JMAP
REGENTS BY COMMON CORE
STATE STANDARD: TOPIC

NY Geometry Regents Exam Questions
from Spring 2014 to August 2016 Sorted by CCSS:Topic

www.jmap.org
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>P.I.: SUBTOPIC</th>
<th>QUESTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOOLS OF GEOMETRY</td>
<td>G.CO.D.12-13: Constructions</td>
<td>1-8</td>
</tr>
<tr>
<td>LINES AND ANGLES</td>
<td>G.GPE.B.6: Directed Line Segments</td>
<td>9-14</td>
</tr>
<tr>
<td></td>
<td>G.GPE.B.5: Parallel and Perpendicular Lines</td>
<td>15-19</td>
</tr>
<tr>
<td></td>
<td>G.CO.C.9: Lines and Angles</td>
<td>20-25</td>
</tr>
<tr>
<td>TRIANGLES</td>
<td>G.CO.C.10: Interior and Exterior Angles of Triangles</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>G.SRT.C.8: Pythagorean Theorem</td>
<td>27-29</td>
</tr>
<tr>
<td></td>
<td>G.SRT.B.5: Isosceles Triangle Theorem</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>G.SRT.B.5: Side Splitter Theorem</td>
<td>31-34</td>
</tr>
<tr>
<td></td>
<td>G.GPE.B.4: Triangles in the Coordinate Plane</td>
<td>35-36</td>
</tr>
<tr>
<td>POLYGONS</td>
<td>G.CO.C.11: Parallelograms</td>
<td>37-44</td>
</tr>
<tr>
<td></td>
<td>G.GPE.4, 7: Polygons in the Coordinate Plane</td>
<td>45-51</td>
</tr>
<tr>
<td>CONICS</td>
<td>G.C.B.5: Arc Length</td>
<td>52-53</td>
</tr>
<tr>
<td></td>
<td>G.C.B.5: Sectors</td>
<td>54-59</td>
</tr>
<tr>
<td></td>
<td>G.C.A.2: Chords, Secants and Tangents</td>
<td>63-70</td>
</tr>
<tr>
<td></td>
<td>G.C.A.3: Inscribed Quadrilaterals</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>G.GPE.A.1: Equations of Circles</td>
<td>72-77</td>
</tr>
<tr>
<td></td>
<td>G.GPE.B.4: Circles in the Coordinate Plane</td>
<td>78-79</td>
</tr>
<tr>
<td>MEASURING IN THE</td>
<td>G.GMD.B.4: Rotations of Two-Dimensions Objects</td>
<td>80-83</td>
</tr>
<tr>
<td>PLANE AND SPACE</td>
<td>G.GMD.B.4: Cross-Sections of Three-Dimensional Objects</td>
<td>84-86</td>
</tr>
<tr>
<td></td>
<td>G.GMD.A.1, 3, G.MG.A.1, 3: Volume</td>
<td>87-95</td>
</tr>
<tr>
<td></td>
<td>G.MG.A.3: Surface and Lateral Area</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>G.MG.A.2: Density</td>
<td>97-109</td>
</tr>
<tr>
<td></td>
<td>G.SRT.A.2-3, G.SRT.B.5: Similarity</td>
<td>110-131</td>
</tr>
<tr>
<td>TRANSFORMATIONS</td>
<td>G.CO.A.5: Rotations</td>
<td>141-142</td>
</tr>
<tr>
<td></td>
<td>G.CO.A.5: Reflections</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>G.CO.A.3: Mapping a Polygon onto Itself</td>
<td>144-147</td>
</tr>
<tr>
<td></td>
<td>G.CO.B.6: Properties of Transformations</td>
<td>148-150</td>
</tr>
<tr>
<td></td>
<td>G.CO.A.5: Identifying Transformations</td>
<td>151-156</td>
</tr>
<tr>
<td></td>
<td>G.CO.A.2: Analytical Representations of Transformations</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>G.CO.A.5, G.SRT.A.2: Compositions of Transformations</td>
<td>158-164</td>
</tr>
<tr>
<td>TRIGONOMETRY</td>
<td>G.SRT.C.6: Trigonometric Ratios</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>G.SRT.C.7: Cofunctions</td>
<td>166-172</td>
</tr>
<tr>
<td></td>
<td>G.SRT.8: Using Trigonometry to Find a Side</td>
<td>173-180</td>
</tr>
<tr>
<td></td>
<td>G.SRT.8: Using Trigonometry to Find an Angle</td>
<td>181-185</td>
</tr>
<tr>
<td>LOGIC</td>
<td>G.CO.B.7-8: Triangle Congruency</td>
<td>186-193</td>
</tr>
<tr>
<td></td>
<td>G.CO.C.10, G.SRT.B.4: Triangle Proofs</td>
<td>194-199</td>
</tr>
<tr>
<td></td>
<td>G.CO.C.11, G.SRT.B.5: Quadrilateral Proofs</td>
<td>200-205</td>
</tr>
<tr>
<td></td>
<td>G.SRT.B.5: Circle Proofs</td>
<td>206-207</td>
</tr>
</tbody>
</table>
1. Triangle $\triangle XYZ$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle ABC$ is congruent to $\triangle XYZ$.

2. Using a compass and straightedge, construct an altitude of triangle $\triangle ABC$ below. [Leave all construction marks.]

3. In the diagram below, radius \overline{OA} is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]
4 In the diagram of $\triangle ABC$ shown below, use a compass and straightedge to construct the median to \overline{AB}. [Leave all construction marks.]

5 Using a compass and straightedge, construct and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of \overline{AC} and $\overline{A'C'}$.

6 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.
7 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

8 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

LINES AND ANGLES

G.GPE.B.6: DIRECTED LINE SEGMENTS

9 What are the coordinates of the point on the directed line segment from $K(-5, -4)$ to $L(5, 1)$ that partitions the segment into a ratio of 3 to 2?
1 $(-3, -3)$
2 $(-1, -2)$
3 $(0, -\frac{3}{2})$
4 $(1, -1)$

10 The coordinates of the endpoints of \overline{AB} are $A(-6, -5)$ and $B(4, 0)$. Point P is on \overline{AB}. Determine and state the coordinates of point P, such that $AP:PB$ is 2:3. [The use of the set of axes below is optional.]
11 The endpoints of DEF are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $DE:EF = 2:3$.

12 Directed line segment PT has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]

13 Point P is on segment AB such that $AP:PB$ is 4:5. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

14 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P?

