JMAP

REGENTS AT RANDOM

NY Geometry Regents Exam Questions from Spring 2014 to August 2019

www.jmap.org

Geometry Regents at Random

1 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, x, to the nearest foot.

2 In the diagram below, circle O has a radius of 10 .

If $\mathrm{m} \overparen{A B}=72^{\circ}$, find the area of shaded sector $A O B$, in terms of π.

3 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

4 What are the coordinates of point C on the directed segment from $A(-8,4)$ to $B(10,-2)$ that partitions the segment such that $A C: C B$ is $2: 1$?

1) $(1,1)$
2) $(-2,2)$
3) $(2,-2)$
4) $(4,0)$

5 In the diagram of quadrilateral $A B C D$ with diagonal $\overline{A C}$ shown below, segments $G H$ and $E F$ are drawn, $\overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$.

Prove: $\overline{E F} \cong \overline{G H}$

6 In $\triangle A B C$ below, angle C is a right angle.

Which statement must be true?

1) $\sin A=\cos B$
2) $\sin A=\tan B$
3) $\sin B=\tan A$
4) $\sin B=\cos B$

7 In the diagram below of $\triangle A B C, D$ is a point on $\overline{B A}, E$ is a point on $\overline{B C}$, and $\overline{D E}$ is drawn.

If $B D=5, D A=12$, and $B E=7$, what is the length of $\overline{B C}$ so that $\overline{A C} \| \overline{D E}$?

1) 23.8
2) 16.8
3) 15.6
4) 8.6

8 In the diagram below, $\triangle A B E \cong \triangle C B D$.

Prove: $\triangle A F D \cong \triangle C F E$

9 In the diagram below of circle O, chords $\overline{J T}$ and $\overline{E R}$ intersect at M.

If $E M=8$ and $R M=15$, the lengths of $\overline{J M}$ and $\overline{T M}$ could be

1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

10 In the diagram below of circle K, secant $\overline{P L K E}$ and tangent $\overline{P Z}$ are drawn from external point P.

If $m \overparen{L Z}=56^{\circ}$, determine and state the degree measure of angle P.

11 A countertop for a kitchen is modeled with the dimensions shown below. An 18 -inch by 21 -inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?

1) 26
2) 23
3) 22
4) 19

12 Triangles ABC and RST are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle A B C \cong \triangle R S T$?

1) a line reflection over $y=x$
2) a rotation of 180° centered at $(1,0)$
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y=1$

13 The line $-3 x+4 y=8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y=\frac{4}{3} x+8$
2) $y=\frac{3}{4} x+8$
3) $y=-\frac{3}{4} x-8$
4) $y=-\frac{4}{3} x-8$

14 Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

15 The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

16 The expression $\sin 57^{\circ}$ is equal to

1) $\tan 33^{\circ}$
2) $\cos 33^{\circ}$
3) $\tan 57^{\circ}$
4) $\cos 57^{\circ}$

17 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

18 After a dilation with center (0,0), the image of $\overline{D B}$ is $\overline{D^{\prime} B^{\prime}}$. If $D B=4.5$ and $D^{\prime} B^{\prime}=18$, the scale factor of this dilation is

1) $\frac{1}{5}$
2) 5
3) $\frac{1}{4}$
4) 4

19 What is an equation of a circle whose center is $(1,4)$ and diameter is 10 ?

1) $x^{2}-2 x+y^{2}-8 y=8$
2) $x^{2}+2 x+y^{2}+8 y=8$
3) $x^{2}-2 x+y^{2}-8 y=83$
4) $x^{2}+2 x+y^{2}+8 y=83$

20 What is an equation of the image of the line $y=\frac{3}{2} x-4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?

1) $y=\frac{9}{8} x-4$
2) $y=\frac{9}{8} x-3$
3) $y=\frac{3}{2} x-4$
4) $y=\frac{3}{2} x-3$

21 Given points A, B, and C, use a compass and straightedge to construct point D so that $A B C D$ is a parallelogram. [Leave all construction marks.]

${ }^{\circ} \mathrm{A}$

${ }^{\bullet}$ B

22 As shown in the diagram below, secants $P W R$ and $\overrightarrow{P T S}$ are drawn to circle O from external point P.

If $\mathrm{m} \angle R P S=35^{\circ}$ and $\mathrm{m} \overparen{R S}=121^{\circ}$, determine and state mWT .

23 Parallelogram $A B C D$ is adjacent to rhombus $D E F G$, as shown below, and $\overline{F C}$ intersects $\overline{A G D}$ at H.

If $\mathrm{m} \angle B=118^{\circ}$ and $\mathrm{m} \angle A H C=138^{\circ}$, determine and state $\mathrm{m} \angle G F H$.

24 Square MATH has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square MATH around side $\overline{A T}$?

1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

25 Using the construction below, state the degree measure of $\angle C A D$. Explain why.

26 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

27 On the set of axes below, $\triangle A B C$, altitude $\overline{C G}$, and median $\overline{C M}$ are drawn.

Which expression represents the area of $\triangle A B C$?

1) $\frac{(B C)(A C)}{2}$
2) $\frac{(G C)(B C)}{2}$
3) $\frac{(C M)(A B)}{2}$
4) $\frac{(G C)(A B)}{2}$

28 Circle O with a radius of 9 is drawn below. The measure of central angle $A O C$ is 120°.

What is the area of the shaded sector of circle O ?

1) 6π
2) 12π
3) 27π
4) 54π

29 Given: Quadrilateral $M A T H, \overline{H M} \cong \overline{A T}$, $\overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$

Prove: $T A \bullet H A=H E \bullet T H$

30 In quadrilateral $Q R S T$, diagonals $\overline{Q S}$ and $\overline{R T}$ intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?

1) $\angle T Q R$ and $\angle Q R S$ are supplementary.
2) $\overline{Q M} \cong \overline{S M}$ and $\overline{Q T} \cong \overline{R S}$
3) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \cong \overline{R S}$
4) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \| \overline{R S}$

31 After a dilation centered at the origin, the image of $\overline{C D}$ is $\overline{C^{\prime} D^{\prime}}$. If the coordinates of the endpoints of these segments are $C(6,-4), D(2,-8), C^{\prime}(9,-6)$, and $D^{\prime}(3,-12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

32 Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.

33 A vendor is using an 8 -ft by 8 -ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft .

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768

34 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

35 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone

36 In the diagram of equilateral triangle $A B C$ shown below, E and F are the midpoints of $\overline{A C}$ and $\overline{B C}$, respectively.

If $E F=2 x+8$ and $A B=7 x-2$, what is the perimeter of trapezoid $A B F E$?

1) 36
2) 60
3) 100
4) 120

37 The coordinates of the endpoints of $\overline{Q S}$ are $Q(-9,8)$ and $S(9,-4)$. Point R is on $\overline{Q S}$ such that $Q R: R S$ is in the ratio of $1: 2$. What are the coordinates of point R ?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

38 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}=8 x-6 y+39$?

1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center ($4,-3$) and radius 8

39 If the altitudes of a triangle meet at one of the triangle's vertices, then the triangle is

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

40 On the set of axes below, $\triangle A B C$ has vertices at $A(-2,0), B(2,-4), C(4,2)$, and $\triangle D E F$ has vertices at $D(4,0), E(-4,8), F(-8,-4)$.

Which sequence of transformations will map $\triangle A B C$ onto $\triangle D E F$?

1) a dilation of $\triangle A B C$ by a scale factor of 2 centered at point A
2) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at point A
3) a dilation of $\triangle A B C$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin

41 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

42 On the set of axes below, $\triangle A B C$ is graphed with coordinates $A(-2,-1), B(3,-1)$, and $C(-2,-4)$. Triangle $Q R S$, the image of $\triangle A B C$, is graphed with coordinates $Q(-5,2), R(-5,7)$, and $S(-8,2)$.

Describe a sequence of transformations that would map $\triangle A B C$ onto $\triangle Q R S$.

43 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

County	$\mathbf{2 0 0 0}$ Census Population	$\mathbf{2 0 0 0}$ Land Area $\left(\mathrm{mi}^{2}\right)$
Broome	200,536	706.82
Dutchess	280,150	801.59
Niagara	219,846	522.95
Saratoga	200,635	811.84

Which county had the greatest population density?

1) Broome
2) Niagara
3) Dutchess
4) Saratoga

44 Triangle $A B C$ is shown below. Using a compass and straightedge, construct the dilation of $\triangle A B C$ centered at B with a scale factor of 2 . [Leave all construction marks.]

Is the image of $\triangle A B C$ similar to the original triangle? Explain why.

45 The area of a sector of a circle with a radius measuring 15 cm is $75 \pi \mathrm{~cm}^{2}$. What is the measure of the central angle that forms the sector?

1) 72°
2) 120°
3) 144°
4) 180°

46 In the diagram below of right triangle $A B C$, $A C=8$, and $A B=17$.

Which equation would determine the value of angle A?

1) $\sin A=\frac{8}{17}$
2) $\tan A=\frac{8}{15}$
3) $\quad \cos A=\frac{15}{17}$
4) $\tan A=\frac{15}{8}$

47 In parallelogram $P Q R S, \overline{Q P}$ is extended to point T and $\overline{S T}$ is drawn.

If $\overline{S T} \cong \overline{S P}$ and $\mathrm{m} \angle R=130^{\circ}$, what is $\mathrm{m} \angle P S T$?

1) 130°
2) 80°
3) 65°
4) 50°

48 As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, d, from the bottom of the stairs to the bottom of the ramp.

49 Given circle O with radius $\overline{O A}$, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]

50 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

51 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.

52 If the line represented by $y=-\frac{1}{4} x-2$ is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?

1) The slope is $-\frac{1}{4}$ and the y-intercept is -8 .
2) The slope is $-\frac{1}{4}$ and the y-intercept is -2 .
3) The slope is -1 and the y-intercept is -8 .
4) The slope is -1 and the y-intercept is -2 .

53 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?

1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
3) a cylinder with a radius of 5 inches and a height of 6 inches
4) a cylinder with a radius of 6 inches and a height of 5 inches

54 In rhombus TIGE, diagonals $\overline{T G}$ and $\overline{I E}$ intersect at R. The perimeter of TIGE is 68 , and $T G=16$.

What is the length of diagonal $\overline{I E}$?

1) 15
2) 30
3) 34
4) 52

55 A quadrilateral must be a parallelogram if

1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent

56 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

Cargo Trailer

Cargo Trailer Floor

If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

57 Write an equation of the line that is parallel to the line whose equation is $3 y+7=2 x$ and passes through the point $(2,6)$.

58 In right triangle $P R T, \mathrm{~m} \angle P=90^{\circ}$, altitude $\overline{P Q}$ is drawn to hypotenuse $\overline{R T}, R T=17$, and $P R=15$.

Determine and state, to the nearest tenth, the length of $\overline{R Q}$.

59 In right triangle $A B C$ shown below, point D is on $\overline{A B}$ and point E is on $\overline{C B}$ such that $\overline{A C} \| \overline{D E}$.

If $A B=15, B C=12$, and $E C=7$, what is the length of $\overline{B D}$?

1) 8.75
2) 6.25
3) 5
4) 4

60 Triangles $J O E$ and $S A M$ are drawn such that $\angle E \cong \angle M$ and $\overline{E J} \cong \overline{M S}$. Which mapping would not always lead to $\triangle J O E \cong \triangle S A M$?

1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) $\overline{E O}$ maps onto $\overline{M A}$
4) $\overline{J O}$ maps onto $\overline{S A}$

61 In parallelogram $A B C D$ shown below, $\mathrm{m} \angle D A C=98^{\circ}$ and $\mathrm{m} \angle A C D=36^{\circ}$.

What is the measure of angle B ? Explain why.

62 On the set of axes below, $\triangle D E F$ has vertices at the coordinates $D(1,-1), E(3,4)$, and $F(4,2)$, and point G has coordinates $(3,1)$. Owen claims the median from point E must pass through point G. Is Owen correct? Explain why.

63 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?

64 On the set of axes below, triangle $A B C$ is graphed. Triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the images of triangle $A B C$, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ and then maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ onto $\triangle A$ " $B^{\prime \prime} C$ ".

1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

65 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm .

How many cubic centimeters are in the volume of the cone?

1) 12.5π
2) 13.5π
3) 30.0π
4) 37.5π

66 Given right triangle $A B C$ with a right angle at C, $\mathrm{m} \angle B=61^{\circ}$. Given right triangle $R S T$ with a right angle at $T, \mathrm{~m} \angle R=29^{\circ}$.

Which proportion in relation to $\triangle A B C$ and $\triangle R S T$ is not correct?

1) $\frac{A B}{R S}=\frac{R T}{A C}$
2) $\frac{B C}{S T}=\frac{A B}{R S}$
3) $\frac{B C}{S T}=\frac{A C}{R T}$
4) $\frac{A B}{A C}=\frac{R S}{R T}$

Geometry Regents Exam Questions at Random
www.jmap.org
67 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

68 In right triangle $R S T$, altitude $\overline{T V}$ is drawn to hypotenuse $\overline{R S}$. If $R V=12$ and $R T=18$, what is the length of $\overline{S V}$?

1) $6 \sqrt{5}$
2) 15
3) $6 \sqrt{6}$
4) 27

69 The equation of a circle is $x^{2}+8 x+y^{2}-12 y=144$. What are the coordinates of the center and the length of the radius of the circle?

1) center (4,-6) and radius 12
2) center $(-4,6)$ and radius 12
3) center $(4,-6)$ and radius 14
4) center $(-4,6)$ and radius 14

70 In the diagram below of $\triangle A C D, \overline{D B}$ is a median to $\overline{A C}$, and $\overline{A B} \cong \overline{D B}$.

If $\mathrm{m} \angle D A B=32^{\circ}$, what is $\mathrm{m} \angle B D C$?

1) 32°
2) 52°
3) 58°
4) 64°

71 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

Which equation is always true?

1) $\frac{A D}{A C}=\frac{C D}{B C}$
2) $\frac{A D}{C D}=\frac{B D}{C D}$
3) $\frac{A C}{C D}=\frac{B C}{C D}$
4) $\frac{A D}{A C}=\frac{A C}{B D}$

72 In the diagram of quadrilateral NAVY below,
$\mathrm{m} \angle Y N A=30^{\circ}, \mathrm{m} \angle Y A N=38^{\circ}, \mathrm{m} \angle A V Y=94^{\circ}$, and $\mathrm{m} \angle V A Y=46^{\circ}$.

Which segment has the shortest length?

1) $\overline{A Y}$
2) $\overline{N Y}$
3) $\overline{V A}$
4) $\overline{V Y}$

73 On the set of axes below, $\overline{A B}$ is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $\overline{P A} \cong \overline{A A^{\prime}}$
2) $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
3) $A B=A^{\prime} B^{\prime}$
4) $\frac{5}{2}\left(A^{\prime} B^{\prime}\right)=A B$

74 Which equation represents a line parallel to the line whose equation is $-2 x+3 y=-4$ and passes through the point $(1,3)$?

1) $y-3=-\frac{3}{2}(x-1)$
2) $y-3=\frac{2}{3}(x-1)$
3) $y+3=-\frac{3}{2}(x+1)$
4) $y+3=\frac{2}{3}(x+1)$

75 In the diagram below, $\overline{B C}$ connects points B and C on the congruent sides of isosceles triangle $A D E$, such that $\triangle A B C$ is isosceles with vertex angle A.

