2 + y^2 + 6y + 9 = 7 + 9 \]
\[x^2 + (y+3)^2 = 16 \]

PTS: 2 REF: 061514geo NAT: G.GPE.A.1 TOP: Equations of Circles

KEY: completing the square

224 ANS:
\[T_{0,0} \circ r_{x-axis} \]

PTS: 2 REF: 061625geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify

225 ANS:
\[LA \cong DN, \quad CA \cong CN, \quad \text{and} \quad DAC \perp LCN \] (Given). \(\angle LCA \) and \(\angle DCN \) are right angles (Definition of perpendicular lines). \(\triangle LAC \) and \(\triangle DNC \) are right triangles (Definition of a right triangle). \(\triangle LAC \cong \triangle DNC \) (HL).
\(\triangle LAC \) will map onto \(\triangle DNC \) after rotating \(\triangle LAC \) counterclockwise 90\(^\circ\) about point \(C \) such that point \(L \) maps onto point \(D \).

PTS: 4 REF: spr1408geo NAT: G.CO.B.8 TOP: Triangle Congruency

226 ANS: 3
\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2 REF: 081608geo NAT: G.SRT.C.8 TOP: 30-60-90 Triangles

227 ANS: 1
\[m_{\text{LA}} = -1 \quad y = mx + b \]
\[m_{\text{EM}} = 1 \quad l = 1(2) + b \]
\[-1 = b \]

PTS: 2 REF: 081614geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane

KEY: general
228 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C.9 TOP: Lines and Angles

229 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B.7 TOP: Triangle Congruency

230 ANS:

PTS: 2 REF: 061631geo NAT: G.CO.D.12 TOP: Constructions

231 ANS:
\[
\frac{137.8}{6^3} \approx 0.638 \text{ Ash}
\]

PTS: 2 REF: 081525geo NAT: G.MG.A.2 TOP: Density

232 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C.9 TOP: Lines and Angles

233 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C.7 TOP: Cofunctions

234 ANS: 2
\[s^2 + s^2 = 7^2 \]
\[2s^2 = 49 \]
\[s^2 = 24.5 \]
\[s \approx 4.9 \]

PTS: 2 REF: 081511geo NAT: G.C.A.3 TOP: Inscribed Quadrilaterals
235 ANS:

\[\frac{x}{360} \cdot 3^2 \pi = 2\pi \quad 180 - 80 = 100 \]
\[x = 80 \quad \frac{180 - 100}{2} = 40 \]

PTS: 2 REF: 081628geo NAT: G.CO.D.12 TOP: Constructions
KEY: line bisector

236 ANS: 2 PTS: 2 REF: 061610geo NAT: G.C.A.2
TOP: Chords, Secants and Tangents KEY: inscribed

237 ANS: 3

\[x = 80 \quad 180 - 100 \quad \frac{2}{2} = 40 \]

PTS: 2 REF: 011612geo NAT: G.C.B.5 TOP: Sectors

238 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A.2
TOP: Analytical Representations of Transformations KEY: basic

239 ANS: 4 PTS: 2 REF: 061615geo NAT: G.SRT.C.6
TOP: Trigonometric Ratios

240 ANS: 1
1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

241 ANS: A dilation of \(\frac{5}{2} \) about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo NAT: G.SRT.A.3 TOP: Similarity Proofs

242 ANS: \(\frac{3}{8} \cdot 56 = 21 \)

PTS: 2 REF: 081625geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: common tangents
\[\frac{x}{10} = \frac{6}{4} \quad CD = 15 - 4 = 11 \]
\[x = 15 \]

PTS: 2 REF: 081612geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

244 ANS: 4 PTS: 2 REF: 061501geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects

245 ANS: 3
\[r = \sqrt{(7 - 3)^2 + (1 - -2)^2} = \sqrt{16 + 9} = 5 \]

PTS: 2 REF: 061503geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane

246 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A.1 TOP: Volume

247 ANS:
\[\sin x = \frac{4.5}{11.75} \]
\[x \approx 23 \]

PTS: 2 REF: 061528geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

248 ANS: 1 PTS: 2 REF: 081504geo NAT: G.SRT.C.7 TOP: Cofunctions

249 ANS: 3
\[\frac{12}{4} = \frac{x}{5} \quad 15 - 4 = 11 \]
\[x = 15 \]

PTS: 2 REF: 011624geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

250 ANS: 1
The man’s height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation.
\[\tan x = \frac{69}{102} \]
\[x \approx 34.1 \]

PTS: 2 REF: fall1401geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
251 \text{ANS: 4} \\
\frac{2}{6} = \frac{5}{15} \\
\text{PTS: 2} \quad \text{REF: 081517geo} \quad \text{NAT: G.SRT.B.5} \quad \text{TOP: Side Splitter Theorem}

252 \text{ANS: 4} \\
-5 + \frac{3}{5}(5 - 5) - 4 + \frac{3}{5}(1 - 4) \\
-5 + \frac{3}{5}(10) - 4 + \frac{3}{5}(5) \\
-5 + 6 - 4 + 3 \\
1 - 1 \\
\text{PTS: 2} \quad \text{REF: spr1401geo} \quad \text{NAT: G.GPE.B.6} \quad \text{TOP: Directed Line Segments}

253 \text{ANS: 2} \quad \text{PTS: 2} \\
\text{REF: 061603geo} \quad \text{NAT: G.GPE.A.1} \\
\text{TOP: Equations of Circles} \quad \text{KEY: find center and radius} \mid \text{completing the square}

254 \text{ANS:} \\
The transformation is a rotation, which is a rigid motion. \\
\text{PTS: 2} \quad \text{REF: 081530geo} \quad \text{NAT: G.CO.B.7} \quad \text{TOP: Triangle Congruency}

255 \text{ANS: 3} \\
\frac{4}{3} \pi \left(\frac{9.5}{2} \right)^3 \\
\frac{4}{3} \pi \left(\frac{2.5}{2} \right)^3 \approx 55 \\
\text{PTS: 2} \quad \text{REF: 011614geo} \quad \text{NAT: G.GMD.A.3} \quad \text{TOP: Volume} \quad \text{KEY: spheres}

256 \text{ANS:} \\
\triangle MNO \text{ is congruent to } \triangle PNO \text{ by SAS. Since } \triangle MNO \cong \triangle PNO, \text{ then } MO \cong PO \text{ by CPCTC. So } NO \text{ must divide } MP \text{ in half, and } MO = 8. \\
\text{PTS: 2} \quad \text{REF: fall1405geo} \quad \text{NAT: G.CO.C.10} \quad \text{TOP: Medians, Altitudes and Bisectors}

257 \text{ANS: 1} \quad \text{PTS: 2} \\
\text{REF: 061520geo} \quad \text{NAT: G.C.A.2} \\
\text{TOP: Chords, Secants and Tangents} \quad \text{KEY: mixed}
258 ANS:

\[-6 + \frac{2}{5}(4 - 6) - 5 + \frac{2}{5}(0 - 5) (-2, -3)\]

\[-6 + \frac{2}{5}(10) - 5 + \frac{2}{5}(5)\]

\[-6 + 4 - 5 + 2\]

\[-2 - 3\]

PTS: 2 REF: 061527geo NAT: G.GPE.B.6 TOP: Directed Line Segments

259 ANS: 1

\[x^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16\]

\[(x - 2)^2 + (y + 4)^2 = 9\]

PTS: 2 REF: 081616geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square
The slopes of perpendicular lines are opposite reciprocals. Since the lines are perpendicular, they form right angles and a right triangle.