- $\left(4,\frac{5}{2}\right)$
- $\left(-\frac{1}{2},-4\right)$
- $\left(-4\frac{1}{2},0\right)$
- $\left(-4,-\frac{1}{2}\right)$

G.GPE.B.5: PARALLEL AND PERPENDICULAR LINES

15 Which equation represents a line that is perpendicular to the line represented by $2x - y = 7$?

- $y = -\frac{1}{2}x + 6$
- $y = \frac{1}{2}x + 6$
- $y = -2x + 6$
- $y = 2x + 6$
16 Given MN shown below, with $M(-6, 1)$ and $N(3, -5)$, what is an equation of the line that passes through point $P(6, 1)$ and is parallel to MN?

- $y = -\frac{2}{3}x + 5$
- $y = -\frac{2}{3}x - 3$
- $y = \frac{3}{2}x + 7$
- $y = \frac{3}{2}x - 8$

17 An equation of a line perpendicular to the line represented by the equation $y = -\frac{1}{2}x - 5$ and passing through $(6, -4)$ is

- $y = -\frac{1}{2}x + 4$
- $y = -\frac{1}{2}x - 1$
- $y = 2x + 14$
- $y = 2x - 16$

18 Line segment NY has endpoints $N(-11, 5)$ and $Y(5, -7)$. What is the equation of the perpendicular bisector of NY?

- $y + 1 = \frac{4}{3}(x + 3)$
- $y + 1 = -\frac{3}{4}(x + 3)$
- $y - 6 = \frac{4}{3}(x - 8)$
- $y - 6 = -\frac{3}{4}(x - 8)$

19 In the diagram below, $\triangle ABC$ has vertices $A(4, 5)$, $B(2, 1)$, and $C(7, 3)$.

What is the slope of the altitude drawn from A to BC?

- $2 \frac{5}{2}$
- $\frac{3}{2}$
- $\frac{1}{2}$
- $\frac{5}{2}$

20 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $ABCD \parallel EFG$?

1. $\angle CFG \cong \angle FCB$
2. $\angle ABF \cong \angle BFC$
3. $\angle EFB \cong \angle CFB$
4. $\angle CBF \cong \angle GFC$

21 In the diagram below, EF intersects AB and CD at G and H, respectively, and GI is drawn such that $GH \cong HI$.

If $m\angle EGB = 50^\circ$ and $m\angle DIG = 115^\circ$, explain why $AB \parallel CD$.

22 In the diagram below, FE bisects AC at B, and GE bisects BD at C.

Which statement is always true?

1. $AB \cong DC$
2. $FB \cong EB$
3. BD bisects GE at C.
4. AC bisects FE at B.
23 In the diagram below, DB and AF intersect at point C, and AD and FBE are drawn.

If $AC = 6$, $DC = 4$, $FC = 15$, $m\angle D = 65^\circ$, and $m\angle CBE = 115^\circ$, what is the length of CB?

1. 10
2. 12
3. 17
4. 22.5

24 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1. $\ell \parallel n$
2. $\ell \parallel p$
3. $m \parallel p$
4. $m \parallel n$

25 Segment CD is the perpendicular bisector of AB at E. Which pair of segments does not have to be congruent?

1. $AD\overline{BD}$
2. $AC\overline{BC}$
3. $AE\overline{BE}$
4. $DE\overline{CE}$
TRIANGLES
G.CO.C.10: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

26 In the diagram below, \(m\angle BDC = 100^\circ \), \(m\angle A = 50^\circ \), and \(m\angle DBC = 30^\circ \).

Which statement is true?
1 \(\triangle ABD \) is obtuse.
2 \(\triangle ABC \) is isosceles.
3 \(m\angle ABD = 80^\circ \)
4 \(\triangle ABD \) is scalene.

G.SRT.C.8: PYTHAGOREAN THEOREM

27 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is
1 3.5
2 4.9
3 5.0
4 6.9

G.SRT.B.5: ISOSCELES TRIANGLE THEOREM

29 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?
1 10.0
2 11.5
3 17.3
4 23.1

28 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.
G.SRT.B.5: SIDE SPLITTER THEOREM

31 In the diagram of $\triangle ADC$ below, $EB \parallel DC$, $AE = 9$, $ED = 5$, and $AB = 9.2$.

What is the length of AC, to the nearest tenth?
1 5.1
2 5.2
3 14.3
4 14.4

32 In the diagram below, $\triangle ABC \sim \triangle ADE$.

Which measurements are justified by this similarity?
1 $AD = 3$, $AB = 6$, $AE = 4$, and $AC = 12$
2 $AD = 5$, $AB = 8$, $AE = 7$, and $AC = 10$
3 $AD = 3$, $AB = 9$, $AE = 5$, and $AC = 10$
4 $AD = 2$, $AB = 6$, $AE = 5$, and $AC = 15$

33 In the diagram of $\triangle ABC$, points D and E are on AB and CB, respectively, such that $AC \parallel DE$.

If $AD = 24$, $DB = 12$, and $DE = 4$, what is the length of AC?
1 8
2 12
3 16
4 72

34 In $\triangle CED$ as shown below, points A and B are located on sides CE and ED, respectively. Line segment AB is drawn such that $AE = 3.75$, $AC = 5$, $EB = 4.5$, and $BD = 6$.

Explain why AB is parallel to CD.

9
G.GPE.B.4: TRIANGLES IN THE COORDINATE PLANE

35 Triangle ABC has vertices with $A(x, 3)$, $B(-3, -1)$, and $C(-1, -4)$. Determine and state a value of x that would make triangle ABC a right triangle. Justify why $\triangle ABC$ is a right triangle. [The use of the set of axes below is optional.]

POLYGONS
G.CO.C.11: PARALLELOGRAMS

37 Quadrilateral $ABCD$ has diagonals \overline{AC} and \overline{BD}. Which information is not sufficient to prove $ABCD$ is a parallelogram?
1. \overline{AC} and \overline{BD} bisect each other.
2. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
3. $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$
4. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$

38 The diagram below shows parallelogram $LMNO$ with diagonal \overline{LN}, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$. Explain why $m\angle NLO$ is 40 degrees.

39 A parallelogram must be a rectangle when its
1. diagonals are perpendicular
2. diagonals are congruent
3. opposite sides are parallel
4. opposite sides are congruent
40 In the diagram of parallelogram $FRED$ shown below, ED is extended to A, and AF is drawn such that $AF \cong DF$.

If $m \angle R = 124^\circ$, what is $m \angle AFD$?
1. 124°
2. 112°
3. 68°
4. 56°

41 In parallelogram $QRST$ shown below, diagonal TR is drawn, U and V are points on TS and QR, respectively, and UV intersects TR at W.