If $A B=10, B D=5$, and $D E=12$, what is the length of $\overline{B C}$?

1) 6
2) 7
3) 8
4) 9

76 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$ and $A C \neq B C$. Which trigonometric ratio is equivalent to $\sin B$?

1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

77 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm ?

1) 8192.0
2) $13,653 . \overline{3}$
3) $32,768.0$
4) $54,613 . \overline{3}$

78 In rhombus VENU, diagonals $\overline{V N}$ and $\overline{E U}$ intersect at S. If $V N=12$ and $E U=16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10

79 In the diagram below, chords $\overline{P Q}$ and $\overline{R S}$ of circle O intersect at T.

Which relationship must always be true?

1) $R T=T Q$
2) $R T=T S$
3) $R T+T S=P T+T Q$
4) $R T \times T S=P T \times T Q$

80 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?

1) 543
2) 555
3) 1086
4) 1110

81 In the diagram below of parallelogram $A B C D$,
$\overline{A F G B}, \overline{C F}$ bisects $\angle D C B, \overline{D G}$ bisects $\angle A D C$, and $\overline{C F}$ and $\overline{D G}$ intersect at E.

If $\mathrm{m} \angle B=75^{\circ}$, then the measure of $\angle E F A$ is

1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°

82 Which transformation carries the parallelogram below onto itself?

1) a reflection over $y=x$
2) a reflection over $y=-x$
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

83 In circle O two secants, $\overline{A B P}$ and $\overline{C D P}$, are drawn to external point P. If $\mathrm{m} \overparen{A C}=72^{\circ}$, and $\mathrm{m} \overparen{B D}=34^{\circ}$, what is the measure of $\angle P$?

1) 19°
2) 38°
3) 53°
4) 106°

84 A triangle has vertices $A(-2,4), B(6,2)$, and $C(1,-1)$. Prove that $\triangle A B C$ is an isosceles right triangle. [The use of the set of axes below is optional.]

85 What is the volume of a hemisphere that has a diameter of 12.6 cm , to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2

86 In the diagram below of right triangle $K M I$, altitude $\overline{I G}$ is drawn to hypotenuse $\overline{K M}$.

If $K G=9$ and $I G=12$, the length of $\overline{I M}$ is

1) 15
2) 16
3) 20
4) 25

87 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?

1) 1.10
2) 1.62
3) 2.48
4) 3.81

88 What is an equation of a line that is perpendicular to the line whose equation is $2 y+3 x=1$?

1) $y=\frac{2}{3} x+\frac{5}{2}$
2) $y=\frac{3}{2} x+2$
3) $y=-\frac{2}{3} x+1$
4) $y=-\frac{3}{2} x+\frac{1}{2}$

89 In the diagram below, $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which information is always sufficient to prove $\triangle A B E \cong \triangle C D E$?

1) $\overline{A B} \| \overline{C D}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B E} \cong \overline{D E}$
3) E is the midpoint of $\overline{A C}$.
4) $\overline{B D}$ and $\overline{A C}$ bisect each other.

90 In $\triangle A B C$ shown below, $\angle A C B$ is a right angle, E is a point on $\overline{A C}$, and $\overline{E D}$ is drawn perpendicular to hypotenuse $\overline{A B}$.

If $A B=9, B C=6$, and $D E=4$, what is the length of $\overline{A E}$?

1) 5
2) 6
3) 7
4) 8

91 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) 180° rotation counterclockwise about the origin
2) reflection over the line $y=\frac{1}{2} x+1$
3) reflection over the line $y=0$
4) reflection over the line $x=0$

92 Chelsea is sitting 8 feet from the foot of a tree.
From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?

1) 8
2) 7
3) 6
4) 4

93 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?

1) 6.3
2) 7.0
3) 12.9
4) 13.6

94 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of $\$ 3.95$ per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft . Nancy fills her pool with a water delivery service at a rate of $\$ 200$ per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.
[$1 \mathrm{ft}^{3}$ water $=7.48$ gallons]

95 On the set of axes below, $\triangle A B C \cong \triangle D E F$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

96 In the diagram below, $\triangle A B C$ with sides 13,15 , and 16 , is mapped onto $\triangle D E F$ after a clockwise rotation of 90° about point P.

${ }^{\bullet} \mathrm{P}$
If $D E=2 x-1$, what is the value of x ?

1) 7
2) 7.5
3) 8
4) 8.5

97 Point M divides $\overline{A B}$ so that $A M: M B=1: 2$. If A has coordinates $(-1,-3)$ and B has coordinates $(8,9)$, the coordinates of M are

1) $(2,1)$
2) $\left(\frac{5}{3}, 0\right)$
3) $(5,5)$
4) $\left(\frac{23}{3}, 8\right)$

98 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of $6 \frac{1}{2}$ feet and a height of 12 inches. The pool is filled with water to $\frac{2}{3}$ of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.

99 Riley plotted $A(-1,6), B(3,8), C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $A B C D$ is a trapezoid. [The use of the set of axes on the next page is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $A B C D$ is not an isosceles trapezoid.

100 Determine and state the area of triangle $P Q R$, whose vertices have coordinates $P(-2,-5), Q(3,5)$, and $R(6,1)$. [The use of the set of axes below is optional.]

On the set of axes below, $\triangle A B C \cong \triangle S T U$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle S T U$.

102 In the diagram below of triangle $A B C, \overline{A C}$ is extended through point C to point D, and $\overline{B E}$ is drawn to $\overline{A C}$.

Which equation is always true?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 5=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
3) $\mathrm{m} \angle 6=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
4) $\mathrm{m} \angle 7=\mathrm{m} \angle 3+\mathrm{m} \angle 2$

103 The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?

1) a reflection over the shorter diagonal
2) a reflection over the longer diagonal
3) a clockwise rotation of 90° about the intersection of the diagonals
4) a counterclockwise rotation of 180° about the intersection of the diagonals

Geometry Regents at Random

104 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

105 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456

106 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that $E^{\prime \prime}$ is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

107 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

108 The vertices of $\triangle A B C$ have coordinates $A(-2,-1)$, $B(10,-1)$, and $C(4,4)$. Determine and state the area of $\triangle A B C$. [The use of the set of axes below is optional.]

109 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

110 In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

111 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

112 A circle has a center at $(1,-2)$ and radius of 4. Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

113 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

114 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

115 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

116 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

117 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

118 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

119 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C ?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

120 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?

1) $9 \sqrt{3}+15$
2) $9 \sqrt{5}+15$
3) 45
4) 90

121 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

122 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

123 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

124 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

125 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

126 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?

1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$

127 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

129 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

130 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?

1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

131 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

132 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?

1) 5
2) 10
3) 20
4) 40

133 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?

1) $\overline{E A}$ bisects angle $Z E T$.
2) Triangle $E Z T$ is equilateral.
3) $\overline{E A}$ is a median of triangle $E Z T$.
4) Angle Z is congruent to angle T.

134 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

135 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C " D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

136 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

137 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?

1) $\frac{8 \pi}{3}$
2) $\frac{16 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{64 \pi}{3}$

138 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

139 Triangles RST and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

140 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

141 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

142 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

143 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $\overline{A D} \perp \overline{D E}$
3) $A C=C E$
4) $\overline{B C} \| \overline{D E}$

144 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

145 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

146 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1) $y+1=\frac{4}{3}(x+3)$
2) $y+1=-\frac{3}{4}(x+3)$
3) $y-6=\frac{4}{3}(x-8)$
4) $y-6=-\frac{3}{4}(x-8)$

147 Which figure can have the same cross section as a sphere?
1)

2)

3)

148 In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

149 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector $C O B$:

$$
\begin{array}{ll}
\text { Amy } & \frac{3}{10} \cdot \pi \cdot(B C)^{2} \\
\text { Beth } & \frac{108}{360} \cdot \pi \cdot(O C)^{2} \\
\text { Carl } & \frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2} \\
\text { Dex } & \frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}
\end{array}
$$

Which students wrote correct formulas?

1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

150 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

151 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

152 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?

1) $\triangle A B D$ is obtuse.
2) $\triangle A B C$ is isosceles.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\triangle A B D$ is scalene.

153 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

154 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS ?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

155 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

156 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at \underline{G} and $\underline{H,}$, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why
$A B$$\overline{C D}$.

157 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle \mathrm{A}}{\mathrm{m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

158 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

159 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

160 Triangle XYZ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

\qquad

161 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates $(4,2)$, and B has coordinates (22,2), determine and state the coordinates of P.

163 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

164 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

165 Two right triangles must be congruent if

1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

166 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove
$\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

167 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

168 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

169 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

170 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

171 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $\$ 50,000$.

172 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

173 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

174 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

175 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

176 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle $K L M N$ using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

177 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

178 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

179 Which transformation would not always produce an image that would be congruent to the original figure?

1) translation
2) dilation
3) rotation
4) reflection

180 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

181 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

182 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

183 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?

1) $\overline{A D}, \overline{B D}$
2) $\overline{A C}, \overline{B C}$
3) $\overline{A E}, \overline{B E}$
4) $\overline{D E}, \overline{C E}$

184 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945

185 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

187 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

188 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

189 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle B C D$ is a right triangle.
2) $\triangle B C D$ is an isosceles triangle.
3) $\triangle B A D$ and $\triangle C B D$ are similar triangles.
4) $\triangle B A D$ and $\triangle C A D$ are congruent triangles.

190 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

191 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

192 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

193 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

194 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=\underline{24, D B}=12$, and $D E=4$, what is the length of $\overline{A C}$?

1) 8
2) 12
3) 16
4) 72

195 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

196 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

197 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

198 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

199 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

200 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

201 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

202 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

203 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) $(8.5)^{3}-\pi(8)^{2}(8)$
2) $(8.5)^{3}-\pi(4)^{2}(8)$
3) $(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
4) $(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

204 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

Geometry Regents Exam Questions at Random www.jmap.org

205 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$	(1) Given
(2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(2)
(3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$	(3)
(4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$	(4)

206 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23 ?$

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

208 In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle K A E$ and $\triangle I T E$ are drawn, $\overparen{K E} \cong \overparen{E I}$, and $\angle E K A \cong \angle E I T$.

Which statement about $\triangle K A E$ and $\triangle I T E$ is always true?

1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

209 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

210 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

211 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

212 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

213 Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove
$\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS?

1) $\angle C D B \cong \angle A E B$
2) $\angle A F D \cong \angle E F C$
3) $\overline{A D} \cong \overline{C E}$
4) $\overline{A E} \cong \overline{C D}$

214 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

215 Prove the sum of the exterior angles of a triangle is 360°.

216 Triangle $M N P$ is the image of triangle $J K L$ after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

217 The diagram below shows parallelogram $L M N O$ with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

218 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

219 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

220 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

221 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

222 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

223 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center ($0,-3$) and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

224 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

225 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

226 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

227 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

228 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

229 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

230 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

231 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

232 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

233 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

234 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

235 In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

236 In the diagram below of circle $\overline{O,} \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?

1) $\angle B A C \cong \angle B O C$
2) $\mathrm{m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
3) $\triangle B A C$ and $\triangle B O C$ are isosceles.
4) The area of $\triangle B A C$ is twice the area of $\triangle B O C$.

237 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

238 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

239 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?

1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$
4) $\tan E=\frac{T M}{J M}$

240 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A B} \cong \overline{B C}$
3) $\overline{A C} \perp \overline{D B}$
4) $\overline{A C}$ bisects $\angle D C B$

Geometry Regents Exam Questions at Random www.jmap.org

241 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed.
Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

242 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

243 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong \angle R D O$.

If $R D=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?

1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15

244 Which object is formed when right triangle RST shown below is rotated around leg $\overline{R S}$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

245 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

246 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

247 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

248 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

249 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $\underline{T U}=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

250 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

251 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$

252 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

253 Kevin's work for deriving the equation of a circle is shown below.

$$
x^{2}+4 x=-\left(y^{2}-20\right)
$$

STEP $1 x^{2}+4 x=-y^{2}+20$
STEP $2 x^{2}+4 x+4=-y^{2}+20-4$
STEP $3(x+2)^{2}=-y^{2}+20-4$
STEP $4(x+2)^{2}+y^{2}=16$
In which step did he make an error in his work?

1) Step 1
2) Step 2
3) Step 3
4) Step 4

254 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

255 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

256 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

257 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

258 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

259 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

260 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

261 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

262 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

263 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

264 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

265 Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

266 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

Geometry Regents Exam Questions at Random www.jmap.org

267
Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

268 Given: Parallelogram $A B C D, E F G$, and diagonal $D F B$

Prove: $\triangle D E F \sim \triangle B G F$

269 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

270 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

271 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

272 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

273 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

274 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

$\underline{\text { If } A D=4}$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

1) $2 \sqrt{6}$
2) $2 \sqrt{10}$
3) $2 \sqrt{15}$
4) $4 \sqrt{2}$

275 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

276 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $-\frac{1}{2}$
4) $-\frac{5}{2}$

277 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is $1: 2$. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

278 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

279 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

280 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

3)

4)

281 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

282 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

283 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle

284 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

285 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

286 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.

287 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
1)
2)

3)

4)

288 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

289 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

290 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

291 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

292 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

293 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

294 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

295 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

296 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

297 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

298 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

299 Using the information given below, which set of triangles can not be proven similar?
1)

2)

3)
4)

300 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

301 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

302 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

303 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

304 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3

305 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

306 Given $\triangle A B C \cong \triangle D E F$, which statement is not always true?

1) $\overline{B C} \cong \overline{D F}$
2) $\mathrm{m} \angle A=\mathrm{m} \angle D$
3) area of $\triangle A B C=$ area of $\triangle D E F$
4) perimeter of $\triangle A B C=$ perimeter of $\triangle D E F$

307 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?

1) $6 \sqrt{3}$
2) $6 \sqrt{10}$
3) $6 \sqrt{14}$
4) $6 \sqrt{35}$

308 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

309 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $C B$?

1) 10
2) 12
3) 17
4) 22.5

310 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\triangle J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

311 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

312 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?

1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

313 The diagram below shows two similar triangles.

If $\tan \theta=\frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

Geometry Regents at Random

314 In quadrilateral $B L U E$ shown below, $\overline{B E} \cong \overline{U L}$.

Which information would be sufficient to prove quadrilateral BLUE is a parallelogram?

1) $\overline{B L} \| \overline{E U}$
2) $\overline{L U} \| \overline{B E}$
3) $\overline{B E} \cong \overline{B L}$
4) $\overline{L U} \cong \overline{E U}$

315 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

316 When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Alex wrote the equation $\sin 28^{\circ}=\frac{H J}{20}$ while Marlene wrote $\cos 62^{\circ}=\frac{H J}{20}$. Are both students' equations correct? Explain why.

317 The diagram below shows circle O with diameter $\overline{A B}$. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

318 In the diagram below, if $\triangle A B E \cong \triangle C D F$ and $\overline{A E F C}$ is drawn, then it could be proven that quadrilateral $A B C D$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

319 The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of $R S T V$?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

320 The vertices of $\triangle P Q R$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle P Q R$ are distance and angle measure preserved?