\[m_{BC} = -\frac{3}{2}, \quad 2 = \frac{2}{3}(-3) + b \quad \text{or} \quad -4 = \frac{2}{3}(-1) + b \]

\[m_\perp = \frac{2}{3} \]

\[-1 = -2 + b \quad \frac{-12}{3} = \frac{-2}{3} + b \]

\[3 = \frac{2}{3}x + 1 \quad \frac{10}{3} = b \]

\[2 = \frac{2}{3}x \quad 3 = \frac{2}{3}x - \frac{10}{3} \]

\[3 = x \quad 9 = 2x - 10 \]

\[19 = 2x \]

\[9.5 = x \]

\[V = \frac{4}{3} \pi \left(\frac{10}{2} \right)^3 \approx 261.8 \cdot 62.4 = 16,336 \]

\[m = -\frac{1}{2} \quad -4 = 2(6) + b \]

\[m_\perp = 2 \quad -4 = 12 + b \]

\[-16 = b \]
It is given that point D is the image of point A after a reflection in line CH. It is given that CH is the perpendicular bisector of BCE at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $BC \cong EC$. Point E is the image of point B after a reflection over the line CH, since points B and E are equidistant from point C and it is given that CH is perpendicular to BE. Point C is on CH, and therefore, point C maps to itself after the reflection over CH. Since all three vertices of triangle ABC map to all three vertices of triangle DEC under the same line reflection, then $\triangle ABC \cong \triangle DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

\[V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144 \]

Parallelogram $ABCD$, EFG, and diagonal DFB (given); $\angle DFE \cong \angle BFG$ (vertical angles); $AD \parallel CB$ (opposite sides of a parallelogram are parallel); $\angle EDF \cong \angle GBF$ (alternate interior angles are congruent); $\triangle DEF \sim \triangle BGF$ (AA).
270 ANS:

271 ANS: 4

272 ANS: 3

\[5 \cdot \frac{10}{4} = \frac{50}{4} = 12.5 \]

273 ANS: 2

\[\sqrt{3} \cdot 21 = \sqrt{63} = 3\sqrt{7} \]

274 ANS: 2

\[x^2 = 4 \cdot 10 \]

\[x = \sqrt{40} \]

\[x = 2\sqrt{10} \]

275 ANS: 4

\[\frac{-2 - 1}{-1 - 3} = \frac{-3}{-4} = \frac{3}{4} \]

\[\frac{3 - 2}{0 - 5} = \frac{1}{-5} = \frac{-1}{5} \]

\[\frac{3 - 1}{5 - 1} = \frac{2}{-6} = \frac{1}{3} \]

\[\frac{2 - 2}{5 - 3} = \frac{0}{2} = \frac{0}{3} \]

\[\frac{4}{6} = \frac{2}{3} \]

PTS: 2 REF: fall1409geo NAT: G.CO.D.12 TOP: Constructions KEY: parallel and perpendicular lines

PTS: 2 REF: 061504geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

PTS: 2 REF: 011622geo NAT: G.SRT.B.5 TOP: Similarity KEY: altitude

PTS: 2 REF: 081610geo NAT: G.SRT.B.5 TOP: Similarity KEY: leg

PTS: 2 REF: 081522geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane KEY: general
The slope of BC is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.

\[\frac{1}{2} = \frac{x + 3}{3x - 1} \quad GR = 3(7) - 1 = 20 \]
\[3x - 1 = 2x + 6 \]
\[x = 7 \]

\[\sqrt{(-1-2)^2 + (4-3)^2} = \sqrt{10} \]

Parallelogram \overline{ANDR} with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E (Given). $\overline{AN} \cong \overline{RD}$, $\overline{AR} \cong \overline{DN}$ (Opposite sides of a parallelogram are congruent). $AE = \frac{1}{2} \overline{AR}$, $WD = \frac{1}{2} \overline{DN}$, so $\overline{AE} \cong \overline{WD}$ (Definition of bisect and division property of equality). $\overline{AR} \parallel \overline{DN}$ (Opposite sides of a parallelogram are parallel). \overline{AWDE} is a parallelogram (Definition of parallelogram). $RE = \frac{1}{2} \overline{AR}$, $NW = \frac{1}{2} \overline{DN}$, so $\overline{RE} \cong \overline{NW}$ (Definition of bisect and division property of equality). $\overline{ED} \cong \overline{AW}$ (Opposite sides of a parallelogram are congruent). $\triangle ANW \cong \triangle DRE$ (SSS).

Quadrilateral $ABCD$ with diagonals \overline{AC} and \overline{BD} that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $ABCD$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{AB} \parallel \overline{CD}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle ACD$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{AD} \cong \overline{DC}$ (the sides of an isosceles triangle are congruent); quadrilateral $ABCD$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{AE} \perp \overline{BE}$ (the diagonals of a rhombus are perpendicular); $\angle BEA$ is a right angle (perpendicular lines form a right angle); $\triangle AEB$ is a right triangle (a right triangle has a right angle).
Reflections are rigid motions that preserve distance.

\[s = \theta \cdot r \quad \text{Yes, both angles are equal.} \]

\[\pi = A \cdot 4 \quad \frac{13\pi}{8} = B \cdot 6.5 \]

\[\frac{\pi}{4} = A \quad \frac{\pi}{4} = B \]

\[V = \frac{1}{3} \pi \left(\frac{8.3}{2} \right)^2 (10.2) + \frac{1}{2} \cdot \frac{4}{3} \pi \left(\frac{8.3}{2} \right)^3 \approx 183.961 + 149.693 \approx 333.65 \text{ cm}^3 \]

\[333.65 \times 50 = 16682.7 \text{ cm}^3 \]

\[16682.7 \times 0.697 = 11627.8 \text{ g} \]

\[11.6278 \times 3.83 = 44.53 \]

Quadrilateral \(ABCD\) is a parallelogram with diagonals \(\overline{AC}\) and \(\overline{BD}\) intersecting at \(E\) (Given). \(\overline{AD} \cong \overline{BC}\) (Opposite sides of a parallelogram are congruent). \(\angle AED \cong \angle CEB\) (Vertical angles are congruent). \(\overline{BC} \parallel \overline{DA}\) (Definition of parallelogram). \(\angle DBC \cong \angle BDA\) (Alternate interior angles are congruent). \(\triangle AED \cong \triangle CEB\) (AAS). 180° rotation of \(\triangle AED\) around point \(E\).
Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

\[
\frac{180 - 20}{2} \times \pi(6)^2 = \frac{80}{360} \times 36\pi = 8\pi
\]

Circle \(A \) can be mapped onto circle \(B \) by first translating circle \(A \) along vector \(\overrightarrow{AB} \) such that \(A \) maps onto \(B \), and then dilating circle \(A \), centered at \(A \), by a scale factor of \(\frac{5}{3} \). Since there exists a sequence of transformations that maps circle \(A \) onto circle \(B \), circle \(A \) is similar to circle \(B \).
\[\frac{60}{360} \cdot 6^2 \pi = 6\pi \]

PTS: 2 REF: 081518geo NAT: G.C.B.5 TOP: Sectors

298 ANS: 3 PTS: 2 REF: 081502geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: basic

299 ANS: 3
1) \(\frac{12}{9} = \frac{4}{3} \) 2) AA 3) \(\frac{32}{16} \neq \frac{8}{2} \) 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

300 ANS: 2
The given line \(h \), \(2x + y = 1 \), does not pass through the center of dilation, the origin, because the \(y \)-intercept is at \((0,1) \). The slope of the dilated line, \(m \), will remain the same as the slope of line \(h \), \(-2 \). All points on line \(h \), such as \((0,1) \), the \(y \)-intercept, are dilated by a scale factor of \(4 \); therefore, the \(y \)-intercept of the dilated line is \((0,4) \) because the center of dilation is the origin, resulting in the dilated line represented by the equation \(y = -2x + 4 \).