If $m \angle S = 60^\circ$, $m \angle SRT = 83^\circ$, and $m \angle TWU = 35^\circ$, what is $m \angle WVQ$?
1. 37°
2. 60°
3. 72°
4. 83°

42 In parallelogram $ABCD$, diagonals AC and BD intersect at E. Which statement does not prove parallelogram $ABCD$ is a rhombus?
1. $AC \cong DB$
2. $AB \cong BC$
3. $AC \perp DB$
4. AC bisects $\angle DCB$

43 Quadrilateral $ABCD$ with diagonals AC and BD is shown in the diagram below.

Which information is not enough to prove $ABCD$ is a parallelogram?
1. $AB \cong CD$ and $AB \parallel DC$
2. $AB \cong CD$ and $BC \cong DA$
3. $AB \cong CD$ and $BC \parallel AD$
4. $AB \parallel DC$ and $BC \parallel AD$
44 In the diagram below, $ABCD$ is a parallelogram, AB is extended through B to E, and CE is drawn. If $CE \cong BE$ and $\angle D = 112^\circ$, what is $m\angle E$?

1. 44°
2. 56°
3. 68°
4. 112°

G.GPE.B.4, 7: POLYGONS IN THE COORDINATE PLANE

45 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH.

G.GPE.B.4, 7: POLYGONS IN THE COORDINATE PLANE
46 In the coordinate plane, the vertices of \(\triangle RST \) are \(R(6,-1), S(1,-4), \) and \(T(-5,6). \) Prove that \(\triangle RST \) is a right triangle. State the coordinates of point \(P \) such that quadrilateral \(RSTP \) is a rectangle. Prove that your quadrilateral \(RSTP \) is a rectangle. [The use of the set of axes below is optional.]

48 The diagonals of rhombus \(TEAM \) intersect at \(P(2,1). \) If the equation of the line that contains diagonal \(TA \) is \(y = -x + 3, \) what is the equation of a line that contains diagonal \(EM? \)
1. \(y = x - 1 \)
2. \(y = x - 3 \)
3. \(y = -x - 1 \)
4. \(y = -x - 3 \)

49 The endpoints of one side of a regular pentagon are \((-1,4)\) and \((2,3).\) What is the perimeter of the pentagon?
1. \(\sqrt{10} \)
2. \(5\sqrt{10} \)
3. \(5\sqrt{2} \)
4. \(25\sqrt{2} \)

47 A quadrilateral has vertices with coordinates \((-3,1), (0,3), (5,2), \) and \((-1,-2).\) Which type of quadrilateral is this?
1. rhombus
2. rectangle
3. square
4. trapezoid

50 Triangle \(RST \) is graphed on the set of axes below.

How many square units are in the area of \(\triangle RST? \)
1. \(9\sqrt{3} + 15 \)
2. \(9\sqrt{5} + 15 \)
3. 45
4. 90
51 The coordinates of vertices \(A\) and \(B\) of \(\triangle ABC\) are \(A(3,4)\) and \(B(3,12)\). If the area of \(\triangle ABC\) is 24 square units, what could be the coordinates of point \(C\)?

1. (3, 6)
2. (8, -3)
3. (-3, 8)
4. (6, 3)

52 In the diagram below, the circle shown has radius 10. Angle \(B\) intercepts an arc with a length of \(2\pi\).

\[\text{What is the measure of angle } B, \text{ in radians?} \]

1. \(10 + 2\pi\)
2. \(20\pi\)
3. \(\frac{\pi}{5}\)
4. \(\frac{5}{\pi}\)

CONICS
G.C.B.5: ARC LENGTH

53 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle \(A\) intercepts an arc of length \(\pi\), and angle \(B\) intercepts an arc of length \(\frac{13\pi}{8}\).

Dominic thinks that angles \(A\) and \(B\) have the same radian measure. State whether Dominic is correct or not. Explain why.

G.C.B.5: SECTORS

54 In the diagram below of circle \(O\), diameter \(AB\) and radii \(OC\) and \(OD\) are drawn. The length of \(AB\) is 12 and the measure of \(\angle COD\) is 20 degrees.

If \(\overline{AC} \cong \overline{BD}\), find the area of sector \(BOD\) in terms of \(\pi\).
55 In the diagram below of circle O, the area of the shaded sector AOC is 12π in2 and the length of OA is 6 inches. Determine and state $m\angle AOC$.

56 Triangle FGH is inscribed in circle O, the length of radius OH is 6, and $FH \cong OG$.

57 In the diagram below of circle O, the area of the shaded sector LOM is 2π cm2.

If the length of NL is 6 cm, what is $m\angle N$?
1 10°
2 20°
3 40°
4 80°

58 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?
1 $\frac{8\pi}{3}$
2 $\frac{16\pi}{3}$
3 $\frac{32\pi}{3}$
4 $\frac{64\pi}{3}$
59 In circle O, diameter AB, chord BC, and radius OC are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector COB:
- **Amy**: $\frac{3}{10} \cdot \pi \cdot (BC)^2$
- **Beth**: $\frac{108}{360} \cdot \pi \cdot (OC)^2$
- **Carl**: $\frac{3}{10} \cdot \pi \cdot \left(\frac{1}{2} AB \right)^2$
- **Dex**: $\frac{108}{360} \cdot \pi \cdot \left(\frac{1}{2} AB \right)^2$

Which students wrote correct formulas?
1. Amy and Dex
2. Beth and Carl
3. Carl and Amy
4. Dex and Beth

60 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5.

Use transformations to explain why circles A and B are similar.

61 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is
1. 31
2. 16
3. 12
4. 10

62 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?
1. 15
2. 16
3. 31
4. 32
G.C.A.2: CHORDS, SECANTS AND TANGENTS

63 In the diagram of circle A shown below, chords CD and EF intersect at G, and chords CE and FD are drawn.

Which statement is not always true?
1. $CG \cong FG$
2. $\angle CEG \cong \angle FDG$
3. $\frac{CE}{EG} = \frac{FD}{DG}$
4. $\triangle CEG \sim \triangle FDG$

64 In circle O shown below, diameter AC is perpendicular to CD at point C, and chords AB, BC, AE, and CE are drawn.

Which statement is not always true?
1. $\angle ACB \cong \angle BCD$
2. $\angle ABC \cong \angle ACD$
3. $\angle BAC \cong \angle DCB$
4. $\angle BCA \cong \angle AEC$

65 In the diagram shown below, AC is tangent to circle O at A and to circle P at C, OP intersects AC at B, $OA = 4$, $AB = 5$, and $PC = 10$.