1) $(x, y) \rightarrow(2 x, 3 y)$
2) $(x, y) \rightarrow(x+2,3 y)$
3) $(x, y) \rightarrow(2 x, y+3)$
4) $(x, y) \rightarrow(x+2, y+3)$

321 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{C B} \cong \overline{T R}$
4) $\overline{C A} \cong \overline{T S}$

322 What is an equation of circle O shown in the graph below?

1) $x^{2}+10 x+y^{2}+4 y=-13$
2) $x^{2}-10 x+y^{2}-4 y=-13$
3) $x^{2}+10 x+y^{2}+4 y=-25$
4) $x^{2}-10 x+y^{2}-4 y=-25$

323 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25

324 Given: Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$

Prove: BEDF is a rectangle

325 In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?

1) $\frac{A D}{D E}$
2) $\frac{A E}{A D}$
3) $\frac{B C}{A B}$
4) $\frac{A B}{A C}$

326 A parallelogram must be a rhombus if its diagonals

1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other

327 The line whose equation is $3 x-5 y=4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?

1) The image of the line has the same slope as the pre-image but a different y-intercept.
2) The image of the line has the same y-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same y-intercept as the pre-image.
4) The image of the line has a different slope and a different y-intercept from the pre-image.

328 In the diagram below of circle $O, G O=8$ and $\mathrm{m} \angle G O J=60^{\circ}$.

What is the area, in terms of π, of the shaded region?

1) $\frac{4 \pi}{3}$
2) $\frac{20 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{160 \pi}{3}$

329 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

330 Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

331 The coordinates of the endpoints of $\overline{A B}$ are $A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is $3: 5$?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

332 Quadrilateral $A B C D$ is inscribed in circle O, as shown below.

If $\mathrm{m} \angle A=80^{\circ}, \mathrm{m} \angle B=75^{\circ}, \mathrm{m} \angle C=(y+30)^{\circ}$, and $\mathrm{m} \angle D=(x-10)^{\circ}$, which statement is true?

1) $x=85$ and $y=50$
2) $x=90$ and $y=45$
3) $x=110$ and $y=75$
4) $x=115$ and $y=70$

333 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

334 The equation of a circle is $x^{2}+y^{2}-6 x+2 y=6$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(-3,1)$ and radius 4
2) center $(3,-1)$ and radius 4
3) center $(-3,1)$ and radius 16
4) center ($3,-1$) and radius 16

335 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

336 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

337 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?

1) $\overline{B D}$ bisects $\overline{A C}$.
2) $\overline{A B}$ is parallel to $\overline{C D}$.
3) $\overline{A C}$ is congruent to $\overline{B D}$.
4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

338 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

339 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.

340 In circle A below, chord $\overline{B C}$ and diameter $\overline{D A E}$ intersect at F.

If $\mathrm{m} \overparen{C D}=46^{\circ}$ and $\mathrm{m} \overparen{D B}=102^{\circ}$, what is $\mathrm{m} \angle C F E$?

341 In the circle below, $\overline{A B}$ is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

342 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°

343
In square $G E O M$, the coordinates of G are $(2,-2)$ and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

344 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$
II. $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$

1) II, only
2) I and II
3) II and III
4) II, III, and IV

345 The vertices of quadrilateral MATH have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral MATH is a rectangle. [The use of the set of axes below is optional.]

346 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

347 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

348 Given: $\triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$
Prove: $\overline{B D E}$ is the perpendicular bisector of $\overline{A C}$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$	1 Given
$2 \overline{\overline{B D} \cong \overline{B D}}$	2
$3 \angle B D A$ and $\angle A D E$ are supplementary. $\angle B D C$ and $\angle C D E$ are supplementary.	3 Linear pairs of angles are supplementary.
4	4 Supplements of congruent angles are congruent.
$5 \triangle A B D \cong \triangle C B D$	5 ASA
$6 \overline{A D} \cong \overline{C D}, \overline{A B} \cong \overline{C B}$	6
$7 \overline{B D E}$ is the perpendicular bisector of $\overline{A C}$.	7

351 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

352 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of RSTV after the dilation?

1) 12
2) 27
3) 36
4) 108

353 In $\triangle A B C$ shown below, side $\overline{A C}$ is extended to point D with $\mathrm{m} \angle D A B=(180-3 x)^{\circ}$, $\mathrm{m} \angle B=(6 x-40)^{\circ}$, and $\mathrm{m} \angle C=(x+20)^{\circ}$.

What is $\mathrm{m} \angle B A C$?

1) 20°
2) 40°
3) 60°
4) 80°

354 If $\triangle A B C$ is mapped onto $\triangle D E F$ after a line reflection and $\triangle D E F$ is mapped onto $\triangle X Y Z$ after a translation, the relationship between $\triangle A B C$ and $\triangle X Y Z$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

355 In the diagram below, $A C=7.2$ and $C E=2.4$.

Which statement is not sufficient to prove $\triangle A B C \sim \triangle E D C$?

1) $\overline{A B} \| \overline{E D}$
2) $D E=2.7$ and $A B=8.1$
3) $C D=3.6$ and $B C=10.8$
4) $D E=3.0, A B=9.0, C D=2.9$, and $B C=8.7$

356 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

357 Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of rectangle $A B C D$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $A B C D$.
2) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $A B C D$.
3) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{2}{3}$ the area of rectangle $A B C D$.
4) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{3}{2}$ the area of rectangle $A B C D$.

358 In the diagram of $\triangle A B C$ below, $\overline{D E}$ is parallel to $\overline{A B}, C D=15, A D=9$, and $A B=40$.

The length of $\overline{D E}$ is

1) 15
2) 24
3) 25
4) 30

359 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$

360 The equation of a circle is $x^{2}+y^{2}-12 y+20=0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,6)$ and radius 4
2) center $(0,-6)$ and radius 4
3) center $(0,6)$ and radius 16
4) center ($0,-6$) and radius 16

361 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

362 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

363 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?

1) 60°
2) 108°
3) 216°
4) 540°

364 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

365 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

366 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6 -foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

367 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

368 In regular hexagon $A B C D E F$ shown below, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1) $\triangle F E G$
2) $\triangle A F G$
3) $\triangle C B G$
4) $\triangle D E G$

369 In the diagram below, tangent $\overline{D A}$ and secant $\overline{D B C}$ are drawn to circle O from external point D, such that $\overparen{A C} \cong \overparen{B C}$.

If $\mathrm{m} \overparen{B C}=152^{\circ}$, determine and state $\mathrm{m} \angle D$.

370 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?

372 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

373 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $\$ 0.29$ per kilogram, and has a density of 7.95 $\mathrm{g} / \mathrm{cm}^{3}$. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

374 Given: Right triangle $A B C$ with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

375 The diagram shows rectangle $A B C D$, with diagonal $\overline{B D}$.

What is the perimeter of rectangle $A B C D$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4

376 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

377 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

378 In the diagram of $\triangle A B C$ below, points D and E are on sides $\overline{A B}$ and $\overline{C B}$ respectively, such that $\overline{D E} \| \overline{A C}$.

If $E B$ is 3 more than $D B, A B=14$, and $C B=21$, what is the length of $\overline{A D}$?

1) 6
2) 8
3) 9
4) 12

379 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$. If $\cos B=\frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

380 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

381 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$

382 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a

1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

383 On the set of axes below, the vertices of $\triangle P Q R$ have coordinates $P(-6,7), Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle P Q R$?

1) 10
2) 20
3) 25
4) 50

384 Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

385 A fabricator is hired to make a 27 -foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025

386 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?

1) 68.6
2) 80.9
3) 109.8
4) 244.4

387 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

388 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $\overline{T C}$ and path $\overline{C S}$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

389 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?

1) $(10,3)$
2) $(-12,13)$
3) $(11,2 \sqrt{12})$
4) $(-8,5 \sqrt{21})$

390
In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $R S=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?

392 Which rotation about its center will carry a regular decagon onto itself?

1) 54°
2) 162°
3) 198°
4) 252°

393 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by $y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?

1) $y=-3 x+12$
2) $y=-3 x+6$
3) $y=-6 x+12$
4) $y=-6 x+6$

394 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

395 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon

396 Rhombus STAR has vertices $S(-1,2), T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus STAR?

1) $\sqrt{34}$
2) $4 \sqrt{34}$
3) $\sqrt{10}$
4) $4 \sqrt{10}$

397 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

398 In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

399 In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.

Geometry Regents Exam Questions at Random

www.jmap.org

400 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [$1 \mathrm{ft}^{3}=7.48$ gallons]

401 In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

402 In triangle $A B C$, points D and E are on sides $\overline{A B}$ and $\overline{B C}$, respectively, such that $\overline{D E} \| \overline{A C}$, and $A D: D B=3: 5$.

If $D B=6.3$ and $A C=9.4$, what is the length of $D E$, to the nearest tenth?

1) 3.8
2) 5.6
3) 5.9
4) 15.7

403 The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

404 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is

1) 13
2) 9
3) 6
4) 4

405 Quadrilateral MATH has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral MATH is always true?

1) $\overline{M T} \cong \overline{A H}$
2) $\angle M H T \cong \angle A T H$
3) $\angle M A T \cong \angle M H T$

406 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $\overline{P R}$. [The use of the set of axes below is optional.]

407 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A C=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

408 In the diagram below, a sequence of rigid motions maps $A B C D$ onto JKLM.

If $\mathrm{m} \angle A=82^{\circ}, \mathrm{m} \angle B=104^{\circ}$, and $\mathrm{m} \angle L=121^{\circ}$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

409 The pyramid shown below has a square base, a height of 7 , and a volume of 84 .

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

410 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

411 In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

412 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

413 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

414 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?

1) 17,869
2) 24,937
3) 39,074
4) 67,349

415 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm . The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm} 3$, and the cost of aluminum is $\$ 0.38$ per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

416 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

1) $\frac{120}{360}(6 \pi)$
2) $120(6)$
3) $\frac{1}{3}(36 \pi)$
4) $\frac{1}{3}(12 \pi)$

417 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R^{\prime} J^{\prime} M^{\prime}$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

418 Line segment $R W$ has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on $\overline{R W}$ such that $R P: P W$ is
2:3. What are the coordinates of point P ?

1) $(2,9)$
2) $(0,11)$
3) $(2,14)$
4) $(10,2)$

419 In the diagram of $\triangle R S T$ below, $\mathrm{m} \angle T=90^{\circ}$, $R S=65$, and $S T=60$.

What is the measure of $\angle S$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°

420 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

421 Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$. Explain why this transformation makes triangle $A D E$ similar to triangle $A B C$.

422 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

423 In the diagram below, $\triangle A D E$ is the image of $\triangle A B C$ after a reflection over the line $A C$ followed by a dilation of scale factor $\frac{A E}{A C}$ centered at point A.

Which statement must be true?

1) $\mathrm{m} \angle B A C \cong \mathrm{~m} \angle A E D$
2) $\mathrm{m} \angle A B C \cong \mathrm{~m} \angle A D E$
3) $\mathrm{m} \angle D A E \cong \frac{1}{2} \mathrm{~m} \angle B A C$
4) $\mathrm{m} \angle A C B \cong \frac{1}{2} \mathrm{~m} \angle D A B$

424 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?

1) 48°
2) 47°
3) 43°
4) 34°

425
As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

426 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180
2) 405
3) 540
4) 1215

427 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

428 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.

429 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

430 In a right triangle, the acute angles have the relationship $\sin (2 x+4)=\cos (46)$. What is the value of x ?

1) 20
2) 21
3) 24
4) 25

431 Given $\triangle M R O$ shown below, with trapezoid PTRO, $M R=9, M P=2$, and $P O=4$.

What is the length of $\overline{T R}$?

1) 4.5
2) 5
3) 3
4) 6

432 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

433 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle E D F$, and has already proven $\overline{A B} \cong \overline{D E}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle A B C \cong \triangle D E F$?

1) $\overline{A C} \cong \overline{D F}$ and SAS
2) $\overline{B C} \cong \overline{E F}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle C B A \cong \angle F E D$ and ASA

434 Which equation represents a line that is perpendicular to the line represented by $y=\frac{2}{3} x+1$?

1) $3 x+2 y=12$
2) $3 x-2 y=12$
3) $y=\frac{3}{2} x+2$
4) $y=-\frac{2}{3} x+4$

435 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $\$ 3.25$ per cubic foot.

How much money will it cost Ian to replace the two concrete sections?

436 Trapezoids $A B C D$ and $A " B " C " D$ " are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A " B " C " D "$.

437 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

438 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

439 Given: Trapezoid JKLM with $\overline{J K} \| \overline{M L}$ Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

440 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=130$.

What is $\mathrm{m} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

441 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is 82.8 cm^{3} ?

1) 6
2) 2
3) 9
4) 18

442 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3 \frac{3}{4}$
2) 5
3) 15
4) $24 \frac{3}{4}$

443 Identify which sequence of transformations could map pentagon $A B C D E$ onto pentagon
$A " B " C " D$ " $"$, as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

444 In $\triangle A B C, \overline{B D}$ is the perpendicular bisector of $\overline{A D C}$. Based upon this information, which statements below can be proven?
I. $\overline{B D}$ is a median.
II. $B D$ bisects $\angle A B C$.
III. $\triangle A B C$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

445 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at $C, \mathrm{~m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?

1) $\mathrm{m} \angle D=28^{\circ}$
2) $m \angle A=43^{\circ}$
3) $\mathrm{m} \angle A C D=71^{\circ}$
4) $\mathrm{m} \angle B C E=109^{\circ}$

446 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $B D=4, A D=x-6$, and $C D=x$, what is the length of $\overline{C D}$?

1) 5
2) 2
3) 8
4) 11

Geometry Regents Exam Questions at Random www.jmap.org

447 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

448 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below. Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$. Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

449 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°

450 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

451 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).

452 In the diagram below, $\overline{D E}$ divides $\overline{A B}$ and $\overline{A C}$ proportionally, $\mathrm{m} \angle C=26^{\circ}, \mathrm{m} \angle A=82^{\circ}$, and $\overline{D F}$ bisects $\angle B D E$.

The measure of angle $D F B$ is

1) 36°
2) 54°
3) 72°
4) 82°

453 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by SSS.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

454 Parallelogram $H A N D$ is drawn below with diagonals $\overline{H N}$ and $\overline{A D}$ intersecting at S.

Which statement is always true?

1) $A N=\frac{1}{2} A D$
2) $A S=\frac{1}{2} A D$
3) $\angle A H S \cong \angle A N S$
4) $\angle H D S \cong \angle N D S$

455 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

456 In the diagram below, $\overline{A F}$, and $\overline{D B}$ intersect at C, and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}$, $\mathrm{m} \angle C B E=115^{\circ}, D C=7.2, A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

457 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

458 Bob places an 18 -foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

459 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $A B C D E F$. [Leave all construction marks.]

If chords $\overline{F B}$ and $\overline{F C}$ are drawn, which type of triangle, according to its angles, would $\triangle F B C$ be? Explain your answer.

460 In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to

1) $A B+B C+A C$
2) $\frac{1}{2} A B+\frac{1}{2} A C$
3) $2 A B+2 A C$
4) $A B+A C$

461 In circle M below, diameter $\overline{A C}$, chords $\overline{A B}$ and $\overline{B C}$, and radius $\overline{M B}$ are drawn.

Which statement is not true?