PTS: 2 REF: spr1403geo NAT: G.SRT.A.1 TOP: Line Dilations

301 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

302 ANS: 1
\[3^2 = 9 \]

PTS: 2 REF: 081520geo NAT: G.SRT.A.2 TOP: Dilations

303 ANS: 4
\[\frac{7}{12} \cdot 30 = 17.5 \]

PTS: 2 REF: 061521geo NAT: G.SRT.B.5 TOP: Similarity
KEY: perimeter and area

304 ANS: 2
\[\frac{11}{1.2 \text{ oz}} \left(\frac{16 \text{ oz}}{1 \text{ lb}} \right) = \frac{13.31}{\text{ lb}} \left(\frac{1 \text{ g}}{3.7851} \right) \approx \frac{3.5 \text{ g}}{1 \text{ lb}} \]

PTS: 2 REF: 061618geo NAT: G.MG.A.2 TOP: Density
305 ANS:
\[\tan 52.8 = \frac{h}{x} \]
\[x \tan 52.8 = x \tan 34.9 + 8 \tan 34.9 \]
\[\tan 52.8 \approx \frac{h}{9} \]
\[11.86 + 1.7 \approx 13.6 \]
\[h = x \tan 52.8 \]
\[x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9 \]
\[x \approx 11.86 \]
\[\tan 34.9 = \frac{h}{x + 8} \]
\[x = \frac{8 \tan 34.9}{\tan 52.8 - \tan 34.9} \]
\[x \approx 9 \]

PTS: 6 REF: 011636geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: advanced

306 ANS: 1 PTS: 2 REF: 011703geo NAT: G.SRT.B.5 TOP: Triangle Congruency

307 ANS: 2
\[h^2 = 30 \cdot 12 \]
\[h^2 = 360 \]
\[h = 6 \sqrt{10} \]

PTS: 2 REF: 061613geo NAT: G.SRT.B.5 TOP: Similarity
KEY: altitude

308 ANS: 3
\[\theta = \frac{s}{r} = \frac{2\pi}{10} = \frac{\pi}{5} \]

PTS: 2 REF: fall1404geo NAT: G.C.B.5 TOP: Arc Length
KEY: angle

309 ANS: 1
\[\frac{f}{4} = \frac{15}{6} \]
\[f = 10 \]

PTS: 2 REF: 061617geo NAT: G.CO.C.9 TOP: Lines and Angles

311 ANS:
\[4x - .07 = 2x + .01 \]
\[\sin A \text{ is the ratio of the opposite side and the hypotenuse while } \cos B \text{ is the ratio of the adjacent side and the hypotenuse. The side opposite angle } A \text{ is the same side as the side adjacent to angle } B. \text{ Therefore, } \sin A = \cos B. \]

PTS: 2 REF: fall1407geo NAT: G.SRT.C.7 TOP: Cofunctions
\[\tan \theta = \frac{2.4}{x} \]
\[\frac{3}{7} = \frac{2.4}{x} \]
\[x = 5.6 \]
314 ANS: 2 PTS: 2 REF: 061720geo NAT: G.CO.C.11
TOP: Parallelograms

315 ANS: 3
\[
\cos 40 = \frac{14}{x}
\]
\[
x \approx 18
\]

PTS: 2 REF: 011712geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

316 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.

PTS: 2 REF: 011727geo NAT: G.SRT.C.7 TOP: Cofunctions

317 ANS:
\[
\begin{align*}
4 \sqrt{(-1-3)^2 + (5-1)^2} &= 4 \sqrt{20}
\end{align*}
\]

PTS: 2 REF: 011826geo NAT: G.CO.D.13 TOP: Constructions

318 ANS: 4 PTS: 2 REF: 011705geo NAT: G.CO.C.11
TOP: Special Quadrilaterals

319 ANS: 3
\[
4 \sqrt{(-1-3)^2 + (5-1)^2} = 4 \sqrt{20}
\]

PTS: 2 REF: 081703geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

320 ANS: 4 PTS: 2 REF: 011808geo NAT: G.CO.A.2
TOP: Analytical Representations of Transformations KEY: basic

321 ANS: 1 PTS: 2 REF: 061801geo NAT: G.CO.B.6
TOP: Properties of Transformations KEY: graphics
\[(x - 5)^2 + (y - 2)^2 = 16\]
\[x^2 - 10x + 25 + y^2 - 4y + 4 = 16\]
\[x^2 - 10x + y^2 - 4y = -13\]

KEY: write equation, given graph

PTS: 2 **REF:** 061820geo **NAT:** G.GPE.A.1 **TOP:** Equations of Circles

323 **ANS:** 4

\[40 - x + 3x = 90\]
\[2x = 50\]
\[x = 25\]

PTS: 2 **REF:** 081721geo **NAT:** G.SRT.C.7 **TOP:** Cofunctions

ANS:
Parallelogram \(ABCD\), \(BF \perp AFD\), and \(DE \perp BEC\) (given); \(BC \parallel AD\) (opposite sides of a \(\square\) are \(||\)); \(BE \parallel FD\) (parts of \(||\) lines are \(||\)); \(BF \parallel DE\) (two lines \(\perp\) to the same line are \(||\)); \(BEDF\) is \(\square\) (a quadrilateral with both pairs of opposite sides \(\parallel\) is a \(\square\)); \(\angle DEB\) is a right \(\angle\) (\(\perp\) lines form right \(\angle\)s); \(BEDF\) is a rectangle (a \(\square\) with one right \(\angle\) is a rectangle).

PTS: 6 **REF:** 061835geo **NAT:** G.CO.C.11 **TOP:** Quadrilateral Proofs

325 **ANS:** 3 **PTS:** 2 **REF:** 011714geo **NAT:** G.SRT.C.6 **TOP:** Trigonometric Ratios

326 **ANS:** 4 **PTS:** 2 **REF:** 011819geo **NAT:** G.CO.C.11 **TOP:** Special Quadrilaterals

327 **ANS:** 1 **PTS:** 2 **REF:** 011814geo **NAT:** G.SRT.A.1 **TOP:** Line Dilations

328 **ANS:** 4

\[\frac{300 \cdot 8^2 \pi}{360} = \frac{160 \pi}{3}\]

PTS: 2 **REF:** 011721geo **NAT:** G.C.B.5 **TOP:** Sectors

329 **ANS:** 4

The segment’s midpoint is the origin and slope is \(-2\). The slope of a perpendicular line is \(\frac{1}{2}\). \[y = \frac{1}{2} x + 0\]
\[2y = x\]
\[2y - x = 0\]

KEY: perpendicular bisector

PTS: 2 **REF:** 081724geo **NAT:** G.GPE.B.5 **TOP:** Parallel and Perpendicular Lines

330 **ANS:** 4 **PTS:** 2 **REF:** 011706geo **NAT:** G.CO.A.2 **TOP:** Identifying Transformations **KEY:** basic
\[-8 + \frac{3}{8} (16 - 8) = -8 + \frac{3}{8} (24) = -8 + 9 = 1 \]
\[-2 + \frac{3}{8} (6 - 2) = -2 + \frac{3}{8} (8) = -2 + 3 = 1 \]

331 ANS: 1

PTS: 2 **REF: 081717geo** **NAT: G.GPE.B.6** **TOP: Directed Line Segments**

Opposite angles of an inscribed quadrilateral are supplementary.

332 ANS: 4

PTS: 2 **REF: 011821geo** **NAT: G.C.A.3** **TOP: Inscribed Quadrilaterals**

Yes. The triangles are congruent because of SSS \((5^2 + 12^2 = 13^2)\). All congruent triangles are similar.

333 ANS:

PTS: 2 **REF: 061830geo** **NAT: G.SRT.B.5** **TOP: Triangle Congruency**

334 ANS: 2

\[x^2 + y^2 - 6x + 2y = 6 \]
\[x^2 - 6x + 9 + y^2 + 2y + 1 = 6 + 9 + 1 \]
\[(x - 3)^2 + (y + 1)^2 = 16 \]

PTS: 2 **REF: 011812geo** **NAT: G.GPE.A.1** **TOP: Equations of Circles**

KEY: completing the square

\[V = (\pi)(4^2)(9) + \left(\frac{1}{2}\right)\left(\frac{4}{3}\right)\left(\pi\right)\left(4^3\right) \approx 586 \]

PTS: 4 **REF: 011833geo** **NAT: G.GMD.A.3** **TOP: Volume**

KEY: compositions

335 ANS: 1

Since a dilation preserves parallelism, the line \(4y = 3x + 7\) and its image \(3x - 4y = 9\) are parallel, with slopes of \(\frac{3}{4}\).