What is the length of BC?
1. 6.4
2. 8
3. 12.5
4. 16

66 In the diagram below, DC, AC, DOB, CB, and AB are chords of circle O, FDE is tangent at point D, and radius AO is drawn. Sam decides to apply this theorem to the diagram: “An angle inscribed in a semi-circle is a right angle.”

Which angle is Sam referring to?
1. $\angle AOB$
2. $\angle BAC$
3. $\angle DCB$
4. $\angle FDB$
67 In the diagram below of circle O with diameter BC and radius OA, chord DC is parallel to chord BA.

If $m \angle BCD = 30^\circ$, determine and state $m \angle AOB$.

68 In the diagram below of circle O, OB and OC are radii, and chords AB, BC, and AC are drawn.

Which statement must always be true?
1. $\angle BAC \cong \angle BOC$
2. $m \angle BAC = \frac{1}{2} m \angle BOC$
3. $\triangle BAC$ and $\triangle BOC$ are isosceles.
4. The area of $\triangle BAC$ is twice the area of $\triangle BOC$.

69 In the diagram below, BC is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?
1. $\triangle BCD$ is a right triangle.
2. $\triangle BCD$ is an isosceles triangle.
3. $\triangle BAD$ and $\triangle CBD$ are similar triangles.
4. $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

70 Lines AE and BD are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $AC:CE = 5:3$, and $BD = 56$, determine and state the length of CD.
G.C.A.3: INSCRIBED QUADRILATERALS

71 In the diagram below, quadrilateral $ABCD$ is inscribed in circle P.

What is $m\angle ADC$?
1 70°
2 72°
3 108°
4 110°

G.GPE.A.1: EQUATIONS OF CIRCLES

72 The equation of a circle is $x^2 + y^2 + 6y = 7$. What are the coordinates of the center and the length of the radius of the circle?
1 center $(0,3)$ and radius 4
2 center $(0,-3)$ and radius 4
3 center $(0,3)$ and radius 16
4 center $(0,-3)$ and radius 16

74 What are the coordinates of the center and length of the radius of the circle whose equation is $x^2 + 6x + y^2 - 4y = 23$?
1 $(3,-2)$ and 36
2 $(3,-2)$ and 6
3 $(-3,2)$ and 36
4 $(-3,2)$ and 6

75 Kevin’s work for deriving the equation of a circle is shown below.

$$x^2 + 4x = -(y^2 - 20)$$

STEP 1

$$x^2 + 4x = -y^2 + 20$$

STEP 2

$$x^2 + 4x + 4 = -y^2 + 20 - 4$$

STEP 3

$$(x + 2)^2 = -y^2 + 20 - 4$$

STEP 4

$$(x + 2)^2 + y^2 = 16$$

In which step did he make an error in his work?
1 Step 1
2 Step 2
3 Step 3
4 Step 4

73 If $x^2 + 4x + y^2 - 6y - 12 = 0$ is the equation of a circle, the length of the radius is
1 25
2 16
3 5
4 4
76 The graph below shows \(AB\), which is a chord of circle \(O\). The coordinates of the endpoints of \(AB\) are \(A(3,3)\) and \(B(3,-7)\). The distance from the midpoint of \(AB\) to the center of circle \(O\) is 2 units.

What could be a correct equation for circle \(O\)?

1. \((x - 1)^2 + (y + 2)^2 = 29\)
2. \((x + 5)^2 + (y - 2)^2 = 29\)
3. \((x - 1)^2 + (y - 2)^2 = 25\)
4. \((x - 5)^2 + (y + 2)^2 = 25\)

77 What are the coordinates of the center and the length of the radius of the circle represented by the equation \(x^2 + y^2 - 4x + 8y + 11 = 0\)?

1. center \((2,-4)\) and radius 3
2. center \((-2,4)\) and radius 3
3. center \((2,-4)\) and radius 9
4. center \((-2,4)\) and radius 9

G.GPE.B.4: CIRCLES IN THE COORDINATE PLANE

78 The center of circle \(Q\) has coordinates \((3,-2)\). If circle \(Q\) passes through \(R(7,1)\), what is the length of its diameter?

1. 50
2. 25
3. 10
4. 5

79 A circle has a center at \((1,-2)\) and radius of 4. Does the point \((3.4,1.2)\) lie on the circle? Justify your answer.

MEASURING IN THE PLANE AND SPACE

G.GMD.B.4: ROTATIONS OF TWO-DIMENSIONAL OBJECTS

80 Which object is formed when right triangle \(RST\) shown below is rotated around leg \(RS\)?

1. a pyramid with a square base
2. an isosceles triangle
3. a right triangle
4. a cone
81 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

82 If the rectangle below is continuously rotated about side \(w \), which solid figure is formed?

![Rectangle](image)

1 pyramid
2 rectangular prism
3 cone
4 cylinder

83 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1 cone
2 pyramid
3 prism
4 sphere
84 Which figure can have the same cross section as a sphere?

1
2
3
4

85 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can *not* be a cross section of a cone?

1
2
3
4

86 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1 circle
2 square
3 triangle
4 rectangle
G.GMD.A.1, 3, G.MG.A.1, 3: VOLUME

87 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri’s principle to explain why the volumes of these two stacks of quarters are equal.

88 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1 73
2 77
3 133
4 230

89 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1 10
2 25
3 50
4 75

90 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1 72
2 144
3 288
4 432

91 A company is creating an object from a wooden cube with an edge length of 8.5 cm. A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1 \((8.5)^3 - \pi(8)^2(8)\)
2 \((8.5)^3 - \pi(4)^2(8)\)
3 \((8.5)^3 - \frac{1}{3} \pi(8)^2(8)\)
4 \((8.5)^3 - \frac{1}{3} \pi(4)^2(8)\)
92 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1 3591
2 65
3 55
4 4

93 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

94 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

95 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm. To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1 236
2 282
3 564
4 945
G.MG.A.3: SURFACE AND LATERAL AREA

96 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1 1
2 2
3 3
4 4

G.MG.A.2: DENSITY

97 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $50,000.

100 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

<table>
<thead>
<tr>
<th>Type of Wood</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>0.373</td>
</tr>
<tr>
<td>Hemlock</td>
<td>0.431</td>
</tr>
<tr>
<td>Elm</td>
<td>0.554</td>
</tr>
<tr>
<td>Birch</td>
<td>0.601</td>
</tr>
<tr>
<td>Ash</td>
<td>0.638</td>
</tr>
<tr>
<td>Maple</td>
<td>0.676</td>
</tr>
<tr>
<td>Oak</td>
<td>0.711</td>
</tr>
</tbody>
</table>
101 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $AC = 8.5$ feet, $BF = 25$ feet, and $\angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

102 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

\[
\begin{align*}
1 & \quad 16,336 \\
2 & \quad 32,673 \\
3 & \quad 130,690 \\
4 & \quad 261,381
\end{align*}
\]

103 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $37.83 for the molds and charges $1.95 for each candle, what is Walter's profit after selling 100 candles?