1) $\triangle A B C$ is a right triangle.
2) $\triangle A B M$ is isosceles.
3) $\mathrm{m} \overparen{B C}=\mathrm{m} \angle B M C$
4) $\mathrm{m} \overparen{A B}=\frac{1}{2} \mathrm{~m} \angle A C B$

462 The equation of a circle is $x^{2}+y^{2}-6 y+1=0$. What are the coordinates of the center and the length of the radius of this circle?

1) center $(0,3)$ and radius $=2 \sqrt{2}$
2) center $(0,-3)$ and radius $=2 \sqrt{2}$
3) center $(0,6)$ and radius $=\sqrt{35}$
4) center $(0,-6)$ and radius $=\sqrt{35}$

463 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?

1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

464 An equation of circle O is $x^{2}+y^{2}+4 x-8 y=-16$. The statement that best describes circle O is the
$1)$ center is $(2,-4)$ and is tangent to the x-axis
$2)$ center is $(2,-4)$ and is tangent to the y-axis
$3)$ center is $(-2,4)$ and is tangent to the x-axis
4) center is $(-2,4)$ and is tangent to the y-axis

465 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.

466 In the diagram below of triangle $M N O, \angle M$ and $\angle O$ are bisected by $\overline{M S}$ and $\overline{O R}$, respectively. Segments $M S$ and $O R$ intersect at T, and $\mathrm{m} \angle N=40^{\circ}$.

If $\mathrm{m} \angle T M R=28^{\circ}$, the measure of angle $O T S$ is

1) 40°
2) 50°
3) 60°
4) 70°

467 In the diagram below of $\triangle A B C, \angle A B C$ is a right angle, $A C=12, A D=8$, and altitude $\overline{B D}$ is drawn.

What is the length of $\overline{B C}$?

1) $4 \sqrt{2}$
2) $4 \sqrt{3}$
3) $4 \sqrt{5}$
4) $4 \sqrt{6}$

468 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \overparen{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?

1) 108°
2) 65°
3) 44°
4) 14°

469 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96

470 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

471 On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B^{\prime} and C^{\prime} after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?

1) $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
2) $B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
3) $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
4) $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

472 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

473 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?

1) $3(M C)=S C$
2) $M C=\frac{1}{3}(S M)$
3) $R M=2 M C$
4) $S M=K M$

474 Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle KLM a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

475 Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

476 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

477 Yolanda is making a springboard to use for gymnastics. She has 8 -inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, x ?

1) 2.3
2) 8.3
3) 27.0
4) 28.2

478 In the diagram below of isosceles triangle $A B C$, $\overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $\mathrm{m} \angle B A C=50^{\circ}$, find $\mathrm{m} \angle A X C$.

479 In the two distinct acute triangles $A B C$ and $D E F$, $\angle B \cong \angle E$. Triangles $A B C$ and $D E F$ are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) $\overline{A C}$ onto $\overline{D F}$, and $\overline{B C}$ onto $\overline{E F}$
3) $\angle C$ onto $\angle F$, and $\overline{B C}$ onto $\overline{E F}$
4) point A onto point D, and $\overline{A B}$ onto $\overline{D E}$

480 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

481 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

1) 5.2
2) 6.5
3) 13.1
4) 26.2

482 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.

483 In the diagram below, $\mathrm{m} \widehat{A B C}=268^{\circ}$.

What is the number of degrees in the measure of $\angle A B C$?

1) 134°
2) 92°
3) 68°
4) 46°

484 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm . Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

485 In the diagram below, $\overline{A K S}, \overline{N K C}, \overline{A N}$, and $\overline{S C}$ are drawn such that $\overline{A N} \cong \overline{S C}$.

Which additional statement is sufficient to prove $\triangle K A N \cong \triangle K S C$ by AAS?

1) $\overline{A S}$ and $\overline{N C}$ bisect each other.
2) K is the midpoint of $\overline{N C}$.
3) $\overline{A S} \perp \overline{C N}$
4) $\overline{A N} \| \overline{S C}$

486 The coordinates of the endpoints of directed line segment $A B C$ are $A(-8,7)$ and $C(7,-13)$. If $A B: B C=3: 2$, the coordinates of B are

1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

487 Point Q is on $\overline{M N}$ such that $M Q: Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are

1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

488 In the diagram below of right triangle $A E D$, $\overline{B C} \| \overline{D E}$.

Which statement is always true?

1) $\frac{A C}{B C}=\frac{D E}{A E}$
2) $\frac{A B}{A D}=\frac{B C}{D E}$
3) $\frac{A C}{C E}=\frac{B C}{D E}$
4) $\frac{D E}{B C}=\frac{D B}{A B}$

489 Triangle $Q R S$ is graphed on the set of axes below.

On the same set of axes, graph and label $\Delta Q^{\prime} R^{\prime} S^{\prime}$, the image of $\triangle Q R S$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q^{\prime} R^{\prime} \| Q R$.

490 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, $\overline{H A}, \overline{F G}$, and $\overline{D E}$, are congruent, and all three step runs, $\overline{H G}, \overline{F E}$, and $\overline{D C}$, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle C A B=36^{\circ}$ and $\angle C B A=90^{\circ}$.

If each step run is parallel to $\overline{A B}$ and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of $\overline{A C}$, to the nearest inch.

491 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

492 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6), A(-4,5)$, and $T(5,-2)$. Prove that $\triangle P A T$ is an isosceles triangle. State the coordinates of R so that quadrilateral $P A R T$ is a parallelogram. Prove that quadrilateral $P A R T$ is a parallelogram. [The use of the set of axes below is optional.]

493 In the diagram below, $\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects $\overline{G T}$ at A.

Prove: $\triangle G I A \sim \triangle T N A$

Geometry Regents Exam Questions at Random www.jmap.org

494 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

495 In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?

1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

496 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides $\overline{D E}$ such that $D F: F E$ is $2: 3$. What are the coordinates of F ?

1) (-3.0)
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

Quadrilateral MATH and its image M "A"T"H" are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $M A T H$ onto quadrilateral $M^{\prime \prime} A " T^{\prime \prime} H$ ".

499 In the diagram below, right triangle $A B C$ has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around $\overline{A B}$?

1) 32π
2) 48π
3) 96π
4) 144π

500 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle D A N$?

1) 60
2) 120
3) $20 \sqrt{13}$
4) $40 \sqrt{13}$

501 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches.
Determine and state the volume of the basketball, to the nearest cubic inch.

502 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

503 In the diagram below, $\overline{X S}$ and $\overline{Y R}$ intersect at Z. Segments $X Y$ and $R S$ are drawn perpendicular to $\overline{Y R}$ to form triangles $X Y Z$ and $S R Z$.

Which statement is always true?

1) $(X Y)(S R)=(X Z)(R Z)$
2) $\triangle X Y Z \cong \triangle S R Z$
3) $\overline{X S} \cong \overline{Y R}$
4) $\frac{X Y}{S R}=\frac{Y Z}{R Z}$

504 In the diagram below, line m is parallel to line n. Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?

1) a dilation
2) a rotation
3) a reflection
4) a translation

505 In the figure shown below, quadrilateral TAEO is circumscribed around circle D. The midpoint of $\overline{T A}$ is R, and $\overline{H O} \cong \overline{P E}$.

If $A P=10$ and $E O=12$, what is the perimeter of quadrilateral TAEO?

1) 56
2) 64
3) 72
4) 76

506 A right cylinder is cut perpendicular to its base. The shape of the cross section is a

1) circle
2) cylinder
3) rectangle
4) triangular prism

507 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm . The thickness of the chocolate of each sphere is 0.5 cm . Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is $1.308 \mathrm{~g} / \mathrm{cm}^{3}$, determine and state, to the nearest gram, the total mass of the chocolate in the box.

509
In the diagram below, two concentric circles with center O, and radii $\overline{O C}, \overline{O D}, \overline{O G E}$, and $\overline{O D F}$ are drawn.

If $O C=4$ and $O E=6$, which relationship between the length of arc $E F$ and the length of arc $C D$ is always true?

1) The length of arc $E F$ is 2 units longer than the length of arc $C D$.
2) The length of arc $E F$ is 4 units longer than the length of arc $C D$.
3) The length of arc $E F$ is 1.5 times the length of arc $C D$.
4) The length of arc $E F$ is 2.0 times the length of $\operatorname{arc} C D$.

510 In the accompanying diagram of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

Which statement must always be true?

1) $\frac{A D}{A B}=\frac{B C}{A C}$
2) $\frac{A D}{A B}=\frac{A B}{A C}$
3) $\frac{B D}{B C}=\frac{A B}{A D}$
4) $\frac{A B}{B C}=\frac{B D}{A C}$

511 In the diagram below of circle O, tangent $\overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

Geometry Regents Exam Questions at Random www.jmap.org

512 The graph below shows $\triangle A B C$ and its image, $\triangle A " B " C "$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

513 In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 11°
2) 43°
3) 75°
4) 105°

514 In the graph below, $\triangle A B C$ has coordinates $A(-9,2), B(-6,-6)$, and $C(-3,-2)$, and $\triangle R S T$ has coordinates $R(-2,9), S(5,6)$, and $T(2,3)$.

Is $\triangle A B C$ congruent to $\triangle R S T$? Use the properties of rigid motions to explain your reasoning.

515 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to $y=\frac{1}{2} x+8$?

1) $y=\frac{1}{2} x$
2) $y=-2 x-3$
3) $y=\frac{1}{2} x+3$
4) $y=-2 x+3$

516 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

517 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?

1) $\triangle D E F \cong \triangle C B F$
2) $\triangle B A G \cong \triangle B A E$
3) $\triangle B A G \sim \triangle A E B$
4) $\triangle D E F \sim \triangle A E B$

518 In the diagram below of $\triangle H A R$ and $\triangle N T Y$, angles H and N are right angles, and $\triangle H A R \sim \triangle N T Y$.

If $A R=13$ and $H R=12$, what is the measure of angle Y, to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°

519 Using a compass and straightedge, construct the line of reflection over which triangle $R S T$ reflects onto triangle $R^{\prime} S^{\prime} T$ '. [Leave all construction marks.]

520 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

521 If $\sin (2 x+7)^{\circ}=\cos (4 x-7)^{\circ}$, what is the value of x ?

1) 7
2) 15
3) 21
4) 30

522 In circle O, secants $\overline{A D B}$ and $\overline{A E C}$ are drawn from external point A such that points D, B, E, and C are on circle O. If $A D=8, A E=6$, and $E C$ is 12 more than $B D$, the length of $\overline{B D}$ is

1) 6
2) 22
3) 36
4) 48

523 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in 2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

524 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

525 Aliyah says that when the line $4 x+3 y=24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y=-\frac{4}{3} x+16$. Is Aliyah correct? Explain why. [The use of the set of axes below is optional.]

Geometry Regents at Random
 Answer Section

1 ANS:
$\tan 30=\frac{y}{440} \tan 38.8=\frac{h}{440} \quad 353.8-254 \approx 100$

$$
y \approx 254 \quad h \approx 353.8
$$

PTS: 4 REF: 061934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
2 ANS:
$\frac{72}{360}(\pi)\left(10^{2}\right)=20 \pi$
PTS: 2 REF: 061928geo NAT: G.C.B. 5 TOP: Sectors
3 ANS: $3 \quad$ PTS: 2
REF: 061924geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
4 ANS: 4
$-8+\frac{2}{3}(10--8)=-8+\frac{2}{3}(18)=-8+12=44+\frac{2}{3}(-2-4)=4+\frac{2}{3}(-6)=4-4=0$
PTS: 2 REF: 061919geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
5 ANS:
Quadrilateral $A B C D$ with diagonal $\overline{A C}$, segments $G H$ and $E F, \overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$ (given); $\overline{H F} \cong \overline{H F}, \overline{A C} \cong \overline{A C}$ (reflexive property); $\overline{A H}+\overline{H F} \cong \overline{C F}+\overline{H F}, \overline{A E}+\overline{B E} \cong \overline{C G}+\overline{D G}$ (segment

$$
\overline{A F} \cong \overline{C H} \quad \overline{A B} \cong \overline{C D}
$$

addition); $\triangle A B C \cong \triangle C D A(\mathrm{SSS}) ; \angle E A F \cong \angle G C H$ (СРСТС); $\triangle A E F \cong \triangle C G H$ (SAS); $\overline{E F} \cong \overline{G H}$ (СРСТС).
PTS: 6
6 ANS: 1
TOP: Cofunctions
7

ANS: 1
$5 x=12 \cdot 7$
$5 x=84$

$x=16.8+7=23.8$

PTS: 2 REF: 061911geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
8 ANS:
$\triangle A B E \cong \triangle C B D$ (given); $\angle A \cong \angle C$ (СРСТС); $\angle A F D \cong \angle C F E$ (vertical angles are congruent); $\overline{A B} \cong \overline{C B}$, $\overline{D B} \cong \overline{E B}$ (СРСТС); $\overline{A D} \cong \overline{C E}$ (segment subtraction); $\triangle A F D \cong \triangle C F E$ (AAS)

PTS: 4
REF: 081933geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof

9 ANS: 3
$8 \cdot 15=16 \cdot 7.5$
PTS: 2 REF: 061913geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
10 ANS:
$\frac{124-56}{2}=34$
PTS: 2 REF: 081930geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle
11 ANS: 4
$(8 \times 2)+(3 \times 2)-\left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19$
PTS: 2 REF: 081917geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
12 ANS: 2 PTS: 2 REF: 081909geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
13 ANS: 2
The slope of $-3 x+4 y=8$ is $\frac{3}{4}$.
PTS: 2 REF: 061907geo NAT: G.SRT.A. 1 TOP: Line Dilations
14 ANS: 1 PTS: 2 REF: 011918geo NAT: G.MG.A. 3
TOP: Compositions of Polygons and Circles KEY: area
15 ANS: 3
$M_{x}=\frac{-5+-1}{2}=-\frac{6}{2}=-3 M_{y}=\frac{5+-1}{2}=\frac{4}{2}=2$.
PTS: 2
REF: 081902geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general
16 ANS: 2
$90-57=33$
PTS: 2 REF: 061909geo NAT: G.SRT.C. 7 TOP: Cofunctions
17 ANS: 2
$V=\frac{1}{3}(8)^{2} \cdot 6=128$

PTS: 2 REF: 061906geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
18 ANS: 4
$\frac{18}{4.5}=4$
PTS: 2 REF: 011901geo NAT: G.SRT.A. 1 TOP: Line Dilations

19 ANS: 1

$$
\begin{aligned}
(x-1)^{2}+(y-4)^{2} & =\left(\frac{10}{2}\right)^{2} \\
x^{2}-2 x+1+y^{2}-8 y+16 & =25 \\
x^{2}-2 x+y^{2}-8 y & =8
\end{aligned}
$$

PTS: 2 REF: 011920geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: write equation, given center and radius
20 ANS: 4
The line $y=\frac{3}{2} x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=\frac{3}{2} x-4$. Since a dilation preserves parallelism, the line $y=\frac{3}{2} x-4$ and its image will be parallel, with slopes of $\frac{3}{2}$. To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{4}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{4},-4 \cdot \frac{3}{4}\right) \rightarrow(0,-3)$. So the equation of the dilated line is $y=\frac{3}{2} x-3$.