PTS: 2 **REF: 081710geo** **NAT: G.SRT.A.1** **TOP: Line Dilations**

336 ANS: 4

PTS: 2 **REF: 061813geo** **NAT: G.CO.C.11** **TOP: Special Quadrilaterals**

337 ANS:

PTS: 4 **REF: 061733geo** **NAT: G.SRT.B.5** **TOP: Triangle Proofs**

KEY: proof
ANS:
\[A(-2, 1) \rightarrow (-3, -1) \rightarrow (-6, -2) \rightarrow (-5, 0), \ B(0, 5) \rightarrow (-1, 3) \rightarrow (-2, 6) \rightarrow (-1, 8), \ C(4, -1) \rightarrow (3, -3) \rightarrow (6, -6) \rightarrow (7, -4) \]

PTS: 2 REF: 061826geo NAT: G.SRT.A.2 TOP: Dilations

\[
\frac{134 + 102}{2} = 118
\]

PTS: 2 REF: 081827geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

KEY: intersecting chords, angle

ANS:

PTS: 2 REF: 081825geo NAT: G.CO.D.12 TOP: Constructions

KEY: parallel and perpendicular lines

ANS: 4

NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if \(A, B, A', \) and \(B' \) are collinear.

\[m_{MH} = \frac{6}{10} = \frac{3}{5}, \quad m_{AT} = \frac{6}{10} = \frac{3}{5}, \quad m_{MA} = -\frac{5}{3}, \quad m_{HT} = -\frac{5}{3}; \quad \overline{MH} \parallel \overline{AT} \text{ and } \overline{MA} \parallel \overline{HT}. \]

\(MATH \) is a parallelogram since both sides of opposite sides are parallel. \(m_{MA} = -\frac{5}{3}, m_{AT} = \frac{3}{5} \). Since the slopes are negative reciprocals, \(\overline{MA} \perp \overline{AT} \) and \(\angle A \) is a right angle. \(MATH \) is a rectangle because it is a parallelogram with a right angle.

In (1) and (2), \(ABCD \) could be a rectangle with non-congruent sides. (4) is not possible

\(\frac{7-1}{0-2} = \frac{6}{-2} = -3 \) The diagonals of a rhombus are perpendicular.
ANS: 2 Reflexive; $\angle BDA \cong \angle BDC$; 6 CPCTC; 7 If points B and D are equidistant from the endpoints of \overline{AC}, then B and D are on the perpendicular bisector of \overline{AC}.

349 ANS: 2

350 ANS:

351 ANS: 4

352 ANS: 4

353 ANS: 3
Distance and angle measure are preserved after a reflection and translation.

KEY: basic

(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

Quadrilateral $ABCD$, $AB \cong CD$, $AB \parallel CD$, and BF and DE are perpendicular to diagonal AC at points F and E (given). $\angle AED$ and $\angle CFB$ are right angles (perpendicular lines form right angles). $\angle AED \cong \angle CFB$ (All right angles are congruent). $ABCD$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $AD \parallel BC$ (Opposite sides of a parallelogram are parallel). $\angle DAE \cong \angle BCF$ (Parallel lines cut by a transversal form congruent alternate interior angles). $DA \cong BC$ (Opposite sides of a parallelogram are congruent). $\triangle ADE \cong \triangle CBF$ (AAS). $AE \cong CF$ (CPCTC).
360 ANS: 1
\[x^2 + y^2 - 12y + 36 = -20 + 36 \]
\[x^2 + (y - 6)^2 = 16 \]

PTS: 2 REF: 061712geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

361 ANS: 1 PTS: 2 REF: 011716geo NAT: G.CO.C.11 TOP: Special Quadrilaterals

362 ANS: 1
\[m = \frac{-4}{-6} = \frac{2}{3} \]
\[m_\perp = -\frac{3}{2} \]

PTS: 2 REF: 011820geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

363 ANS: 3
\[\frac{360^\circ}{5} = 72^\circ \text{ 216}^\circ \text{ is a multiple of } 72^\circ \]

PTS: 2 REF: 061819geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

364 ANS:
\[PQ \sqrt{(8 - 3)^2 + (3 - 2)^2} = \sqrt{50} \]
\[QR \sqrt{(1 - 8)^2 + (4 - 3)^2} = \sqrt{50} \]
\[RS \sqrt{(-4 - 1)^2 + (-1 - 4)^2} = \sqrt{50} \]
\[PS \sqrt{(-4 - 3)^2 + (-1 - 2)^2} = \sqrt{50} \]

\[PQRS \text{ is a rhombus because all sides are congruent.} \]
\[m_{\overline{PQ}} = \frac{8 - 3}{3 - 2} = \frac{5}{1} = 1 \]
\[m_{\overline{QR}} = \frac{1 - 8}{4 - 3} = -7 \]

Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular and do not form a right angle. Therefore \(PQRS \) is not a square.

PTS: 6 REF: 061735geo NAT: G.GPE.B.4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids

365 ANS: 1 PTS: 2 REF: 061707geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself
\[\triangle ABC \sim \triangle AED \text{ by AA. } \angle DAE \cong \angle CAB \text{ because they are the same } \angle. \]
\[\angle DEA \cong \angle CBA \text{ because they are both right } \angle \text{s.} \]

367 ANS: 2
\[x^2 = 3 \cdot 18 \]
\[x = \sqrt{3 \cdot 3 \cdot 6} \]
\[x = 3\sqrt{6} \]

368 ANS: 1
PTS: 2
REF: 081712geo
NAT: G.C.A.2
KEY: secant and tangent drawn from common point, length
TOP: Chords, Secants and Tangents

369 ANS:
\[\frac{152 - 56}{2} = 48 \]

370 ANS: 3
PTS: 2
REF: 061816geo
NAT: G.GMD.B.4
KEY: grids
TOP: Rotations of Two-Dimensional Objects

371 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

372 ANS: 4
PTS: 2
REF: 081702geo
NAT: G.CO.A.2
KEY: basic
TOP: Identifying Transformations

373 ANS:
\[500 \times 1015 \text{ cc} \times \frac{0.29 \text{ kg}}{\text{ kg}} \times \frac{7.95 \text{ g}}{\text{ cc}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = \$1170 \]

374 ANS: 5
PTS: 2
REF: 011828geo
NAT: G.MG.A.2
TOP: Density
374 ANS: \[\cos B \text{ increases because } \angle A \text{ and } \angle B \text{ are complementary and } \sin A = \cos B.\]

PTS: 2 REF: 011827geo NAT: G.SRT.C.7 TOP: Cofunctions

375 ANS: 2
\[6 + 6\sqrt{3} + 6 + 6\sqrt{3} \approx 32.8\]

PTS: 2 REF: 011709geo NAT: G.SRT.C.8 TOP: 30-60-90 Triangles

376 ANS: 3
\[v = \pi r^2 h \quad (1) \quad 6^2 \cdot 10 = 360\]
\[150\pi = \pi r^2 h \quad (2) \quad 10^2 \cdot 6 = 600\]
\[150 = r^2 h \quad (3) \quad 5^2 \cdot 6 = 150\]
\[150 \quad (4) \quad 3^2 \cdot 10 = 900\]

PTS: 2 REF: 081713geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects

377 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14, the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A.1 TOP: Volume

378 ANS: 2
\[\frac{x}{x + 3} = \frac{14}{21} \quad 14 - 6 = 8\]
\[21x = 14x + 42\]
\[7x = 42\]
\[x = 6\]

PTS: 2 REF: 081812geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

379 ANS: 3 PTS: 2 REF: 061703geo NAT: G.SRT.C.7 TOP: Cofunctions

380 ANS: 1
\[\frac{64}{4} = 16 \quad 16^2 = 256 \quad 2w + 2(w + 2) = 64 \quad 15 \times 17 = 255 \quad 2w + 2(w + 4) = 64 \quad 14 \times 18 = 252 \quad 2w + 2(w + 6) = 64\]
\[w = 15 \quad w = 14 \quad w = 13\]
\[13 \times 19 = 247\]

PTS: 2 REF: 011708geo NAT: G.MG.A.3 TOP: Area of Polygons

381 ANS:
Parallelogram \(ABCD\) with diagonal \(AC\) drawn (given). \(\overline{AC} \cong \overline{AC}\) (reflexive property). \(\overline{AD} \cong \overline{CB}\) and \(\overline{BA} \cong \overline{DC}\) (opposite sides of a parallelogram are congruent). \(\triangle ABC \cong \triangle CDA\) (SSS).