104 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

\[
\begin{align*}
1 & \quad 34 \\
2 & \quad 20 \\
3 & \quad 15 \\
4 & \quad 4
\end{align*}
\]
105 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish \(A \) has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish \(B \) has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

106 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1 3.3
2 3.5
3 4.7
4 13.3

107 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1 16,336
2 32,673
3 130,690
4 261,381

108 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1 13
2 9694
3 13,536
4 30,456

109 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is 0.697 g/cm\(^3\), and the cost, per kilogram, of ice is $3.83. Determine and state the cost of the ice needed to make 50 snow cones.
110 In the diagram below, triangles XYZ and UVZ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$. Describe a sequence of similarity transformations that shows $\triangle XYZ$ is similar to $\triangle UVZ$.

111 If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?
1. $3A'B' = AB$
2. $B'C' = 3BC$
3. $m\angle A' = 3(m\angle A)$
4. $3(m\angle C') = m\angle C$

112 The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below. Which statement is always true?
1. $2AB = AD$
2. $AD \perp DE$
3. $AC = CE$
4. $BC \parallel DE$

113 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where $AB = 3$, $BC = 5.5$, $AC = 4.5$, $DE = 6$, $FD = 9$, and $EF = 11$. Which relationship must always be true?
1. $\frac{m\angle A}{m\angle D} = \frac{1}{2}$
2. $\frac{m\angle C}{m\angle F} = \frac{2}{1}$
3. $\frac{m\angle A}{m\angle C} = \frac{m\angle F}{m\angle D}$
4. $\frac{m\angle B}{m\angle E} = \frac{m\angle C}{m\angle F}$
114 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1. The area of the image is nine times the area of the original triangle.
2. The perimeter of the image is nine times the perimeter of the original triangle.
3. The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4. The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

115 In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are $A(0, 0)$, $B(3, 0)$, $C(4.5, 0)$, $D(0, 6)$, and $E(0, 4)$.

The ratio of the lengths of BE to CD is

1. $\frac{2}{3}$
2. $\frac{3}{2}$
3. $\frac{3}{4}$
4. $\frac{4}{3}$

116 Using the information given below, which set of triangles can *not* be proven similar?
117. In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A'B'C' \sim \triangle ABC$.

118. Triangles ABC and DEF are drawn below.

If $AB = 9$, $BC = 15$, $DE = 6$, $EF = 10$, and $\angle B \cong \angle E$, which statement is true?

1. $\angle CAB \cong \angle DEF$
2. $\frac{AB}{FE} = \frac{CB}{DE}$
3. $\triangle ABC \sim \triangle DEF$
4. $\frac{AB}{DE} = \frac{FE}{CB}$

119. In the diagram below, $\triangle ABC \sim \triangle DEC$.

If $AC = 12$, $DC = 7$, $DE = 5$, and the perimeter of $\triangle ABC$ is 30, what is the perimeter of $\triangle DEC$?

1. 12.5
2. 14.0
3. 14.8
4. 17.5
120 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

121 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

122 As shown in the diagram below, AB and CD intersect at E, and $AC \parallel BD$.

![Diagram](image)

Given $\triangle AEC \sim \triangle BED$, which equation is true?

1. \(\frac{CE}{DE} = \frac{EB}{EA} \)
2. \(\frac{AE}{BE} = \frac{AC}{BD} \)
3. \(\frac{EC}{AE} = \frac{BE}{ED} \)
4. \(\frac{ED}{EC} = \frac{AC}{BD} \)

123 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

![Diagram](image)

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.
124 Triangles RST and XYZ are drawn below. If $RS = 6, ST = 14, XY = 9, YZ = 21$, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZ$? Justify your answer.

125 In the diagram below, $\triangle ABC \sim \triangle DEF$.

If $AB = 6$ and $AC = 8$, which statement will justify similarity by SAS?
1. $DE = 9, DF = 12$, and $\angle A \cong \angle D$
2. $DE = 8, DF = 10$, and $\angle A \cong \angle D$
3. $DE = 36, DF = 64$, and $\angle C \cong \angle F$
4. $DE = 15, DF = 20$, and $\angle C \cong \angle F$

126 The ratio of similarity of $\triangle BOY$ to $\triangle GRL$ is $1:2$. If $BO = x + 3$ and $GR = 3x - 1$, then the length of GR is
1. 5
2. 7
3. 10
4. 20

127 In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse \overline{AB} of right triangle ABC.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?
1. $AD = 2$ and $DB = 36$
2. $AD = 3$ and $AB = 24$
3. $AD = 6$ and $DB = 12$
4. $AD = 8$ and $AB = 17$

128 In $\triangle SCU$ shown below, points T and O are on \overline{SU} and \overline{CU}, respectively. Segment OT is drawn so that $\angle C \cong \angle OTU$.

If $TU = 4, OU = 5$, and $OC = 7$, what is the length of ST?
1. 5.6
2. 8.75
3. 11
4. 15
129 In \(\triangle RST \) shown below, altitude \(SU \) is drawn to \(RT \) at \(U \).

If \(SU = h \), \(UT = 12 \), and \(RT = 42 \), which value of \(h \) will make \(\triangle RST \) a right triangle with \(\angle RST \) as a right angle?

1. \(6\sqrt{3} \)
2. \(6\sqrt{10} \)
3. \(6\sqrt{14} \)
4. \(6\sqrt{35} \)

130 In the diagram of right triangle \(ABC \), \(CD \) intersects hypotenuse \(AB \) at \(D \).

If \(AD = 4 \) and \(DB = 6 \), which length of \(AC \) makes \(CD \perp AB \)?

1. \(2\sqrt{6} \)
2. \(2\sqrt{10} \)
3. \(2\sqrt{15} \)
4. \(4\sqrt{2} \)

131 In triangle \(CHR \), \(O \) is on \(HR \), and \(D \) is on \(CR \) so that \(\angle H \cong RDO \).

If \(RD = 4 \), \(RO = 6 \), and \(OH = 4 \), what is the length of \(CD \)?

1. \(\frac{2}{3} \)
2. \(6\frac{2}{3} \)
3. 11
4. 15

TRANSFORMATIONS

G.SRT.A.1: LINE DILATIONS

132 The equation of line \(h \) is \(2x + y = 1 \). Line \(m \) is the image of line \(h \) after a dilation of scale factor 4 with respect to the origin. What is the equation of the line \(m \)?