PTS: 2
REF: 011924geo NAT: G.SRT.A. 1 TOP: Line Dilations
21 ANS:

PTS: 2 REF: 011929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: equilateral triangles
22 ANS:

$$
\begin{aligned}
\frac{121-x}{2} & =35 \\
121-x & =70 \\
x & =51
\end{aligned}
$$

PTS: 2 REF: 011927geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle

23 ANS:

PTS: 2 REF: 011926geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
24 ANS: 4
PTS: 2
REF: 081911geo
NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
25 ANS:
$30^{\circ} \triangle C A D$ is an equilateral triangle, so $\angle C A B=60^{\circ}$. Since $\overrightarrow{A D}$ is an angle bisector, $\angle C A D=30^{\circ}$.
PTS: 2 REF: 081929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: equilateral triangles
26
ANS:
$\cos 68=\frac{10}{x}$

$$
x \approx 27
$$

PTS: 2 REF: 061927geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
27 ANS: 4 PTS: 2
TOP: Triangles in the Coordinate Plane
28 ANS: 4
$\left(\frac{360-120}{360}\right)(\pi)\left(9^{2}\right)=54 \pi$
PTS: 2 REF: 081912geo NAT: G.C.B. 5 TOP: Sectors
29 ANS:
Quadrilateral MATH, $\overline{H M} \cong \overline{A T}, \overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$ (given); $\angle H E A$ and $\angle T A H$ are right angles (perpendicular lines form right angles); $\angle H E A \cong \angle T A H$ (all right angles are congruent); MATH is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); $\overline{M A} \| \overline{T H}$ (opposite sides of a parallelogram are parallel); $\angle T H A \cong \angle E A H$ (alternate interior angles of parallel lines and a transversal are congruent); $\triangle H E A \sim \triangle T A H$ (AA); $\frac{H A}{T H}=\frac{H E}{T A}$ (corresponding sides of similar triangles are in proportion); $T A \bullet H A=H E \bullet T H$ (product of means equals product of extremes).

PTS: 6
REF: 061935geo
NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
30 ANS: 3
PTS: 2
REF: 081913geo NAT: G.CO.C.11
TOP: Special Quadrilaterals

31 ANS: 1
$\frac{9}{6}=\frac{3}{2}$
PTS: 2 REF: 061905geo NAT: G.SRT.A. 1 TOP: Line Dilations
32 ANS: 2
PTS: 2
REF: 011912geo NAT: G.CO.C. 11
TOP: Parallelograms
33 ANS: 2
$8 \times 8 \times 9+\frac{1}{3}(8 \times 8 \times 3)=640$
PTS: 2 REF: 011909geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
34 ANS: 4
$\sin x=\frac{10}{12}$
$x \approx 56$
PTS: 2 REF: 061922geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
35 ANS: 2
PTS: 2
REF: 061903geo
NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
36 ANS: 3
$2(2 x+8)=7 x-2 \quad A B=7(6)-2=40$. Since $\overline{E F}$ is a midsegment, $E F=\frac{40}{2}=20$. Since $\triangle A B C$ is equilateral,
$4 x+16=7 x-2$
$18=3 x$
$6=x$
$A E=B F=\frac{40}{2}=20.40+20+20+20=100$
PTS: 2 REF: 061923geo NAT: G.CO.C. 10 TOP: Midsegments
37 ANS: 3
$-9+\frac{1}{3}(9--9)=-9+\frac{1}{3}(18)=-9+6=-38+\frac{1}{3}(-4-8)=8+\frac{1}{3}(-12)=8-4=4$
PTS: 2 REF: 081903geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
38 ANS: 4

$$
x^{2}-8 x+y^{2}+6 y=39
$$

$x^{2}-8 x+16+y^{2}+6 y+9=39+16+9$

$$
(x-4)^{2}+(y+3)^{2}=64
$$

PTS: 2
REF: 081906geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
39
ANS: 1 PTS: 2
REF: 081904geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter

40 ANS: $3 \quad$ PTS: 2
REF: 011903geo NAT: G.CO.A. 5
TOP: Compositions of Transformations
KEY: identify
41 ANS:
$A B=\sqrt{(-5-1)^{2}+(3-2)^{2}}=\sqrt{37}, B C=\sqrt{(-5--6)^{2}+(3--3)^{2}}=\sqrt{37}$ (because $A B=B C, \triangle A B C$ is
isosceles). $(0,-4) . A D=\sqrt{(1-0)^{2}+(2--4)^{2}}=\sqrt{37}, C D=\sqrt{(-6-0)^{2}+(-3--4)^{2}}=\sqrt{37}$,
$m_{\overline{A B}}=\frac{3-2}{-5-1}=-\frac{1}{6}, m_{\overline{C B}}=\frac{3--3}{-5-6}=6(A B C D$ is a square because all four sides are congruent, consecutive sides
are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

PTS: 6 REF: 081935geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
42 ANS:
$R_{(-5,2), 90^{\circ}} \circ T_{-3,1} \circ r_{\mathrm{x}-\mathrm{xxis}}$

PTS: 2 REF: 011928geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
43 ANS: 3
Broome: $\frac{200536}{706.82} \approx 284$ Dutchess: $\frac{280150}{801.59} \approx 349$ Niagara: $\frac{219846}{522.95} \approx 420$ Saratoga: $\frac{200635}{811.84} \approx 247$
PTS: 2 REF: 061902geo NAT: G.MG.A. 2 TOP: Density
44 ANS:
Yes, because a dilation preserves angle measure.
PTS: 4 REF: 081932geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
45 ANS: 2
$\frac{x}{360}(15)^{2} \pi=75 \pi$

$$
x=120
$$

PTS: 2
REF: 011914geo
NAT: G.C.B. 5
TOP: Sectors
46 ANS: 4
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{15}{8}$
PTS: 2
REF: 011917geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

47 ANS: 2

PTS: 2 REF: 061921geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
48 ANS:
$\sin 4.76=\frac{1.5}{x} \quad \tan 4.76=\frac{1.5}{x} \quad 18-\frac{16}{12} \approx 16.7$

$$
x \approx 18.1 \quad x \approx 18
$$

PTS: 4 REF: 011934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
49 ANS:

PTS: 2 REF: 061931geo NAT: G.CO.D. 13 TOP: Constructions
50 ANS:
No, because dilations do not preserve distance.
PTS: 2 REF: 061925geo NAT: G.SRT.A. 2 TOP: Dilations
51 ANS:
$\left(\frac{2.5}{3}\right)(\pi)\left(\frac{8.25}{2}\right)^{2}(3) \approx 134$
PTS: 2 REF: 081931geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
52 ANS: 1
A dilation by a scale factor of 4 centered at the origin preserves parallelism and $(0,-2) \rightarrow(0,-8)$.
PTS: 2 REF: 081910geo NAT: G.SRT.A. 1 TOP: Line Dilations
53 ANS: 3 PTS: 2 REF: 011911geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects

54 ANS: 2
$E R=\sqrt{17^{2}-8^{2}}=15$
PTS: 2 REF: 061917geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
55 ANS: 3 PTS: 2 REF: 061912geo NAT: G.CO.C. 11
TOP: Parallelograms
56 ANS:
$((10 \times 6)+\sqrt{7(7-6)(7-4)(7-4)})(6.5) \approx 442$

PTS: 4 REF: 081934geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
57 ANS:
$3 y+7=2 x \quad y-6=\frac{2}{3}(x-2)$
$3 y=2 x-7$
$y=\frac{2}{3} x-\frac{7}{3}$
PTS: 2 REF: 011925geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
58 ANS:
$17 x=15^{2}$
$17 x=225$

$$
x \approx 13.2
$$

PTS: 2 REF: 061930geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
59 ANS: 2
$\frac{x}{15}=\frac{5}{12}$
$x=6.25$
PTS: 2 REF: 011906geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
60 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo NAT: G.CO.B. 7 TOP: Triangle Congruency
61 ANS:
$\angle D=46^{\circ}$ because the angles of a triangle equal $180^{\circ} . \angle B=46^{\circ}$ because opposite angles of a parallelogram are congruent.

PTS: 2
REF: 081925geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

62 ANS:
No. The midpoint of $\overline{D F}$ is $\left(\frac{1+4}{2}, \frac{-1+2}{2}\right)=(2.5,0.5)$. A median from point E must pass through the midpoint.
PTS: 2 REF: 011930geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
63 ANS:
$\sin ^{-1}\left(\frac{5}{25}\right) \approx 11.5$
PTS: 2 REF: 081926geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
64 ANS: 4 PTS: 2 REF: 061901geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
65 ANS: 1
$h=\sqrt{6.5^{2}-2.5^{2}}=6, V=\frac{1}{3} \pi(2.5)^{2} 6=12.5 \pi$
PTS: 2 REF: 011923geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
66 ANS: 1
$\triangle A B C \sim \triangle R S T$
PTS: 2 REF: 011908geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
67 ANS:
$2 \times(90 \times 10)+(\pi)\left(30^{2}\right)-(\pi)\left(20^{2}\right) \approx 3371$
PTS: 2 REF: 011931geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
68 ANS: 2

$$
\begin{aligned}
18^{2} & =12(x+12) \\
324 & =12(x+12) \\
27 & =x+12 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081920geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
69 ANS: 4
$x^{2}+8 x+16+y^{2}-12 y+36=144+16+36$

$$
(x+4)^{2}+(y-6)^{2}=196
$$

PTS: 2 REF: 061920geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square

70 ANS: 3

PTS: 2 REF: 081905geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
71 ANS: 1
PTS: 2
TOP: Similarity
KEY: leg
72 ANS: 3
$\angle N$ is the smallest angle in $\triangle N Y A$, so side $\overline{A Y}$ is the shortest side of $\triangle N Y A . \angle V Y A$ is the smallest angle in $\triangle V Y A$, so side $\overline{V A}$ is the shortest side of both triangles.

PTS: 2 REF: 011919geo NAT: G.CO.C. 10 TOP: Angle Side Relationship
73 ANS: 2 PTS: 2 REF: 081901geo NAT: G.SRT.A. 1
TOP: Line Dilations
74 ANS: 2
$m=\frac{-(-2)}{3}=\frac{2}{3}$
PTS: 2 REF: 061916geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
75 ANS: 3
$\frac{10}{x}=\frac{15}{12}$
$x=8$
PTS: 2 REF: 081918geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
76 ANS: 1 PTS: 2 REF: 011922geo NAT: G.SRT.C. 7
TOP: Cofunctions
77 ANS: 3
$\sqrt{40^{2}-\left(\frac{64}{2}\right)^{2}}=24 V=\frac{1}{3}(64)^{2} \cdot 24=32768$
PTS: 2 REF: 081921geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
78 ANS: 2
$\sqrt{8^{2}+6^{2}}=10$ for one side
PTS: 2 REF: 011907geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
79 ANS: 4 PTS: 2 REF: 081922geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: intersecting chords, length

80 ANS: 2

$$
\begin{aligned}
\tan 11.87 & =\frac{x}{0.5(5280)} \\
x & \approx 555
\end{aligned}
$$

PTS: 2 REF: 011913geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
81 ANS: 2

PTS: 2 REF: 081907geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
ANS: 4 PTS: 2
TOP: Mapping a Polygon onto Itself
83 ANS: 1

PTS: 2 REF: 061918geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle

84 ANS:

Triangle with vertices $A(-2,4), B(6,2)$, and $C(1,-1)$ (given); $m_{A C}^{-}=-\frac{5}{3}, m_{B C}=\frac{3}{5}$,
definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle A B C$ is a right triangle (if a triangle has a right angle, it is a right triangle); $\overline{A C} \cong \overline{B C}=\sqrt{34}$ (distance formula); $\triangle A B C$ is an isosceles triangle (an isosceles triangle has two congruent sides).

PTS: 4 REF: 011932geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
85 ANS: 1
$V=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{1}{2} \times \frac{4}{3} \pi \cdot\left(\frac{12.6}{2}\right)^{3} \approx 523.7$
PTS: 2 REF: 061910geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
86 ANS: 3
$12^{2}=9 \cdot G M \quad I M^{2}=16 \cdot 25$
$G M=16 \quad I M=20$
PTS: 2 REF: 011910geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
87 ANS: 2
$\frac{4}{3} \pi \times\left(\frac{1.68}{2}\right)^{3} \times 0.6523 \approx 1.62$
PTS: 2 REF: 081914geo NAT: G.MG.A. 2 TOP: Density
88 ANS: 1
$m=\frac{-A}{B}=\frac{-3}{2} m_{\perp}=\frac{2}{3}$
PTS: 2 REF: 081908geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

89 ANS: 4

PTS: 2
REF: 061908geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
90 ANS: 2
$\frac{4}{x}=\frac{6}{9}$
$x=6$
PTS: 2 REF: 061915geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
91 ANS: 4
PTS: 2
REF: 081923geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
92 ANS: 2
$\tan 36=\frac{x}{8} \quad 5.8+1.5 \approx 7$
$x \approx 5.8$
PTS: 2 REF: 081915geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
93 ANS: 1
$\cos 65=\frac{x}{15}$

$$
x \approx 6.3
$$

PTS: 2 REF: 081924geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 94 ANS:

Theresa. $(30 \times 15 \times(4-0.5)) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 3.95}{100 \mathrm{~g}}=\$ 465.35,\left(\pi \times 12^{2} \times(4-0.5)\right) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 200}{6000 \mathrm{~g}}=\$ 394.79$
PTS: 4 REF: 011933geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
95 ANS:
$r_{y=2}{ }^{\circ} r_{y \text {-xis }}$
PTS: 2 REF: 081927geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify

96 ANS: 4
$2 x-1=16$

$$
x=8.5
$$

PTS: 2 REF: 011902geo NAT: G.CO.B. 6 TOP: Properties of Transformations KEY: graphics
97
$-1+\frac{1}{3}(8--1)=-1+\frac{1}{3}(9)=-1+3=2-3+\frac{1}{3}(9--3)=-3+\frac{1}{3}(12)=-3+4=1$
PTS: 2 REF: 011915geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
98 ANS:
$V=\frac{2}{3} \pi\left(\frac{6.5}{2}\right)^{2}(1) \approx 2222 \cdot 7.48 \approx 165$
PTS: 4 REF: 061933geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
99
ANS:

$m_{\overline{A D}}=\frac{0-6}{1--1}=-3 \overline{A D} \| \overline{B C}$ because their slopes are equal. $A B C D$ is a trapezoid $m_{B C}=\frac{-1-8}{6-3}=-3$
because it has a pair of parallel sides. $A C=\sqrt{(-1-6)^{2}+(6--1)^{2}}=\sqrt{98} A B C D$ is not an isosceles trapezoid

$$
B D=\sqrt{(8-0)^{2}+(3-1)^{2}}=\sqrt{68}
$$

because its diagonals are not congruent.
PTS: 4
REF: 061932geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

100 ANS:

PTS: 2 REF: 061926geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 101 ANS:
$R_{90^{\circ}}$ or $T_{2,-6} \circ R_{(-4,2), 90^{\circ}}$ or $R_{270^{\circ}} \circ r_{\text {x-xxis }} \circ r_{y-\text {-xis }}$
PTS: 2 REF: 061929geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
102 ANS: 4 PTS: 2
TOP: Exterior Angle Theorem
103 ANS: $3 \quad$ PTS: 2
TOP: Mapping a Polygon onto Itself