PTS: 2 REF: 011825geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

382 ANS: 4 PTS: 2 REF: 081803geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
2.5 \times 1.25 \times (27 \times 12) + \frac{1}{2} \pi (1.25)^2 (27 \times 12) \approx 1808

\sin 32 = \frac{O}{129.5}

O \approx 68.6

\tan 72 = \frac{x}{400}
\sin 55 = \frac{400 \tan 72}{y}

x = 400 \tan 72
y = \frac{400 \tan 72}{\sin 55} \approx 1503

\sqrt{(-5)^2 + 12^2} = \sqrt{169} \sqrt{11^2 + (2 \sqrt{12})^2} = \sqrt{121 + 48} = \sqrt{169}

\begin{align*}
M \left(\frac{4 + 0}{2}, \frac{6 - 1}{2} \right) &= M \left(\frac{2 + 5}{2}, \frac{0}{2} \right) \\
m &= \frac{6 - 1}{4 - 0} = \frac{7}{4} \\
m_1 &= \frac{4}{7} \\
y - 2.5 &= \frac{4}{7}(x - 2)
\end{align*}

The diagonals, MT and AH, of rhombus MATH are perpendicular bisectors of each other.
391 ANS:

\[10 \cdot 6 = 15x\]

\[x = 4\]

PTS: 2 REF: 061828geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

KEY: secants drawn from common point, length

392 ANS: 4

\[\frac{360^\circ}{10} = 36^\circ\]

\[252^\circ\] is a multiple of \(36^\circ\)

PTS: 2 REF: 011717geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

393 ANS: 2

The line \(y = -3x + 6\) passes through the center of dilation, so the dilated line is not distinct.

PTS: 2 REF: 061824geo NAT: G.SRT.A.1 TOP: Line Dilations

394 ANS:

\[
20000 \text{ g} \left(\frac{1 \text{ ft}^3}{7.48 \text{ g}}\right) = 2673.8 \text{ ft}^3
\]

\[2673.8 = \pi r^2(34.5)\]

\[9.9 + 1 = 10.9\]

\[r \approx 4.967\]

\[d \approx 9.9\]

PTS: 4 REF: 061734geo NAT: G.GMD.A.3 TOP: Volume

KEY: cylinders

395 ANS: 2

PTS: 2 REF: 011805geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects

396 ANS: 4

\[4\sqrt{(-1 - 2)^2 + (2 - 3)^2} = 4\sqrt{10}\]

PTS: 2 REF: 081808geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

397 ANS: 2

\[
\frac{512\pi}{3} = 2\pi \cdot \frac{4\pi}{3} \left(\frac{32}{2}\right)^2 \pi
\]

PTS: 2 REF: 081723geo NAT: G.C.B.5 TOP: Sectors

398 ANS: 1

\[x = -5 + \frac{1}{3}(4 - 5) = -5 + 3 = -2\]

\[y = 2 + \frac{1}{3}(-10 - 2) = 2 - 4 = -2\]

PTS: 2 REF: 011806geo NAT: G.GPE.B.6 TOP: Directed Line Segments
ANS:
Yes. \(\angle A \cong \angle X \), \(\angle C \cong \angle Z \), \(AC \cong XZ \) after a sequence of rigid motions which preserve distance and angle measure, so \(\triangle ABC \cong \triangle XYZ \) by ASA. \(BC \cong YZ \) by CPCTC.

\[
\tan 16.5 = \frac{x}{13.5} \quad 9 \times 16 \times 4.5 = 648 \quad 3752 - (35 \times 16 \times 4.5) = 3472
\]
\[
x \approx 4 \quad 13.5 \times 16 \times 4.5 = 972 \quad 3472 \times 7.48 = 25971
\]
\[
4 + 4.5 = 8.5 \quad \frac{1}{2} \times 13.5 \times 16 \times 4 = 432 \quad \frac{25971}{10.5} \approx 2473.4
\]
\[
12.5 \times 16 \times 8.5 = \frac{1700}{3752} \quad \frac{2473.4}{60} \approx 41
\]

ANS:
\[
\frac{x}{6.3} = \frac{3}{5} \quad \frac{y}{9.4} = \frac{6.3}{6.3 + 3.78}
\]
\[
x = 3.78 \quad y \approx 5.9
\]

ANS: 4

\[
6 \cdot 6 = x(x - 5)
\]
\[
36 = x^2 - 5x
\]
\[
0 = x^2 - 5x - 36
\]
\[
0 = (x - 9)(x + 4)
\]
\[
x = 9
\]

ANS: 4

\[
\text{KEY: intersecting chords, length}
\]

PARALLELOGRAMS
\[\sin 32 = \frac{x}{6.2} \]
\[x \approx 3.3 \]

\[360 - (82 + 104 + 121) = 53 \]

\[84 = \frac{1}{3} \cdot s^2 \cdot 7 \]
\[6 = s \]

\[\text{Reflection across the } y\text{-axis, then translation up 5.} \]
413 ANS:
Isosceles trapezoid $ABCD$, $\angle CDE \cong \angle DCE$, $AE \perp DE$, and $BE \perp CE$ (given); $AD \cong BC$ (congruent legs of isosceles trapezoid); $\angle DEA$ and $\angle CEB$ are right angles (perpendicular lines form right angles); $\angle DEA \cong \angle CEB$ (all right angles are congruent); $\angle CDA \cong \angle DCB$ (base angles of an isosceles trapezoid are congruent); $\angle CDA - \angle CDE \cong \angle DCB - \angle DCE$ (subtraction postulate); $\triangle ADE \cong \triangle BCD$ (AAS); $EA \cong EB$ (CPCTC);
$\angle AEB$ is an isosceles triangle (an isosceles triangle has two congruent sides).

414 ANS: 1
$20 \cdot 12 \cdot 45 + \frac{1}{2} \pi (10)^2 (45) \approx 17869$

PTS: 2 REF: 061807geo NAT: G.GMD.A.3 TOP: Volume
KEY: compositions

415 ANS:
C: $V = \pi (26.7)^2 (750) - \pi (24.2)^2 (750) = 95,437.5 \pi$
$95,437.5 \pi \text{ cm}^3 \left(\frac{2.7 \text{ g}}{1 \text{ cm}^3} \right) \left(\frac{1 \text{ kg}}{1000 \text{ g}} \right) \left(\frac{0.38 \text{ g}}{\text{kg}} \right) = \307.62
P: $V = 40^2 (750) - 35^2 (750) = 281,250$
$281,250 \text{ cm}^3 \left(\frac{2.7 \text{ g}}{1 \text{ cm}^3} \right) \left(\frac{1 \text{ kg}}{1000 \text{ g}} \right) \left(\frac{0.38 \text{ g}}{\text{kg}} \right) = \288.56

PTS: 6 REF: 011736geo NAT: G.MG.A.2 TOP: Density

416 ANS: 4
$C = 12 \pi \left(\frac{120}{360} \right) (12 \pi) = \left(\frac{1}{3} \right) (12 \pi)$

PTS: 2 REF: 061822geo NAT: G.C.B.5 TOP: Arc Length
KEY: arc length

417 ANS: 3
$6 \cdot 3^2 = 54$
$12 \cdot 3 = 36$

PTS: 2 REF: 081823geo NAT: G.SRT.A.2 TOP: Dilations

418 ANS: 2
$-4 + \frac{2}{5} (6 - 4) = -4 + \frac{2}{5} (10) = -4 + 4 = 0$
$5 + \frac{2}{5} (20 - 5) = 5 + \frac{2}{5} (15) = 5 + 6 = 11$

PTS: 2 REF: 061715geo NAT: G.GPE.B.6 TOP: Directed Line Segments
\[\cos S = \frac{60}{65} \]

\[S \approx 23 \]

ANS: 1
PTS: 2
REF: 061713geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

The line is on the center of dilation, so the line does not change.
\[p: 3x + 4y = 20 \]

ANS: 2
PTS: 2
REF: 061731geo
NAT: G.SRT.A.1
TOP: Line Dilations

A dilation of 3 centered at \(A \). A dilation preserves angle measure, so the triangles are similar.