1. \(y = -2x + 1 \)
2. \(y = -2x + 4 \)
3. \(y = 2x + 4 \)
4. \(y = 2x + 1 \)
133 The line \(y = 2x - 4 \) is dilated by a scale factor of \(\frac{3}{2} \) and centered at the origin. Which equation represents the image of the line after the dilation?

1. \(y = 2x - 4 \)
2. \(y = 2x - 6 \)
3. \(y = 3x - 4 \)
4. \(y = 3x - 6 \)

134 In the diagram below, \(CD \) is the image of \(AB \) after a dilation of scale factor \(k \) with center \(E \).

Which ratio is equal to the scale factor \(k \) of the dilation?

1. \(\frac{EC}{EA} \)
2. \(\frac{BA}{EA} \)
3. \(\frac{EA}{BA} \)
4. \(\frac{EA}{EC} \)

135 The line \(3y = -2x + 8 \) is transformed by a dilation centered at the origin. Which linear equation could be its image?

1. \(2x + 3y = 5 \)
2. \(2x - 3y = 5 \)
3. \(3x + 2y = 5 \)
4. \(3x - 2y = 5 \)

136 Line \(y = 3x - 1 \) is transformed by a dilation with a scale factor of 2 and centered at \((3,8)\). The line's image is

1. \(y = 3x - 8 \)
2. \(y = 3x - 4 \)
3. \(y = 3x - 2 \)
4. \(y = 3x - 1 \)

137 A line that passes through the points whose coordinates are \((1,1)\) and \((5,7)\) is dilated by a scale factor of 3 and centered at the origin. The image of the line

1. is perpendicular to the original line
2. is parallel to the original line
3. passes through the origin
4. is the original line

138 Line \(\ell \) is mapped onto line \(m \) by a dilation centered at the origin with a scale factor of 2. The equation of line \(\ell \) is \(3x - y = 4 \). Determine and state an equation for line \(m \).
139 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1 9 inches
2 2 inches
3 15 inches
4 18 inches

140 Line segment $A'B'$, whose endpoints are $(4, -2)$ and $(16, 14)$, is the image of AB after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of AB?

1 5
2 10
3 20
4 40

G.CO.A.5: ROTATIONS

141 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1 A
2 B
3 C
4 D

G.CO.A.5: REFLECTIONS

142 The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is $(8, -3)$. Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

143 Triangle ABC is graphed on the set of axes below. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a reflection over the line $x = 1$.

1 A
2 B
3 C
4 D
144 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1. 54°
2. 72°
3. 108°
4. 360°

145 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1. octagon
2. decagon
3. hexagon
4. pentagon

146 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1. \(x = 5\)
2. \(y = 2\)
3. \(y = x\)
4. \(x + y = 4\)

147 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.
G.CO.B.6: PROPERTIES OF TRANSFORMATIONS

148 The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?
1. $BC \cong DE$
2. $AB \cong DF$
3. $\angle C \cong \angle E$
4. $\angle A \cong \angle D$

149 Quadrilateral $ABCD$ is graphed on the set of axes below.

When $ABCD$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A'B'C'D'$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
1. no and $C'(1,2)$
2. no and $D'(2,4)$
3. yes and $A'(6,2)$
4. yes and $B'(-3,4)$

150 Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.
G.CO.A.5: IDENTIFYING TRANSFORMATIONS

151 The vertices of \(\triangle JKL \) have coordinates \(J(5,1) \), \(K(-2,-3) \), and \(L(-4,1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?

1. a translation of two units to the right and two units down
2. a counterclockwise rotation of 180 degrees around the origin
3. a reflection over the \(x \)-axis
4. a dilation with a scale factor of 2 and centered at the origin

152 If \(\triangle A'B'C' \) is the image of \(\triangle ABC \), under which transformation will the triangles not be congruent?

1. reflection over the \(x \)-axis
2. translation to the left 5 and down 4
3. dilation centered at the origin with scale factor 2
4. rotation of 270° counterclockwise about the origin

153 In the diagram below, which single transformation was used to map triangle \(A \) onto triangle \(B' \)?

1. line reflection
2. rotation
3. dilation
4. translation

154 Which transformation of \(OA \) would result in an image parallel to \(OA \)?

1. a translation of two units down
2. a reflection over the \(x \)-axis
3. a reflection over the \(y \)-axis
4. a clockwise rotation of 90° about the origin
155 On the set of axes below, rectangle $ABCD$ can be proven congruent to rectangle $KLMN$ using which transformation?

1. rotation
2. translation
3. reflection over the x-axis
4. reflection over the y-axis

156 Which transformation would not always produce an image that would be congruent to the original figure?

1. translation
2. dilation
3. rotation
4. reflection

G.CO.A.2: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS

157 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1. $(x,y) \rightarrow (y,x)$
2. $(x,y) \rightarrow (x,-y)$
3. $(x,y) \rightarrow (4x,4y)$
4. $(x,y) \rightarrow (x+2,y-5)$

G.CO.A.5, G.SRT.A.2: COMPOSITIONS OF TRANSFORMATIONS

158 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

1. a reflection followed by a translation
2. a rotation followed by a translation
3. a translation followed by a reflection
4. a translation followed by a rotation
159 A sequence of transformations maps rectangle \(ABCD\) onto rectangle \(A'B'C'D'\), as shown in the diagram below.

Which sequence of transformations maps \(ABCD\) onto \(A'B'C'D'\) and then maps \(A'B'C'D'\) onto \(A''B''C''D''\)?
1. a reflection followed by a rotation
2. a reflection followed by a translation
3. a translation followed by a rotation
4. a translation followed by a reflection

160 Triangle \(ABC\) and triangle \(DEF\) are graphed on the set of axes below.

Which sequence of transformations maps triangle \(ABC\) onto triangle \(DEF\)?
1. a reflection over the \(x\)-axis followed by a reflection over the \(y\)-axis
2. a 180° rotation about the origin followed by a reflection over the line \(y = x\)
3. a 90° clockwise rotation about the origin followed by a reflection over the \(y\)-axis
4. a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin
161 Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below.

162 In the diagram below, $\triangle ABC$ has coordinates $A(1,1)$, $B(4,1)$, and $C(4,5)$. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after the translation five units to the right and two units up followed by the reflection over the line $y = 0$.

163 Which sequence of transformations will map $\triangle ABC$ onto $\triangle A'B'C'$?

1 reflection and translation
2 rotation and reflection
3 translation and dilation
4 dilation and rotation
164 Given: \(\triangle AEC, \triangle DEF, \) and \(FE \perp CE \)

What is a correct sequence of similarity transformations that shows \(\triangle AEC \sim \triangle DEF \)?