Geometry Regents at Random

Answer Section

104
ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG.A. 2 TOP: Density
105 ANS: 2

$$
C=\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 W=12.8916 \cdot 752 \approx 9694
$$

$4.5=\pi d$
$\frac{4.5}{\pi}=d$
$\frac{2.25}{\pi}=r$
PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density
106
ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C.
$\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.
PTS: 4
REF: 081534geo NAT: G.CO.B. 7 TOP: Triangle Congruency
107
ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{1000000 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
108 ANS:

PTS: 2 REF: 081928geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

109 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
110 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
111 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2 REF: spr1406geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations
KEY: grids
112 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane

113 ANS:

Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2
REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

114 ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6 REF: 061636geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
115 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D. 13 TOP: Constructions
116 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$

$$
230 \approx s
$$

PTS: 2 REF: 081521geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
117 ANS: 1
PTS: 2
REF: 061604geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: graphics
118
ANS:
$\tan x=\frac{10}{4}$

$$
x \approx 68
$$

PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

$$
A=\frac{1}{2} a b \quad 3-6=-3=x
$$

$$
24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y
$$

$$
a=6
$$

PTS: 2 REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

120 ANS: 3

$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \quad a=\frac{1}{2}(3 \sqrt{5})(6 \sqrt{5})=\frac{1}{2}(18)(5)=45 \\
& \sqrt{180}=6 \sqrt{5}
\end{aligned}
$$

PTS: 2 REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
121 ANS: 1
PTS: 2
REF: 061508geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed
122 ANS: 3 PTS: 2
REF: 061524geo NAT: G.CO.B. 7
TOP: Triangle Congruency
123 ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
124 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
125 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2 REF: 061510geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
126 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2 REF: 081618geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
127 ANS: 2
PTS: 2
REF: 011610geo NAT: G.SRT.A. 1
TOP: Line Dilations
128
ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$
PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density

ANS: 4 PTS: 2
TOP: Compositions of Transformations
REF: 061608geo NAT: G.SRT.A. 2
KEY: grids
130 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms
131
ANS: 1
$m_{R T}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{S T}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
132 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations
133 ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C. 10 TOP: Triangle Proofs
134 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
135 ANS: 1
PTS: 2
TOP: Compositions of Transformations
REF: 081507geo NAT: G.CO.A. 5
KEY: identify
ANS: 4 PTS: 2
REF: 061512geo NAT: G.SRT.C. 7
TOP: Cofunctions
137 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2 REF: 061624geo NAT: G.C.B. 5 TOP: Sectors
138 ANS: 1
180-(68•2)
PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

139 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
140 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
141
ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
142 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2
REF: spr1402geo
NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
ANS: 4
PTS: 2
REF: 081506geo
NAT: G.SRT.A. 2
TOP: Dilations
144 ANS: 3

$$
\begin{aligned}
\frac{9}{5} & =\frac{9.2}{x} 5.1+9.2=14.3 \\
9 x & =46 \\
x & \approx 5.1
\end{aligned}
$$

PTS: 2 REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

145
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral RSTP is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
146
ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$
PTS: 2 REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
147
ANS: 2 PTS: 2
REF: 061506geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
ANS: 1
PTS: 2
REF: 081606geo NAT: G.SRT.C.7
TOP: Cofunctions
149 ANS: 2
PTS: 2
REF: 081619geo NAT: G.C.B. 5
TOP: Sectors
150
ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2
REF: 061509geo
NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines

151 ANS: 1
$m=-\frac{2}{3} \quad 1=\left(-\frac{2}{3}\right) 6+b$
$1=-4+b$
$5=b$
PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
152
ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
153 ANS:

$$
\begin{aligned}
& \tan x=\frac{12}{75} \quad \tan y=\frac{72}{75} \quad 43.83-9.09 \approx 34.7 \\
& x \approx 9.09 \quad y \approx 43.83
\end{aligned}
$$

PTS: 4 REF: 081634geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
154 ANS: 1 $\frac{6}{8}=\frac{9}{12}$

PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
155 ANS: 1
TOP: Rotations
PTS: 2 REF: 081605geo NAT: G.CO.A. 5
ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4
REF: 061532geo NAT: G.CO.C. 9 TOP: Lines and Angles
ANS: 4
PTS: 2
REF: 081514geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations KEY: grids
158 ANS: 1 PTS: 2 REF: 081603geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects

159
ANS:

PTS: 2
REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
ANS:

PTS: 4
REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
161 ANS: 4
$\sin 70=\frac{x}{20}$
$x \approx 18.8$
PTS: 2
REF: 061611geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics
ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$

$$
4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)
$$

$4+8 \quad 2+0$
$12 \quad 2$
PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

163 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2 REF: 081523geo NAT: G.SRT.A. 2 TOP: Dilations
164 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
165 ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2 REF: 061607geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
166 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
167 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
168 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect
$\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 7 TOP: Triangle Congruency
169 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$
$x \approx 36.6$
PTS: 4 REF: 011632geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

170 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere:

$$
x \approx 9.115
$$

$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$
$477,360 \cdot 85=405,756$, which is greater than 400,000 .
PTS: 6 REF: 061535geo NAT: G.MG.A. 2 TOP: Density
171 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees
PTS: 4 REF: spr1412geo NAT: G.MG.A. 2 TOP: Density
172 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density
ANS: 3
$\tan 34=\frac{T}{20}$

$$
T \approx 13.5
$$

PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: graphics
174 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2 REF: 061523geo NAT: G.GMD.A. 1 TOP: Circumference
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
176
ANS: 3
PTS: 2
TOP: Identifying Transformations
REF: 061616geo NAT: G.CO.A. 2
KEY: graphics

177
ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
178 ANS:

The length of $\overline{A^{\prime} C^{\prime}}$ is twice $\overline{A C}$.
PTS: 4 REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
179 ANS: 2 PTS: 2
REF: 081602geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: basic
180 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$

PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
181 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at $5: 05 . \tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
182
ANS: 1
PTS: 2
REF: 011608geo NAT: G.CO.A. 5
KEY: identify
REF: 081611geo NAT: G.CO.C. 9
ANS: 4 PTS: 2
TOP: Lines and Angles
ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders

185 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.GMD.A. 1 TOP: Circumference
186 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6
ANS: 4
REF: 081536geo NAT: G.MG.A. 2 TOP: Density
TOP: Cofunctions
188 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$

PTS: 2
REF: 061515geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
189 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2 REF: 081623geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
190 ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$
PTS: 4
REF: 061632geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
ANS:
$\sin 70=\frac{30}{L}$
$L \approx 32$
PTS: 2
REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics

192
ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo
NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: parallel lines
193
ANS: 2
PTS: 2
KEY: basic
REF: 081519geo NAT: G.SRT.B. 5
TOP: Similarity
194 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$
$x=12$
PTS: 2 REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
ANS:
$A B C$ - point of reflection $\rightarrow(-y, x)+$ point of reflection $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of $A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations KEY: grids
196 ANS:

PTS: 2
REF: 011625geo NAT: G.CO.A. 5 TOP: Reflections
KEY: grids

197
ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(A A) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs
ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: other

ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo NAT: G.CO.C. 10 TOP: Triangle Proofs

ANS:

PTS: 2 REF: 081626geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: grids
201
ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
202 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
203 ANS: 4
PTS: 2 REF: 061606geo NAT: G.GMD.A. 3
TOP: Volume KEY: compositions
204 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2
REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
205
ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs

ANS:

$$
\begin{aligned}
\tan 3.47 & =\frac{M}{6336} & & \tan 0.64
\end{aligned}=\frac{A}{20,493}
$$

PTS: 6 REF: fall1413geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
207 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$

$$
(x+3)^{2}+(y-2)^{2}=36
$$

PTS: 2
REF: 011617geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
208
ANS: 4 PTS: 2
TOP: Chords, Secants and Tangents
209 ANS: $3 \quad$ PTS: 2
TOP: Inscribed Quadrilaterals
210 ANS:

$$
\begin{aligned}
\frac{120}{230} & =\frac{x}{315} \\
x & =164
\end{aligned}
$$

PTS: 2 REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
211 ANS:

$$
\begin{array}{ll}
x=\frac{2}{3}(4--2)=4 & -2+4=2 \quad J(2,5) \\
y=\frac{2}{3}(7-1)=4 & 1+4=5
\end{array}
$$

PTS: 2
REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

212 ANS: 4 PTS: 2 REF: 081503geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
213 ANS: 3 PTS: 2 REF: 081622geo NAT: G.SRT.B. 5
TOP: Triangle Proofs KEY: statements
214 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
215 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C. 10 TOP: Triangle Proofs
216 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo NAT: G.CO.B. 6 TOP: Properties of Transformations
217 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
218 ANS:
$\tan 7=\frac{125}{x} \quad \tan 16=\frac{125}{y} \quad 1018-436 \approx 582$

$$
x \approx 1018 \quad y \approx 436
$$

PTS: 4 REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
219 ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn);
$\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);
$\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs
220 ANS: 4
$3 \times 6=18$
PTS: 2 REF: 061602geo NAT: G.SRT.A. 1 TOP: Line Dilations

221 ANS:
$A=6^{2} \pi=36 \pi 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2 REF: 061529geo NAT: G.C.B. 5 TOP: Sectors
222 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
223 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2 REF: 061514geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
224 ANS:
$T_{6,0}{ }^{\circ} r_{x \text {-xis }}$
PTS: 2 REF: 061625geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
225 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
226 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2 REF: 081608geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles
227 ANS: 1
$m_{T A}^{-}=-1 \quad y=m x+b$
$m_{E M}=1 \quad 1=1(2)+b$

$$
-1=b
$$

PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

ANS: $2 \quad$ PTS: 2
REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles
229 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 7 TOP: Triangle Congruency
230 ANS:

PTS: 2 REF: 061631geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
231 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash

PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density
232 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
233 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
234 ANS: 2
$s^{2}+s^{2}=7^{2}$
$2 s^{2}=49$
$s^{2}=24.5$

$$
s \approx 4.9
$$

PTS: 2
REF: 081511geo
NAT: G.C.A. 3
TOP: Inscribed Quadrilaterals

235 ANS:

PTS: 2 REF: 081628geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
236 ANS: $2 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
REF: 061610geo NAT: G.C.A. 2
KEY: inscribed
237 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$
$x=80 \quad \frac{180-100}{2}=40$
PTS: 2 REF: 011612geo NAT: G.C.B. 5 TOP: Sectors
238 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A.2
TOP: Analytical Representations of Transformations KEY: basic
239 ANS: 4 PTS: 2 REF: 061615geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
240 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
241 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
242 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2 REF: 081625geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: common tangents

243 ANS: 3

$$
\begin{aligned}
\frac{x}{10} & =\frac{6}{4} \quad \overline{C D}=15-4=11 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
ANS: 4 PTS: 2 REF: 061501geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
245
ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
246 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A. 1 TOP: Volume
247 ANS:
$\sin x=\frac{4.5}{11.75}$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
ANS: 1
PTS: 2
REF: 081504geo
NAT: G.SRT.C. 7
TOP: Cofunctions
249 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$
PTS: 2 REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
250 ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

251 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2 REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
252 ANS: 4
$-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)$
$-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)$
$-5+6 \quad-4+3$
1 -1
PTS: 2 REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
253 ANS: $2 \quad$ PTS: 2
TOP: Equations of Circles KEY: find center and radius | completing the square
254 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
255 ANS: 3
$\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}$
$\frac{4}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$

PTS: 2 REF: 011614geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
256 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.CO.C. 10 TOP: Medians, Altitudes and Bisectors
257 ANS: 1
PTS: 2
REF: 061520geo NAT: G.C.A. 2
KEY: mixed

258 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
259 ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$
$(x-2)^{2}+(y+4)^{2}=9$
PTS: 2 REF: 081616geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square

ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
ANS: 2
PTS: 2
REF: 081501geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density
263
ANS: 2
PTS: 2
TOP: Identifying Transformations
REF: 081513geo NAT: G.CO.A. 2
KEY: graphics
ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad-4=12+b$

PTS: 2
REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line

ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $C H$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overline{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO.B. 7 TOP: Triangle Congruency
266 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
267 ANS:

PTS: 2 REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions
ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
ANS: 1 PTS: 2 REF: 061518geo NAT: G.SRT.A. 1
TOP: Line Dilations

270 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
271
ANS: 4 PTS: 2
TOP: Compositions of Transformations KEY: identify
272 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$
PTS: 2
REF: 081512geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: common tangents
273 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2
REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
274 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2 REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
275 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2
REF: 081522geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general

276
ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2 REF: 061614geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
277 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
278
ANS: 1 PTS: 2
TOP: Mapping a Polygon onto Itself
279 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
280 ANS: 1
PTS: 2 REF: 011601geo
NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
281 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R, W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6	REF: 011635geo	NAT: G.SRT.B.5	TOP: Quadrilateral Proofs
ANS: 4	PTS: 2	REF: 011611geo	NAT: G.CO.B.6
TOP: Properties of Transformations	KEY: graphics		

ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
285 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2 REF: 061629geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
286 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density
287 ANS: 3 PTS: 2 REF: 061601geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
288 ANS:
$\sin 75=\frac{15}{x}$
$x=\frac{15}{\sin 75}$
$x \approx 15.5$
PTS: 2 REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: graphics
289
ANS: 4 PTS: 2 REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
290
ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions
292 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors
293 ANS: 2 PTS: 2 REF: 061516geo NAT: G.SRT.A. 2
TOP: Dilations
294
ANS: 3 PTS: 2
TOP: Chords, Secants and Tangents
REF: 011621geo NAT: G.C.A. 2
KEY: inscribed
295 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C.A. 1 TOP: Similarity Proofs
296 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2 REF: 061519geo NAT: G.MG.A. 3 TOP: Surface Area

297 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2 REF: 081518geo NAT: G.C.B. 5 TOP: Sectors
298 ANS: 3 PTS: 2
TOP: Identifying Transformations
REF: 081502geo NAT: G.CO.A. 2
KEY: basic
299 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
300 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h,-2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
301 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
302 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT.A. 2 TOP: Dilations
303 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area
304 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{b}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density

305
ANS:
$\tan 52.8=\frac{h}{x}$
$x \tan 52.8=x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9}$
$11.86+1.7 \approx 13.6$

$$
h=x \tan 52.8
$$

$$
x \tan 52.8-x \tan 34.9=8 \tan 34.9
$$

$$
x \approx 11.86
$$

$\tan 34.9=\frac{h}{x+8}$

$$
h=(x+8) \tan 34.9
$$

$$
x=\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9}
$$

$$
x \approx 9
$$

PTS: 6
REF: 011636geo
NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
306 ANS: 1
PTS: 2
REF: 011703geo NAT: G.SRT.B. 5
TOP: Triangle Congruency
307 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2 REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
308
ANS: 3
$\theta=\frac{S}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length
KEY: angle
ANS: 1
$\frac{f}{4}=\frac{15}{6}$

$$
f=10
$$

PTS: 2 REF: 061617geo NAT: G.CO.C. 9 TOP: Lines and Angles
310 ANS: 4
PTS: 2
REF: 061502geo NAT: G.CO.A. 2
KEY: basic
311 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
\begin{aligned}
2 x & =0.8 \\
x & =0.4
\end{aligned}
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions

312 ANS: $4 \quad$ PTS: 2
TOP: Compositions of Transformations
313 ANS: 2
$\tan \theta=\frac{2.4}{x}$
$\frac{3}{7}=\frac{2.4}{x}$
$x=5.6$
PTS: 2

REF: 011707geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

Geometry Regents at Random Answer Section

314 ANS: 2
PTS: 2
REF: 061720geo NAT: G.CO.C. 11
TOP: Parallelograms
315 ANS: 3
$\cos 40=\frac{14}{x}$
$x \approx 18$

PTS: 2 REF: 011712geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
316 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2 REF: 011727geo NAT: G.SRT.C. 7 TOP: Cofunctions
317 ANS:

PTS: 2 REF: 011826geo NAT: G.CO.D. 13 TOP: Constructions
318 ANS: 4 PTS: 2
REF: 011705geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
319 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
ANS: 4 PTS: 2 REF: 011808geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations
KEY: basic
321 ANS: 1
PTS: 2
REF: 061801geo NAT: G.CO.B. 6
TOP: Properties of Transformations KEY: graphics

322 ANS: 2

$$
\begin{aligned}
(x-5)^{2}+(y-2)^{2} & =16 \\
x^{2}-10 x+25+y^{2}-4 y+4 & =16 \\
x^{2}-10 x+y^{2}-4 y & =-13
\end{aligned}
$$

PTS: 2 REF: 061820geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: write equation, given graph
323 ANS: 4

$$
\begin{array}{r}
40-x+3 x=90 \\
2 x=50 \\
x=25
\end{array}
$$

PTS: 2 REF: 081721geo NAT: G.SRT.C. 7 TOP: Cofunctions
324 ANS:
Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$ (given); $\overline{B C} \| \overline{A D}$ (opposite sides of a \square are $\|$); $\overline{B E} \| \overline{F D}$ (parts of $\|$ lines are $\|$); $\overline{B F} \| \overline{D E}$ (two lines \perp to the same line are $\|$); BEDF is \square (a quadrilateral with both pairs of opposite sides $\|$ is a \square); $\angle D E B$ is a right $\angle(\perp$ lines form right $\angle \mathrm{s}$); BEDF is a rectangle (a \square with one right \angle is a rectangle).