ANS: 4
PTS: 2
REF: 011832geo
NAT: G.SRT.A.2
TOP: Dilation

TOP: Midsegments

ANS: 2
PTS: 2
REF: 081716geo
NAT: G.CO.C.10
TOP: Compositions of Transformations

KEY: grids

\[\cos B = \frac{17.6}{26} \]

\[B \approx 47 \]

ANS: 2
PTS: 2
REF: 061806geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

The \(x \)-axis and line \(x = 4 \) are lines of symmetry and \((4,0) \) is a point of symmetry.

ANS: 3
PTS: 2
REF: 081706geo
NAT: G.CO.A.3
TOP: Mapping a Polygon onto Itself

\[V = \frac{1}{3} \left(\frac{36}{4} \right)^2 \cdot 15 = 405 \]

ANS: 2
PTS: 2
REF: 011822geo
NAT: G.GMD.A.3
TOP: Volume

KEY: pyramids
427 ANS: 1
\[V = \frac{1}{3} \pi \left(\frac{1.5}{2} \right)^2 \left(\frac{4}{2} \right) \approx 1.2 \]

PTS: 2 REF: 011724geo NAT: G.GMD.A.3 TOP: Volume
KEY: cones

428 ANS:
Yes, as translations do not change angle measurements.

KEY: basic

429 ANS: 4
\[\frac{360^\circ}{10} = 36^\circ \quad 252^\circ \text{ is a multiple of } 36^\circ \]

PTS: 2 REF: 081722geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

430 ANS: 1
\[2x + 4 + 46 = 90 \]
\[2x = 40 \]
\[x = 20 \]

PTS: 2 REF: 061808geo NAT: G.SRT.C.7 TOP: Cofunctions

431 ANS: 4
\[\frac{2}{4} = \frac{9-x}{x} \]
\[36 - 4x = 2x \]
\[x = 6 \]

PTS: 2 REF: 061705geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

432 ANS: 2
\[V = \frac{1}{3} \left(\frac{60}{12} \right)^2 \left(\frac{84}{12} \right) \approx 58 \]

PTS: 2 REF: 081819geo NAT: G.GMD.A.3 TOP: Volume
KEY: pyramids

433 ANS: 2 PTS: 2 REF: 061709geo NAT: G.SRT.B.5 TOP: Triangle Proofs KEY: statements

434 ANS: 1
The slope of \(3x + 2y = 12 \) is \(-\frac{3}{2} \), which is the opposite reciprocal of \(\frac{2}{3} \).

PTS: 2 REF: 081811geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
\[
2 \left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12} \right) \times 3.25 = 19.50
\]

ANS:
\[
V = \pi (10)^2 (18) = 1800 \pi \text{ in}^3 \quad \frac{1}{12^3} \text{ in}^3 = \frac{25}{24} \pi \text{ ft}^3 \quad \frac{25}{24} \pi (95.46)(0.85) \approx 266 + 266 + 270 = 536
\]

ANS:
\[
m = \frac{3}{2} \quad 1 = -\frac{2}{3} (-6) + b \\
\]

ANS:
\[
m_\perp = -\frac{2}{3} \quad 1 = 4 + b \quad -3 = b
\]

ANS:
Parallel chords intercept congruent arcs. \[
\frac{180 - 130}{2} = 25
\]
441 ANS: 1

\[82.8 = \frac{1}{3}(4.6)(9)h \]

\[h = 6 \]

PTS: 2 REF: 061810geo NAT: G.GMD.A.3 TOP: Volume

KEY: pyramids

442 ANS: 3

\[V = \frac{1}{3}\pi r^2 h \]

\[54.45\pi = \frac{1}{3}\pi(3.3)^2 h \]

\[h = 15 \]

PTS: 2 REF: 011807geo NAT: G.GMD.A.3 TOP: Volume

KEY: cones

443 ANS: 3 PTS: 2 REF: 011710geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify

444 ANS: 4 PTS: 2 REF: 081822geo NAT: G.CO.C.10 TOP: Medians, Altitudes and Bisectors

445 ANS: 3 PTS: 2 REF: 061802geo NAT: G.CO.C.9 TOP: Lines and Angles

446 ANS: 3

\[x(x - 6) = 4^2 \]

\[x^2 - 6x - 16 = 0 \]

\[(x - 8)(x + 2) = 0 \]

\[x = 8 \]

PTS: 2 REF: 081807geo NAT: G.SRT.B.5 TOP: Similarity

KEY: altitude

447 ANS: 1

Illinois: \(\frac{12830632}{231.1} \approx 55520 \) Florida: \(\frac{18801310}{350.6} \approx 53626 \) New York: \(\frac{19378102}{411.2} \approx 47126 \) Pennsylvania: \(\frac{12702379}{283.9} \approx 44742 \)

PTS: 2 REF: 081720geo NAT: G.MG.A.2 TOP: Density
Reflections are rigid motions that preserve distance, so $\triangle ABC \cong \triangle DEF$.

\[
\begin{align*}
\text{ANS:} & \\
\text{PTS: } 4 & \quad \text{REF: } 061732\text{geo} \quad \text{NAT: } G.COA.2 \quad \text{TOP: Identifying Transformations} \\
\text{KEY: } & \text{graphics}
\end{align*}
\]

\[
\begin{align*}
\text{ANS: } & 4 \\
\text{PTS: } 2 & \quad \text{REF: } 081708\text{geo} \quad \text{NAT: } G.COC.11 \quad \text{TOP: Interior and Exterior Angles of Polygons} \\
\text{KEY: } & \text{spheres}
\end{align*}
\]

\[
\begin{align*}
\text{ANS:} & \\
\text{PTS: } 2 & \quad \text{REF: } 061728\text{geo} \quad \text{NAT: } G.GMD.A.3 \quad \text{TOP: Volume} \\
\text{KEY: } & \text{spheres}
\end{align*}
\]

\[
\begin{align*}
\text{ANS:} & \\
\text{PTS: } 4 & \quad \text{REF: } 011834\text{geo} \quad \text{NAT: } G.SRT.C.8 \quad \text{TOP: Using Trigonometry to Find a Side} \\
\text{KEY: } & \text{spheres}
\end{align*}
\]

\[
\begin{align*}
\text{ANS: } & 2 \\
\text{PTS: } 2 & \quad \text{REF: } 061710\text{geo} \quad \text{NAT: } G.COC.10 \quad \text{TOP: Interior and Exterior Angles of Triangles} \\
\text{KEY: } & \text{spheres}
\end{align*}
\]

\[
\begin{align*}
\text{ANS:} & 4 \\
\text{PTS: } 2 & \quad \text{REF: } 081709\text{geo} \quad \text{NAT: } G.SRT.A.3 \quad \text{TOP: Similarity Proofs} \\
\text{KEY: } & \text{spheres}
\end{align*}
\]
454 ANS: 2 PTS: 2 REF: 011802geo NAT: G.CO.C.11
TOP: Parallelograms

455 ANS: 1
24x = 10^2
24x = 100
x ≈ 4.2

PTS: 2 REF: 061823geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

456 ANS: 3
\[\triangle CFB \sim \triangle CAD \quad \frac{CB}{CF} = \frac{CD}{CA} \]
\[\frac{x}{21.6} = \frac{7.2}{9.6} \]
\[x = 16.2 \]

PTS: 2 REF: 061804geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

457 ANS: 2 PTS: 2 REF: 081701geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

458 ANS:
\[\cos W = \frac{6}{18} \]
\[W ≈ 71^\circ \]

PTS: 2 REF: 011831geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

459 ANS:

Right triangle because \(\angle CBF \) is inscribed in a semi-circle.