1. a rotation of 180 degrees about point \(E \) followed by a horizontal translation
2. a counterclockwise rotation of 90 degrees about point \(E \) followed by a horizontal translation
3. a rotation of 180 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)
4. a counterclockwise rotation of 90 degrees about point \(E \) followed by a dilation with a scale factor of 2 centered at point \(E \)

TRIGONOMETRY

G.SRT.C.6: TRIGONOMETRIC RATIOS

165 In the diagram below, \(\triangle ERM \sim \triangle JTM \).

Which statement is always true?

1. \(\cos J = \frac{RM}{RE} \)
2. \(\cos R = \frac{JM}{JT} \)
3. \(\tan T = \frac{RM}{EM} \)
4. \(\tan E = \frac{TM}{JM} \)

G.SRT.C.7: COFUNCTIONS

166 Explain why \(\cos(x) = \sin(90 - x) \) for \(x \) such that \(0 < x < 90 \).

167 In right triangle \(ABC \) with the right angle at \(C \), \(\sin A = 2x + 0.1 \) and \(\cos B = 4x - 0.7 \). Determine and state the value of \(x \). Explain your answer.
168 In scalene triangle ABC shown in the diagram below, $m\angle C = 90^\circ$.

Which equation is always true?
1. $\sin A = \sin B$
2. $\cos A = \cos B$
3. $\cos A = \sin C$
4. $\sin A = \cos B$

169 Which expression is always equivalent to $\sin x$ when $0^\circ < x < 90^\circ$?
1. $\cos(90^\circ - x)$
2. $\cos(45^\circ - x)$
3. $\cos(2x)$
4. $\cos x$

170 In $\triangle ABC$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
1. $\tan \angle A = \tan \angle B$
2. $\sin \angle A = \sin \angle B$
3. $\cos \angle A = \tan \angle B$
4. $\sin \angle A = \cos \angle B$

171 Find the value of R that will make the equation $\sin 73^\circ = \cos R$ true when $0^\circ < R < 90^\circ$. Explain your answer.

172 In $\triangle ABC$, where $\angle C$ is a right angle, $\cos A = \frac{\sqrt{21}}{5}$. What is $\sin B$?
1. $\frac{\sqrt{21}}{5}$
2. $\frac{\sqrt{21}}{2}$
3. $\frac{2}{5}$
4. $\frac{5}{\sqrt{21}}$

G.SRT.C.8: USING TRIGONOMETRY TO FIND A SIDE

173 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.
174 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

175 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?
1 29.7
2 16.6
3 13.5
4 11.2

176 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.
177 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

178 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground. Determine and state, to the nearest tenth of a meter, the height of the flagpole.

179 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?
1 6.8
2 6.9
3 18.7
4 18.8

180 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

G.SRT.C.8: USING TRIGONOMETRY TO FIND AN ANGLE

181 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man’s head, to the nearest tenth of a degree?
1 34.1
2 34.5
3 42.6
4 55.9
182 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

183 In the diagram of right triangle ABC shown below, $AB = 14$ and $AC = 9$.

What is the measure of $\angle A$, to the nearest degree?
1 33
2 40
3 50
4 57

184 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

185 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60-foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

LOGIC

G.CO.B.7-8: TRIANGLE CONGRUENCY

186 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

1 $AB = DE$ and $BC = EF$
2 $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
3 There is a sequence of rigid motions that maps \overline{AB} onto \overline{DE}, \overline{BC} onto \overline{EF}, and \overline{AC} onto \overline{DF}.
4 There is a sequence of rigid motions that maps point A onto point D, \overline{AB} onto \overline{DE}, and $\angle B$ onto $\angle E$.
187 After a reflection over a line, \(\triangle A'B'C' \) is the image of \(\triangle ABC \). Explain why triangle \(ABC \) is congruent to triangle \(A'B'C' \).

188 Given: \(D \) is the image of \(A \) after a reflection over \(CH \).
 \(CH \) is the perpendicular bisector of \(BCE \)
 \(\triangle ABC \) and \(\triangle DEC \) are drawn
Prove: \(\triangle ABC \cong \triangle DEC \)

189 Given right triangles \(\triangle ABC \) and \(\triangle DEF \) where \(\angle C \) and \(\angle F \) are right angles, \(AC = DF \) and \(CB = FE \).
Describe a precise sequence of rigid motions which would show \(\triangle ABC \cong \triangle DEF \).

190 In the diagram below, \(\triangle ABC \) and \(\triangle XYZ \) are graphed.

191 In the diagram below, \(AC = DF \) and points \(A, C, D, \) and \(F \) are collinear on line \(\ell \).
Let \(\triangle D'E'F' \) be the image of \(\triangle DEF \) after a translation along \(\ell \), such that point \(D \) is mapped onto point \(A \). Determine and state the location of \(F' \). Explain your answer. Let \(\triangle D''E''F'' \) be the image of \(\triangle D'E'F' \) after a reflection across line \(\ell \). Suppose that \(E'' \) is located at \(B \). Is \(\triangle DEF \) congruent to \(\triangle ABC \)? Explain your answer.
192 As graphed on the set of axes below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a sequence of transformations.

Is $\triangle A'B'C'$ congruent to $\triangle ABC$? Use the properties of rigid motion to explain your answer.

193 Given: $\triangle ABE$ and $\triangle CBD$ shown in the diagram below with $DB \cong BE$.

Which statement is needed to prove $\triangle ABE \cong \triangle CBD$ using only SAS \cong SAS?

1. $\angle CDB \cong \angle AEB$
2. $\angle AFD \cong \angle EFC$
3. $\overline{AD} \cong \overline{CE}$
4. $\overline{AE} \cong \overline{CD}$
Given the theorem, “The sum of the measures of the interior angles of a triangle is 180°,” complete the proof for this theorem.

Given: \(\triangle ABC \)
Prove: \(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \)
Fill in the missing reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\triangle ABC)</td>
<td>(1) Given</td>
</tr>
<tr>
<td>(2) Through point C, draw (\overline{DCE}) parallel to (\overline{AB}).</td>
<td>(2)</td>
</tr>
<tr>
<td>(3) (m\angle 1 = m\angle ACD), (m\angle 3 = m\angle BCE)</td>
<td>(3)</td>
</tr>
<tr>
<td>(4) (m\angle ACD + m\angle 2 + m\angle BCE = 180^\circ)</td>
<td>(4)</td>
</tr>
<tr>
<td>(5) (m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ)</td>
<td>(5)</td>
</tr>
</tbody>
</table>
195 Given: \(\triangle XYZ \), \(XY \cong ZY \), and \(YW \) bisects \(\angle XYZ \)
Prove that \(\angle YWZ \) is a right angle.