PTS: 6 REF: 061835geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
325 ANS: 3
PTS: 2
TOP: Trigonometric Ratios
326 ANS: $4 \quad$ PTS: 2
REF: 011819geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
327 ANS: 1 PTS: 2
REF: 011814geo NAT: G.SRT.A. 1
TOP: Line Dilations
328 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$
PTS: 2 REF: 011721geo NAT: G.C.B. 5 TOP: Sectors
329 ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2}$. $\quad y=\frac{1}{2} x+0$

$$
\begin{aligned}
2 y & =x \\
2 y-x & =0
\end{aligned}
$$

PTS: 2
REF: 081724geo
NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
330
ANS: 4 PTS: 2
TOP: Identifying Transformations
REF: 011706geo NAT: G.CO.A. 2
KEY: basic

331
ANS: 1
$-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$

PTS: 2 REF: 081717geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
332 ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.
PTS: 2 REF: 011821geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals

Yes. The triangles are congruent because of $\operatorname{SSS}\left(5^{2}+12^{2}=13^{2}\right)$. All congruent triangles are similar.

PTS: 2 REF: 061830geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
334 ANS: 2
$x^{2}+y^{2}-6 x+2 y=6$
$x^{2}-6 x+9+y^{2}+2 y+1=6+9+1$
$(x-3)^{2}+(y+1)^{2}=16$
PTS: 2 REF: 011812geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
335
ANS:
$V=(\pi)\left(4^{2}\right)(9)+\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)\left(4^{3}\right) \approx 586$

PTS: 4 REF: 011833geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
336
ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.

PTS: 2 REF: 081710geo NAT: G.SRT.A. 1 TOP: Line Dilations
337 ANS: 4
PTS: 2
REF: 061813geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
338 ANS:
$\overline{R S}$ and $\overline{T V}$ bisect each other at point $X ; \overline{T R}$ and $\overline{S V}$ are drawn (given); $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$ (segment bisectors create two congruent segments); $\angle T X R \cong \angle V X S$ (vertical angles are congruent); $\triangle T X R \cong \triangle V X S$
(SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{T R} \| \overline{S V}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof

339 ANS:
$A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0), B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8)$,
$C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)$
PTS: 2 REF: 061826geo NAT: G.SRT.A. 2 TOP: Dilations
340 ANS:

PTS: 2
REF: 081827geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: intersecting chords, angle
ANS:

PTS: 2
REF: 081825geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
342
ANS: 4

PTS: 2 REF: 081711geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem

ANS:

PTS: 2
REF: 011731geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
344
ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if A, B, A^{\prime} and B^{\prime} are collinear.
PTS: 2 REF: 061714geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations KEY: basic
345 ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{H T}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

MATH is a parallelogram since both sides of opposite sides are parallel. $m_{\overline{M A}}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. $M A T H$ is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
346 ANS: 3
In (1) and (2), $A B C D$ could be a rectangle with non-congruent sides. (4) is not possible
PTS: 2 REF: 081714geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
347 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
PTS: 2 REF: 011719geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane

348 ANS:
2 Reflexive; $4 \angle B D A \cong \angle B D C ; 6$ CPCTC; 7 If points B and D are equidistant from the endpoints of $\overline{A C}$, then B and D are on the perpendicular bisector of $\overline{A C}$.

PTS: 4 REF: 081832geo NAT: G.SRT.B. 5 TOP: Triangle Proofs KEY: proof
349 ANS: 2

PTS: 2 REF: 011818geo NAT: G.CO.C. 9 TOP: Lines and Angles
350 ANS:

PTS: 2 REF: 081826geo NAT: G.CO.C. 11 TOP: Parallelograms
351
ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$

$$
x=4
$$

PTS: 2 REF: 081707geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
352 ANS: 4
$9 \cdot 3=27,27 \cdot 4=108$
PTS: 2 REF: 061805geo NAT: G.SRT.A. 2 TOP: Dilations
353 ANS: 3
$6 x-40+x+20=180-3 x \mathrm{~m} \angle B A C=180-(80+40)=60$

$$
\begin{aligned}
10 x & =200 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 011809geo
NAT: G.CO.C. 10 TOP: Exterior Angle Theorem

354
ANS: 1
Distance and angle measure are preserved after a reflection and translation.
PTS: 2 REF: 081802geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
355 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
356
ANS:

PTS: 2
REF: 081728geo
NAT: G.CO.D. 13 TOP: Constructions
PTS: 2
REF: 011811geo NAT: G.SRT.A. 2
ANS: 1
TOP: Dilations
358 ANS: 3

$$
\frac{24}{40}=\frac{15}{x}
$$

$$
24 x=600
$$

$$
x=25
$$

PTS: 2 REF: 011813geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6
REF: 011735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

360 ANS: 1
$x^{2}+y^{2}-12 y+36=-20+36$

$$
x^{2}+(y-6)^{2}=16
$$

PTS: 2 REF: 061712geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
361 ANS: $1 \quad$ PTS: 2
TOP: Special Quadrilaterals
362 ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$
PTS: 2 REF: 011820geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
ANS: 3
$\frac{360^{\circ}}{5}=72^{\circ} 216^{\circ}$ is a multiple of 72°
PTS: 2 REF: 061819geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 364 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$
$\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3--2}=\frac{5}{5}=1$ $m_{Q R}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular
and do not form a right angle. Therefore $P Q R S$ is not a square.

PTS: 6 REF: 061735geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

PTS: 2
TOP: Mapping a Polygon onto Itself

ANS:

$\triangle A B C \sim \triangle A E D$ by AA. $\angle D A E \cong \angle C A B$ because they are the same \angle. $\angle D E A \cong \angle C B A$ because they are both right \angle s.

PTS: 2 REF: 081829geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
367 ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$
PTS: 2 REF: 081712geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
368 ANS: 1 PTS: 2 REF: 081804geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations KEY: grids
369 ANS:
$\frac{152-56}{2}=48$
PTS: 2 REF: 011728geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle
370
ANS: 3
PTS: 2 REF: 061816geo
NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
371 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
372

373
ANS: 4 PTS:
REF: 081702geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: basic
ANS:
$500 \times 1015 \mathrm{cc} \times \frac{\$ 0.29}{\mathrm{~kg}} \times \frac{7.95 \mathrm{~g}}{\mathrm{cc}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=\$ 1170$
PTS: 2
REF: 011829geo
NAT: G.MG.A. 2 TOP: Density

374 ANS:
$\cos B$ increases because $\angle A$ and $\angle B$ are complementary and $\sin A=\cos B$.
PTS: 2 REF: 011827geo NAT: G.SRT.C. 7 TOP: Cofunctions
375 ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles
376 ANS: 3

$$
\begin{aligned}
v=\pi r^{2} h & \text { (1) } 6^{2} \cdot 10=360 \\
150 \pi=\pi r^{2} h & \text { (2) } 10^{2} \cdot 6=600 \\
150=r^{2} h & \text { (3) } 5^{2} \cdot 6=150 \\
& \text { (4) } 3^{2} \cdot 10=900
\end{aligned}
$$

PTS: 2 REF: 081713geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects 377 ANS:

Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14 , the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A. 1 TOP: Volume
378 ANS: 2
$\frac{x}{x+3}=\frac{14}{21} \quad 14-6=8$

$$
\begin{aligned}
21 x & =14 x+42 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 081812geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
ANS: 3 PTS: 2 REF: 061703geo NAT: G.SRT.C. 7
TOP: Cofunctions
380 ANS: 1
$\frac{64}{4}=1616^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$

$$
w=15 \quad w=14 \quad w=13
$$

$13 \times 19=247$
PTS: 2 REF: 011708geo NAT: G.MG.A. 3 TOP: Area of Polygons
381 ANS:
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

PTS: 2
REF: 011825geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS: 4 PTS: 2 REF: 081803geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects

383
ANS: 3 PTS: 2
TOP: Polygons in the Coordinate Plane
384
ANS: 4 PTS: 2
REF: 061702geo NAT: G.GPE.B. 7
REF: 011810geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
385 ANS: 3
$2.5 \times 1.25 \times(27 \times 12)+\frac{1}{2} \pi(1.25)^{2}(27 \times 12) \approx 1808$
PTS: 2 REF: 061723geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
386 ANS: 1
$\sin 32=\frac{O}{129.5}$
$O \approx 68.6$
PTS: 2 REF: 011804geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
387 ANS:
$x^{2}+x^{2}=58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2$

$$
\begin{aligned}
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4 REF: 081734geo NAT: G.MG.A. 3 TOP: Area of Polygons
388
ANS:
$\tan 72=\frac{x}{400} \quad \sin 55=\frac{400 \tan 72}{y}$

$$
x=400 \tan 72 \quad y=\frac{400 \tan 72}{\sin 55} \approx 1503
$$

PTS: 4
REF: 061833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2 REF: 011722geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
390 ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

391 ANS:

$$
\begin{aligned}
10 \cdot 6 & =15 x \\
x & =4
\end{aligned}
$$

PTS: 2 REF: 061828geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
392 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
393 ANS: 2
The line $y=-3 x+6$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 061824geo NAT: G.SRT.A. 1 TOP: Line Dilations
394 ANS:

$$
\begin{aligned}
20000 \mathrm{~g}\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}}\right)=2673.8 \mathrm{ft}^{3} 2673.8 & =\pi r^{2}(34.5) 9.9+1=10.9 \\
r & \approx 4.967 \\
d & \approx 9.9
\end{aligned}
$$

PTS: 4
REF: 061734geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
395 ANS: 2
PTS: 2
REF: 011805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
396 ANS: 4
$4 \sqrt{(-1-2)^{2}+(2-3)^{2}}=4 \sqrt{10}$
PTS: 2 REF: 081808geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
397 ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$
PTS: 2 REF: 081723geo NAT: G.C.B. 5 TOP: Sectors
398 ANS: 1
$x=-5+\frac{1}{3}(4--5)=-5+3=-2 \quad y=2+\frac{1}{3}(-10-2)=2-4=-2$
PTS: 2 REF: 011806geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

399 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2 REF: 081730geo NAT: G.CO.B. 7 TOP: Triangle Congruency
400 ANS:

$$
\tan 16.5=\frac{x}{13.5} \quad 9 \times 16 \times 4.5=6483752-(35 \times 16 \times .5)=3472
$$

$$
\begin{array}{cc}
x \approx 4 & 13.5 \times 16 \times 4.5=9723472 \times 7.48 \approx 25971 \\
4+4.5=8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4=432 \frac{25971}{10.5} \approx 2473.4 \\
& 12.5 \times 16 \times 8.5=\frac{1700}{3752} \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6
REF: 081736geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
401 ANS: $2 \quad$ PTS: 2
REF: 061701geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
402 ANS: 3
$\frac{x}{6.3}=\frac{3}{5} \quad \frac{y}{9.4}=\frac{6.3}{6.3+3.78}$
$x=3.78 \quad y \approx 5.9$
PTS: 2 REF: 081816geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
403 ANS: 4
PTS: 2
REF: 011803geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: graphics
404 ANS: 2
$6 \cdot 6=x(x-5)$

$$
\begin{aligned}
36 & =x^{2}-5 x \\
0 & =x^{2}-5 x-36 \\
0 & =(x-9)(x+4) \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061708geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
405
ANS: 4 PTS: 2
REF: 081813geo NAT: G.CO.C. 11
TOP: Parallelograms

406 ANS:

PTS: 4
407
ANS: 1
$\sin 32=\frac{x}{6.2}$

$$
x \approx 3.3
$$

PTS: 2 REF: 081719geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
408 ANS: 1
$360-(82+104+121)=53$
PTS: 2 REF: 011801geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graph
409 ANS: 1
$84=\frac{1}{3} \cdot s^{2} \cdot 7$

$$
6=s
$$

PTS: 2 REF: 061716geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
410 ANS: 4
PTS: 2
REF: 061711geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
411 ANS: $3 \quad$ PTS: 2
TOP: Mapping a Polygon onto Itself
412 ANS:
Reflection across the y-axis, then translation up 5 .
PTS: 2 REF: 061827geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify

413 ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent);
$\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (CPCTC); $\angle E D A \cong \angle E C B$
$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6 REF: 081735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
414 ANS: 1
$20 \cdot 12 \cdot 45+\frac{1}{2} \pi(10)^{2}(45) \approx 17869$
PTS: 2 REF: 061807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
415 ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$
$95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62$
P: $V=40^{2}(750)-35^{2}(750)=281,250 \quad \$ 307.62-288.56=\$ 19.06$
$281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56$
PTS: 6 REF: 011736geo NAT: G.MG.A. 2 TOP: Density
416 ANS: 4
$C=12 \pi \frac{120}{360}(12 \pi)=\frac{1}{3}(12 \pi)$
PTS: 2 REF: 061822geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
417 ANS: 3
$6 \cdot 3^{2}=5412 \cdot 3=36$
PTS: 2 REF: 081823geo NAT: G.SRT.A. 2 TOP: Dilations
418 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=05+\frac{2}{5}(20-5)=5+\frac{2}{5}(15)=5+6=11$
PTS: 2 REF: 061715geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