PTS: 4 REF: 011733geo NAT: G.CO.D.13 TOP: Constructions

460 ANS: 4 PTS: 2 REF: 011704geo NAT: G.CO.C.10
TOP: Midsegments

TOP: Chords, Secants and Tangents KEY: inscribed
ANS: 1
\[x^2 + y^2 - 6y + 9 = -1 + 9 \]
\[x^2 + (y - 3)^2 = 8 \]

PTS: 2 REF: 011718geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

ANS: 3 PTS: 2 REF: 061706geo NAT: G.SRT.A.1 TOP: Line Dilations

ANS: 4
\[x^2 + 4x + 4 + y^2 - 8y + 16 = -16 + 4 + 16 \]
\[(x + 2)^2 + (y - 4)^2 = 4 \]

PTS: 2 REF: 081821geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

ANS:
\[x^2 - 6x + 9 + y^2 + 8y + 16 = 56 + 9 + 16 \] (3,−4); \(r = 9 \)
\[(x - 3)^2 + (y + 4)^2 = 81 \]

PTS: 2 REF: 081731geo NAT: G.GPE.A.1 TOP: Equations of Circles
KEY: completing the square

ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C.10 TOP: Interior and Exterior Angles of Triangles

ANS: 2
\[x^2 = 12(12 - 8) \]
\[x^2 = 48 \]
\[x = 4\sqrt{3} \]

PTS: 2 REF: 011823geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg
\[\frac{x + 72}{2} = 58 \]
\[x + 72 = 116 \]
\[x = 44 \]

PTS: 2
REF: 061817geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle

ANS: 2

\[4 \times 4 \times 6 - \pi(1)^2(6) \approx 77 \]

PTS: 2
REF: 011711geo
NAT: G.GMD.A.3
TOP: Volume
KEY: compositions

ANS: Yes. The bases of the cylinders have the same area and the cylinders have the same height.

PTS: 2
REF: 081725geo
NAT: G.GMD.A.1
TOP: Volume

ANS: 1

\[B: (4 - 3, 3 - 4) \rightarrow (1, -1) \rightarrow (2, -2) \rightarrow (2 + 3, -2 + 4) \]
\[C: (2 - 3, 1 - 4) \rightarrow (-1, -3) \rightarrow (-2, -6) \rightarrow (-2 + 3, -6 + 4) \]

PTS: 2
REF: 011713geo
NAT: G.SRT.A.1
TOP: Line Dilations

ANS:

Because \(AB \cong AC \), \(\triangle ABC \) has two congruent sides and is isosceles. Because \(AB \not\cong BC \) is not true, \(\triangle ABC \) has sides that are not congruent and \(\triangle ABC \) is not equilateral.

PTS: 4
REF: 061832geo
NAT: G.GPE.B.4
TOP: Triangles in the Coordinate Plane

ANS: 1

\(M \) is a centroid, and cuts each median 2:1.

PTS: 2
REF: 061818geo
NAT: G.CO.C.10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
474 ANS: 2

\[12^2 = 9 \cdot 16 \]

\[144 = 144 \]

PTS: 2 REF: 081718geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

475 ANS: 3 PTS: 2 REF: 011815geo NAT: G.CO.A.3
TOP: Mapping a Polygon onto Itself

476 ANS:

Rotate \(\triangle ABC \) clockwise about point \(C \) until \(DF \parallel AC \). Translate \(\triangle ABC \) along \(CF \) so that \(C \) maps onto \(F \).

PTS: 2 REF: 061730geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify

477 ANS: 4

\[\sin 16.5 = \frac{8}{x} \]

\[x \approx 28.2 \]

PTS: 2 REF: 081806ai NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

478 ANS:

\[180 - 2(25) = 130 \]

PTS: 2 REF: 011730geo NAT: G.CO.C.10 TOP: Centroid, Orthocenter, Incenter and Circumcenter

479 ANS: 3

NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061722geo NAT: G.CO.B.7 TOP: Triangle Congruency

480 ANS: 4

\[\sin 71 = \frac{x}{20} \]

\[x = 20 \sin 71 \approx 19 \]

PTS: 2 REF: 061721geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side
KEY: without graphics

481 ANS: 2

\[\frac{30}{360}(\pi) \approx 6.5 \]

PTS: 2 REF: 081818geo NAT: G.C.B.5 TOP: Sectors
ANS:
\[
\tan 15 = \frac{6250}{x} \\
\tan 52 = \frac{6250}{y} \\
23325.3 - 4883 = 18442 \left(\frac{1 \text{ mi}}{5280 \text{ ft}} \right) \left(\frac{60 \text{ min}}{1 \text{ h}} \right) \approx 210 \\
x \approx 23325.3 \\
y \approx 4883
\]

PTS: 6
REF: 061736geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side
KEY: advanced

ANS: 4
\[
\frac{1}{2} (360 - 268) = 46
\]

PTS: 2
REF: 061704geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents
KEY: inscribed

ANS:
\[
C = 2 \pi r \\
V = \frac{1}{3} \pi \cdot 5^2 \cdot 13 \approx 340 \\
31.416 = 2 \pi r \\
5 \approx r
\]

PTS: 4
REF: 011734geo
NAT: G.GMD.A.3
TOP: Volume
KEY: cones

ANS: 4
PTS: 2
REF: 081810geo
NAT: G.SRT.B.5
TOP: Triangle Proofs
KEY: statements

ANS: 1
\[
-8 + \frac{3}{5} (7 - 8) = -8 + 9 = 1 \\
7 + \frac{3}{5} (-13 - 7) = 7 - 12 = -5
\]

PTS: 2
REF: 081815geo
NAT: G.GPE.B.6
TOP: Directed Line Segments

ANS: 1
\[
3 + \frac{2}{5} (8 - 3) = 3 + \frac{2}{5} (5) = 3 + 2 = 5 \\
5 + \frac{2}{5} (-5 - 5) = 5 + \frac{2}{5} (-10) = 5 - 4 = 1
\]

PTS: 2
REF: 011720geo
NAT: G.GPE.B.6
TOP: Directed Line Segments

\[\triangle ADB \sim \triangle AED\]

PTS: 2
REF: 061811geo
NAT: G.SRT.B.5
TOP: Similarity
KEY: basic
A dilation preserves slope, so the slopes of \overline{QR} and $\overline{Q'R'}$ are equal. Because the slopes are equal, $Q'R' \parallel QR$.

- **489 ANS:**

 ![Diagram of line segments](image)

 - **PTS:** 4
 - **REF:** 011732geo
 - **NAT:** G.SRT.A.2
 - **TOP:** Dilations
 - **KEY:** grids

- **490 ANS:**

 \[
 \tan 36^\circ = \frac{x}{10} \quad \cos 36^\circ = \frac{10}{y} \quad 12.3607 \times 3 \approx 37
 \]

 \[
 x \approx 7.3 \quad y \approx 12.3607
 \]

 - **PTS:** 4
 - **REF:** 081833geo
 - **NAT:** G.SRT.C.8
 - **TOP:** Using Trigonometry to Find a Side
 - **KEY:** grids

- **491 ANS:**

 \[
 \tan x = \frac{1}{12}
 \]

 \[
 x \approx 4.76
 \]

 - **PTS:** 2
 - **REF:** 081715geo
 - **NAT:** G.SRT.C.8
 - **TOP:** Using Trigonometry to Find an Angle
 - **KEY:** grids

- **492 ANS:**

 \[
 \triangle PAT \text{ is an isosceles triangle because sides } \overline{AP} \text{ and } \overline{AT} \text{ are congruent } (\sqrt{3^2 + 11^2} = \sqrt{7^2 + 9^2} = 130).