419 ANS: 1
$\cos S=\frac{60}{65}$

$$
S \approx 23
$$

PTS: 2 REF: 061713geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 420 ANS:

The line is on the center of dilation, so the line does not change. $p: 3 x+4 y=20$
PTS: 2 REF: 061731geo NAT: G.SRT.A. 1 TOP: Line Dilations
421 ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.
PTS: 4 REF: 011832geo NAT: G.SRT.A. 2 TOP: Dilations
422 ANS: 4 PTS: 2 REF: 081716geo NAT: G.CO.C. 10
TOP: Midsegments
423 ANS: 2 PTS: 2 REF: 011702geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations KEY: grids
424 ANS: 2
$\cos B=\frac{17.6}{26}$
$B \approx 47$
PTS: 2 REF: 061806geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
425 ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.
PTS: 2 REF: 081706geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
426 ANS: 2
$V=\frac{1}{3}\left(\frac{36}{4}\right)^{2} \cdot 15=405$

PTS: 2
REF: 011822geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids

427 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2 REF: 011724geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
428 ANS:
Yes, as translations do not change angle measurements.
PTS: 2 REF: 061825geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
429 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
430 ANS: 1
$2 x+4+46=90$

$$
\begin{aligned}
2 x & =40 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 061808geo NAT: G.SRT.C. 7 TOP: Cofunctions
431 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{9-x}{x} \\
36-4 x & =2 x \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 061705geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
432 ANS: 2
$V=\frac{1}{3}\left(\frac{60}{12}\right)^{2}\left(\frac{84}{12}\right) \approx 58$
PTS: 2 REF: 081819geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
433
ANS: 2
PTS:
REF: 061709geo NAT: G.SRT.B. 5
TOP: Triangle Proofs
KEY: statements
434 ANS: 1
The slope of $3 x+2 y=12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.
PTS: 2
REF: 081811geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines

435
ANS:
$2\left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25=19.50$
PTS: 2 REF: 081831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
436 ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about B, translation 6 units down and 6 units left; or reflection over x-axis, translation 2 units down, reflection over y-axis

PTS: 2 REF: 081828geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
437 ANS:
$V=\pi(10)^{2}(18)=1800 \pi \mathrm{in}^{3} 1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right)=\frac{25}{24} \pi \mathrm{ft}^{3} \frac{25}{24} \pi(95.46)(0.85) \approx 266266+270=536$
PTS: 4 REF: 061834geo NAT: G.MG.A. 2 TOP: Density
438
ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$
PTS: 2 REF: 061719geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
439 ANS:

PTS: 2
REF: 061725geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
440 ANS: 1
Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$
PTS: 2 REF: 081704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: parallel lines

441 ANS: 1
$82.8=\frac{1}{3}(4.6)(9) h$

$$
h=6
$$

PTS: 2 REF: 061810geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
442 ANS: 3

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
54.45 \pi & =\frac{1}{3} \pi(3.3)^{2} h \\
h & =15
\end{aligned}
$$

PTS: 2 REF: 011807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
443 ANS: 3
PTS: 2
REF: 011710geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
444 ANS: 4 PTS: 2
REF: 081822geo NAT: G.CO.C. 10
TOP: Medians, Altitudes and Bisectors
445 ANS: $3 \quad$ PTS: 2
REF: 061802geo NAT: G.CO.C. 9
TOP: Lines and Angles
446 ANS: 3

$$
\begin{aligned}
x(x-6) & =4^{2} \\
x^{2}-6 x-16 & =0 \\
(x-8)(x+2) & =0 \\
x & =8
\end{aligned}
$$

PTS: 2 REF: 081807geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
447 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2 REF: 081720geo NAT: G.MG.A. 2 TOP: Density

448 ANS:
$\xrightarrow{\square}$

$$
r_{x=-1} \text { Reflections are rigid motions that preserve distance, so } \triangle A B C \cong \triangle D E F \text {. }
$$

PTS: 4
REF: 061732geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
449 ANS: 4

PTS: 2 REF: 081708geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
450 ANS:
$\sqrt[3]{\frac{3 V_{f}}{4 \pi}}-\sqrt[3]{\frac{3 V_{p}}{4 \pi}}=\sqrt[3]{\frac{3(294)}{4 \pi}}-\sqrt[3]{\frac{3(180)}{4 \pi}} \approx 0.6$
PTS: 2 REF: 061728geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
451 ANS:
$\cos 54=\frac{4.5}{m} \tan 54=\frac{h}{4.5}$

$$
m \approx 7.7 \quad h \approx 6.2
$$

PTS: 4 REF: 011834geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
452 ANS: 2
$\angle B=180-(82+26)=72 ; \angle D E C=180-26=154 ; \angle E D B=360-(154+26+72)=108 ; \angle B D F=\frac{108}{2}=54 ;$
$\angle D F B=180-(54+72)=54$
PTS: 2 REF: 061710geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
453 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$

$$
\frac{4}{5} \neq \frac{5}{6}
$$

PTS: 2
REF: 081709geo NAT: G.SRT.A. 3 TOP: Similarity Proofs

454 ANS: $2 \quad$ PTS: 2
REF: 011802geo NAT: G.CO.C. 11
TOP: Parallelograms
455 ANS: 1
$24 x=10^{2}$
$24 x=100$

$$
x \approx 4.2
$$

PTS: 2 REF: 061823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
456
ANS. 3
$\triangle C F B \sim \triangle C A D \quad \frac{C B}{C F}=\frac{C D}{C A}$

$$
\begin{aligned}
\frac{x}{21.6} & =\frac{7.2}{9.6} \\
x & =16.2
\end{aligned}
$$

PTS: 2 REF: 061804geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
457 ANS: 2
PTS: 2
REF: 081701geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
458 ANS:
$\cos W=\frac{6}{18}$

$$
W \approx 71
$$

PTS: 2 REF: 011831geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 459 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo NAT: G.CO.D. 13 TOP: Constructions
460 ANS: 4
PTS: 2
TOP: Midsegments
461 ANS: 4
PTS: 2
TOP: Chords, Secants and Tangents

REF: 011816geo NAT: G.C.A. 2
KEY: inscribed

462 ANS: 1
$x^{2}+y^{2}-6 y+9=-1+9$
$x^{2}+(y-3)^{2}=8$
PTS: 2 REF: 011718geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
463 ANS: 3 PTS: 2 REF: 061706geo NAT: G.SRT.A. 1
TOP: Line Dilations
464 ANS: 4
$x^{2}+4 x+4+y^{2}-8 y+16=-16+4+16$

$$
(x+2)^{2}+(y-4)^{2}=4
$$

PTS: 2
REF: 081821geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
465 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$

$$
(x-3)^{2}+(y+4)^{2}=81
$$

PTS: 2 REF: 081731geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
467 ANS: 2
$x^{2}=12(12-8)$
$x^{2}=48$
$x=4 \sqrt{3}$
PTS: 2
REF: 011823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg

468 ANS: 3
$\frac{x+72}{2}=58$
$x+72=116$

$$
x=44
$$

PTS: 2 REF: 061817geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
469 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2 REF: 011711geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
470 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2
REF: 081725geo NAT: G.GMD.A. 1 TOP: Volume
471 ANS: 1
B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
C: $(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2 REF: 011713geo NAT: G.SRT.A. 1 TOP: Line Dilations
472 ANS:

Because $\overline{A B} \cong \overline{A C}, \triangle A B C$ has two congruent sides and is isosceles. Because $\overline{A B} \cong \overline{B C}$ is not true, $\triangle A B C$ has sides that are not congruent and $\triangle A B C$ is not equilateral.

PTS: 4 REF: 061832geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
473 ANS: 1
M is a centroid, and cuts each median 2:1.
PTS: 2 REF: 061818geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter

474 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2 REF: 081718geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
475 ANS: 3 PTS: 2 REF: 011815geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
476 ANS:
Rotate $\triangle A B C$ clockwise about point C until $\overline{D F} \| \overline{A C}$. Translate $\triangle A B C$ along $\overline{C F}$ so that C maps onto F.
PTS: 2 REF: 061730geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
477 ANS: 4
$\sin 16.5=\frac{8}{x}$

$$
x \approx 28.2
$$

PTS: 2 REF: 081806ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 478 ANS:
$180-2(25)=130$
PTS: 2 REF: 011730geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
479 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.
PTS: 2 REF: 061722geo NAT: G.CO.B. 7 TOP: Triangle Congruency
480 ANS: 4
$\sin 71=\frac{x}{20}$
$x=20 \sin 71 \approx 19$
PTS: 2 REF: 061721geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: without graphics
481 ANS: 2
$\frac{30}{360}(5)^{2}(\pi) \approx 6.5$
PTS: 2 REF: 081818geo NAT: G.C.B. 5 TOP: Sectors

482 ANS:
$\tan 15=\frac{6250}{x} \quad \tan 52=\frac{6250}{y} \quad 23325.3-4883=18442 \frac{18442 \mathrm{ft}}{1 \mathrm{~min}}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right) \approx 210$

$$
x \approx 23325.3 \quad y \approx 4883
$$

PTS: 6 REF: 061736geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
483 ANS: 4
$\frac{1}{2}(360-268)=46$
PTS: 2 REF: 061704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
484 ANS:

$$
\begin{aligned}
C & =2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340 \\
31.416 & =2 \pi r \\
5 & \approx r
\end{aligned}
$$

PTS: 4 REF: 011734geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
485 ANS: 4 PTS: 2 REF: 081810geo NAT: G.SRT.B. 5
TOP: Triangle Proofs KEY: statements
486 ANS: 1
$-8+\frac{3}{5}(7--8)=-8+9=17+\frac{3}{5}(-13-7)=7-12=-5$
PTS: 2 REF: 081815geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 487 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$
PTS: 2 REF: 011720geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
488 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2
REF: 061811geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4
REF: 011732geo NAT: G.SRT.A. 2 TOP: Dilations
KEY: grids
490 ANS:

$$
\begin{aligned}
\tan 36 & =\frac{x}{10} \quad \cos 36=\frac{10}{y} 12.3607 \times 3 \approx 37 \\
x & \approx 7.3 \quad y \approx 12.3607
\end{aligned}
$$

PTS: 4 REF: 081833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
491 ANS: 1
$\tan x=\frac{1}{12}$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
492 ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$. $R(2,9)$. Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes

$$
\left(m_{\overline{A R}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P T}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P A}}=-\frac{11}{3} ; m_{\overline{R T}}=-\frac{11}{3}\right)
$$

PTS: 6 REF: 011835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

493 ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A$ (AA).

PTS: 2 REF: 011729geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
494 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$
$x=8.25$
PTS: 2 REF: 081705geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
495 ANS: 4

$$
\frac{5}{7}=\frac{x}{x+5} 12 \frac{1}{2}+5=17 \frac{1}{2}
$$

$5 x+25=7 x$

$$
2 x=25
$$

$$
x=12 \frac{1}{2}
$$

PTS: 2 REF: 061821geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
496 ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2 REF: 081729geo NAT: G.SRT.A. 1 TOP: Line Dilations
497 ANS: 2
$-4+\frac{2}{5}(1--4)=-4+\frac{2}{5}(5)=-4+2=-2-2+\frac{2}{5}(8--2)=-2+\frac{2}{5}(10)=-2+4=2$
PTS: 2 REF: 061814geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
498
ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2
REF: 081727geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify

499 ANS: 1
$V=\frac{1}{3} \pi(4)^{2}(6)=32 \pi$
PTS: 2
REF: 061718geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
500 ANS: 1

$$
(12 \cdot 11)-\left(\frac{1}{2}(12 \cdot 4)+\frac{1}{2}(7 \cdot 9)+\frac{1}{2}(11 \cdot 3)\right)=60
$$

PTS: 2 REF: 061815geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 501 ANS:
$29.5=2 \pi r \quad V=\frac{4}{3} \pi \cdot\left(\frac{29.5}{2 \pi}\right)^{3} \approx 434$
$r=\frac{29.5}{2 \pi}$
PTS: 2 REF: 061831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
502 ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$
PTS: 2
REF: 061812geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line

REF: 011817geo NAT: G.SRT.B. 5
TOP: Similarity
KEY: basic
504 ANS: 4 PTS: 2
REF: 061803geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: graphics

505 ANS: 2

PTS: 2 REF: 081814geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length
506 ANS: 3 PTS: 2 REF: 081805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
507 ANS: 4 PTS: 2 REF: 011723geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
508 ANS:
$\frac{4 \pi}{3}\left(2^{3}-1.5^{3}\right) \approx 19.419 .4 \cdot 1.308 \cdot 8 \approx 203$
PTS: 4 REF: 081834geo NAT: G.MG.A. 2 TOP: Density
509 ANS: 3
$\frac{s_{L}}{s_{S}}=\frac{6 \theta}{4 \theta}=1.5$
PTS: 2 REF: 011824geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
510 ANS: 2
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 081820geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
511 ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(A A) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4
REF: 081733geo NAT: G.SRT.B. 5 TOP: Circle Proofs

512 ANS:
$T_{0,-2} \circ r_{y \text {-xxis }}$
PTS: 2 REF: 011726geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
513 ANS: 4 PTS: 2 REF: 081801geo NAT: G.CO.C. 9
TOP: Lines and Angles
514 ANS:
No. Since $\overline{B C}=5$ and $\overline{S T}=\sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle A B C$ onto $\triangle R S T$.

PTS: 2 REF: 011830geo NAT: G.CO.B. 7 TOP: Triangle Congruency
515 ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$
PTS: 2 REF: 011701geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
516 ANS:

PTS: 2 REF: 061829geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
517 ANS: 4
AA
PTS: 2 REF: 061809geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
518 ANS: 1

$$
\cos x=\frac{12}{13}
$$

$$
x \approx 23
$$

PTS: 2 REF: 081809ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

519 ANS:

PTS: 2 REF: 011725geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
520 ANS:
$\frac{40}{360} \cdot \pi(4.5)^{2}=2.25 \pi$
PTS: 2
REF: 061726geo
NAT: G.C.B. 5
TOP: Sectors
521 ANS: 2
$2 x+7+4 x-7=90$

$$
\begin{aligned}
6 x & =90 \\
x & =15
\end{aligned}
$$

PTS: 2
REF: 081824geo
NAT: G.SRT.C. 7
522 ANS: 2
$8(x+8)=6(x+18)$
$8 x+64=6 x+108$
$2 x=44$
$x=22$
PTS: 2
REF: 011715geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
523 ANS:
$\frac{Q}{360}(\pi)\left(25^{2}\right)=(\pi)\left(25^{2}\right)-500 \pi$
$Q=\frac{125 \pi(360)}{625 \pi}$
$Q=72$
PTS: 2
REF: 011828geo
NAT: G.C.B. 5
TOP: Sectors
524 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals

525 ANS:
No, The line $4 x+3 y=24$ passes through the center of dilation, so the dilated line is not distinct. $4 x+3 y=24$

$$
\begin{aligned}
3 y & =-4 x+24 \\
y & =-\frac{4}{3} x+8
\end{aligned}
$$

PTS: 2
REF: 081830geo NAT: G.SRT.A. 1 TOP: Line Dilations