 \text{ Quadrilateral } PART \text{ is a parallelogram because the opposite sides are parallel since they have equal slopes}
 \]

 - **PTS:** 6
 - **REF:** 011835geo
 - **NAT:** G.GPE.B.4
 - **TOP:** Quadrilaterals in the Coordinate Plane
 - **KEY:** grids
ANS: \overline{GI} is parallel to \overline{NT}, and \overline{IN} intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle GIA \sim \triangle TNA$ (AA).

PTS: 2 REF: 011729geo NAT: G.SRT.A.3 TOP: Similarity Proofs

494 ANS: 4

\[\frac{6.6}{x} = \frac{4.2}{5.25} \]

\[4.2x = 34.65 \]

\[x = 8.25 \]

PTS: 2 REF: 081705geo NAT: G.SRT.B.5 TOP: Similarity

KEY: basic

495 ANS: 4

\[\frac{5}{7} = \frac{x}{x + 5} \quad 12 \frac{1}{2} + 5 = 17 \frac{1}{2} \]

\[5x + 25 = 7x \]

\[2x = 25 \]

\[x = 12 \frac{1}{2} \]

PTS: 2 REF: 061821geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

496 ANS:

\[\sqrt{(2.5 - 1)^2 + (-.5 - 1.5)^2} = \sqrt{2.25 + 4} = 2.5 \]

PTS: 2 REF: 081729geo NAT: G.SRT.A.1 TOP: Line Dilations

497 ANS: 2

\[-4 + \frac{2}{5}(1 - 4) = -4 + \frac{2}{5}(-3) = -4 + \frac{2}{5}(5) = -4 + 2 = -2 \quad -2 + \frac{2}{5}(8 - 2) = -2 + \frac{2}{5}(10) = -2 + 4 = 2 \]

PTS: 2 REF: 061814geo NAT: G.GPE.B.6 TOP: Directed Line Segments

498 ANS:

\[R_{180^\circ} \text{ about } \left(\frac{1}{2}, \frac{1}{2} \right) \]

PTS: 2 REF: 081727geo NAT: G.CO.A.5 TOP: Compositions of Transformations

KEY: identify
499 \[V = \frac{1}{3} \pi (4)^2 (6) = 32\pi \]

PTS: 2 \[\text{REF: 061718geo} \] \[\text{NAT: G.GMD.B.4} \] \[\text{TOP: Rotations of Two-Dimensional Objects} \]

500 ANS: 1

\[(12 \cdot 11) - \left(\frac{1}{2} (12 \cdot 4) + \frac{1}{2} (7 \cdot 9) + \frac{1}{2} (11 \cdot 3) \right) = 60\]

PTS: 2 \[\text{REF: 061815geo} \] \[\text{NAT: G.GPE.B.7} \] \[\text{TOP: Polygons in the Coordinate Plane} \]

501 ANS:

\[29.5 = 2\pi r \quad V = \frac{4}{3} \pi \cdot \left(\frac{29.5}{2\pi} \right)^3 \approx 434 \]

\[r = \frac{29.5}{2\pi} \]

PTS: 2 \[\text{REF: 061831geo} \] \[\text{NAT: G.GMD.A.3} \] \[\text{TOP: Volume} \]

502 ANS: 2

\[m = \frac{3}{2} \]

\[m_\perp = -\frac{2}{3} \]

PTS: 2 \[\text{REF: 061812geo} \] \[\text{NAT: G.GPE.B.5} \] \[\text{TOP: Parallel and Perpendicular Lines} \]

503 ANS: 4

PTS: 2 \[\text{REF: 011817geo} \] \[\text{NAT: G.SRT.B.5} \]

504 ANS: 4

PTS: 2 \[\text{REF: 061803geo} \] \[\text{NAT: G.CO.A.2} \]
505 ANS: 2

PTS: 2 REF: 081814geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length

506 ANS: 3 PTS: 2 REF: 081805geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

507 ANS: 4 PTS: 2 REF: 011723geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

508 ANS:
\[
\frac{4\pi}{3} (2^3 - 1.5^3) \approx 19.4 \cdot 19.4 \cdot 1.308 \cdot 8 \approx 203
\]

PTS: 4 REF: 081834geo NAT: G.MG.A.2 TOP: Density

509 ANS: 3

\[
\frac{s_L}{s_S} = \frac{6\theta}{4\theta} = 1.5
\]

KEY: arc length

510 ANS: 2

\[
AB = 10 \text{ since } \triangle ABC \text{ is a 6-8-10 triangle. } \quad 6^2 = 10x
\]

\[
3.6 = x
\]

PTS: 2 REF: 081820geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

511 ANS:

Circle O, tangent \(\overline{EC}\) to diameter \(\overline{AC}\), chord \(\overline{BC}\) \(\parallel\) secant \(\overline{ADE}\), and chord \(\overline{AB}\) (given); \(\angle B\) is a right angle (an angle inscribed in a semi-circle is a right angle); \(\overline{EC} \perp \overline{OC}\) (a radius drawn to a point of tangency is perpendicular to the tangent); \(\angle ECA\) is a right angle (perpendicular lines form right angles); \(\angle B \cong \angle ECA\) (all right angles are congruent); \(\angle BCA \cong \angle CAE\) (the transversal of parallel lines creates congruent alternate interior angles); \(\triangle ABC \sim \triangle ECA\) (AA); \(\frac{BC}{CA} = \frac{AB}{EC}\) (Corresponding sides of similar triangles are in proportion).

PTS: 4 REF: 081733geo NAT: G.SRT.B.5 TOP: Circle Proofs
512 ANS: $T_{0,-2} \circ r_{y-axis}$

PTS: 2 REF: 011726geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: identify

513 ANS: 4 PTS: 2 REF: 081801geo NAT: G.CO.C.9
TOP: Lines and Angles

514 ANS:
No. Since $BC = 5$ and $ST = \sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle ABC$ onto $\triangle RST$.

PTS: 2 REF: 011701geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

515 ANS: $y = mx + b$

$2 = \frac{1}{2}(-2) + b$

$3 = b$

PTS: 2 REF: 011701geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

516 ANS:

PTS: 2 REF: 061829geo NAT: G.CO.D.12 TOP: Constructions
KEY: line bisector

517 ANS: 4

AA

PTS: 2 REF: 061809geo NAT: G.SRT.A.3 TOP: Similarity Proofs

518 ANS: 1

$\cos x = \frac{12}{13}$

$x \approx 23$

PTS: 2 REF: 081809ai NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
519 ANS:

PTS: 2 REF: 011725geo NAT: G.CO.D.12 TOP: Constructions
KEY: line bisector

520 ANS:
\[\frac{40}{360} \cdot \pi (4.5)^2 = 2.25\pi \]

PTS: 2 REF: 061726geo NAT: G.C.B.5 TOP: Sectors

521 ANS: 2
\[2x + 7 + 4x - 7 = 90 \]
\[6x = 90 \]
\[x = 15 \]

PTS: 2 REF: 081824geo NAT: G.SRT.C.7 TOP: Cofunctions

522 ANS: 2
\[8(x + 8) = 6(x + 18) \]
\[8x + 64 = 6x + 108 \]
\[2x = 44 \]
\[x = 22 \]

PTS: 2 REF: 011715geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length

523 ANS:
\[\frac{Q}{360} (\pi)\left(25^2\right) = (\pi)\left(25^2\right) - 500\pi \]
\[Q = \frac{125\pi(360)}{625\pi} \]
\[Q = 72 \]

PTS: 2 REF: 011828geo NAT: G.C.B.5 TOP: Sectors

524 ANS:
The four small triangles are 8-15-17 triangles. \(4 \times 17 = 68\)

PTS: 2 REF: 081726geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
ANS:
No, The line $4x + 3y = 24$ passes through the center of dilation, so the dilated line is not distinct.

$$4x + 3y = 24$$

$$3y = -4x + 24$$

$$y = \frac{4}{3}x + 8$$

PTS: 2 REF: 081830geo NAT: G.SRT.A.1 TOP: Line Dilations