196 Prove the sum of the exterior angles of a triangle is 360°.

197 Two right triangles must be congruent if
1 an acute angle in each triangle is congruent
2 the lengths of the hypotenuses are equal
3 the corresponding legs are congruent
4 the areas are equal

198 In the diagram of \(\triangle LAC \) and \(\triangle DNC \) below,
\(LA \cong DN \), \(CA \cong CN \), and \(DAC \perp LCN \).

a) Prove that \(\triangle LAC \cong \triangle DNC \).

b) Describe a sequence of rigid motions that will map \(\triangle LAC \) onto \(\triangle DNC \).

199 Line segment \(EA \) is the perpendicular bisector of \(ZT \), and \(ZE \) and \(TE \) are drawn.

Which conclusion can not be proven?
1 \(EA \) bisects angle \(ZET \).
2 Triangle \(EZT \) is equilateral.
3 \(EA \) is a median of triangle \(EZT \).
4 Angle \(Z \) is congruent to angle \(T \).
G.CO.C.11, G.SRT.B.5: QUADRILATERAL PROOFS

200 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

Prove: $\triangle AED \cong \triangle CEB$
Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

201 Given: Quadrilateral $ABCD$ with diagonals AC and BD that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle ACD$ is an isosceles triangle and $\triangle AEB$ is a right triangle

202 In parallelogram $ABCD$ shown below, diagonals AC and BD intersect at E.

Prove: $\angle ACD \cong \angle CAB$

203 In the diagram of parallelogram $ABCD$ below, $BE \perp CE$, $DF \perp BC$, $CE \cong CF$.

Prove $ABCD$ is a rhombus.
204 Given: Parallelogram ANDR with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E, respectively.

Prove that $\triangle ANW \cong \triangle DRE$. Prove that quadrilateral AWDE is a parallelogram.

205 Given: Parallelogram ABCD, EFG, and diagonal \overline{DFB}

Prove: $\triangle DEF \sim \triangle BGF$

206 In the diagram below, secant \overline{ACD} and tangent \overline{AB} are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. ($AC \cdot AD = AB^2$)

207 Given: Circle O, chords \overline{AB} and \overline{CD} intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $AE \cdot EB = CE \cdot ED$.

52
Geometry Regents Exam Questions by Common Core State Standard: Topic
Answer Section

1 ANS:

PTS: 4 REF: 011634geo NAT: G.CO.D.12 TOP: Constructions

2 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D.12 TOP: Constructions

3 ANS:

PTS: 2 REF: 061631geo NAT: G.CO.D.12 TOP: Constructions
4 ANS:

\[\begin{array}{c}
\text{C} \\
\text{A} \\
\text{B}
\end{array} \]

The length of \(\overline{AC} \) is twice \(\overline{AC} \).

PTS: 2 REF: 081628geo NAT: G.CO.D.12 TOP: Constructions

5 ANS:

\[\begin{array}{c}
\text{A'} \\
\text{A} \\
\text{B'} \\
\text{C'} \\
\text{B'} \\
\text{C'}
\end{array} \]

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: 081632geo NAT: G.CO.D.12 TOP: Constructions
7 ANS:

![Diagram](image)

PTS: 2 REF: 061525geo NAT: G.CO.D.13 TOP: Constructions

8 ANS:

![Diagram](image)

PTS: 2 REF: 081526geo NAT: G.CO.D.13 TOP: Constructions

9 ANS: 4

\[-5 + \frac{3}{5}(5 - 5) \quad -4 + \frac{3}{5}(1 - 4)\]

\[-5 + \frac{3}{5}(10) \quad -4 + \frac{3}{5}(5)\]

\[-5 + 6 \quad -4 + 3\]

\[1 \quad -1\]

PTS: 2 REF: spr1401geo NAT: G.GPE.B.6 TOP: Directed Line Segments
10 ANS:

\[-6 + \frac{2}{5}(4 - -6) \quad -5 + \frac{2}{5}(0 - -5) \quad (-2, -3)\]

\[-6 + \frac{2}{5}(10) \quad -5 + \frac{2}{5}(5)\]

\[-6 + 4 \quad -5 + 2\]

\[-2 \quad -3\]

PTS: 2 REF: 061527geo NAT: G.GPE.B.6 TOP: Directed Line Segments

11 ANS:

\[\frac{2}{5} \cdot (16 - 1) = 6 \quad \frac{2}{5} \cdot (14 - 4) = 4 \quad (1 + 6, 4 + 4) = (7, 8)\]

PTS: 2 REF: 081531geo NAT: G.GPE.B.6 TOP: Directed Line Segments

12 ANS:

\[x = \frac{2}{3}(4 - -2) = 4 \quad -2 + 4 = 2 \quad J(2, 5)\]

\[y = \frac{2}{3}(7 - 1) = 4 \quad 1 + 4 = 5\]

PTS: 2 REF: 011627geo NAT: G.GPE.B.6 TOP: Directed Line Segments
13 ANS:
\[4 + \frac{4}{9} (22 - 4) \quad 2 + \frac{4}{9} (2 - 2) \quad (12,2) \]
\[4 + \frac{4}{9} (18) \quad 2 + \frac{4}{9} (0) \]
\[4 + 8 \quad 2 + 0 \]
\[12 \quad 2 \]

PTS: 2 REF: 061626geo NAT: G.GPE.B.6 TOP: Directed Line Segments

14 ANS: 4
\[x = -6 + \frac{1}{6} (6 - -6) = -6 + 2 = -4 \quad y = -2 + \frac{1}{6} (7 - -2) = -2 + \frac{9}{6} = -\frac{1}{2} \]

PTS: 2 REF: 081618geo NAT: G.GPE.B.6 TOP: Directed Line Segments

15 ANS: 1
\[m = \frac{-A}{B} = \frac{-2}{-1} = 2 \]
\[m_\perp = \frac{-1}{2} \]

PTS: 2 REF: 061509geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

16 ANS: 1
\[m = \frac{-2}{3} \quad 1 = \left(\frac{-2}{3} \right) 6 + b \]
\[1 = -4 + b \]
\[5 = b \]

PTS: 2 REF: 081510geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

17 ANS: 4
\[m = \frac{-1}{2} \quad -4 = 2(6) + b \]
\[m_\perp = 2 \quad -4 = 12 + b \]
\[-16 = b \]

PTS: 2 REF: 011602geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

18 ANS: 1
\[m = \left(\frac{-11 + 5}{2}, \frac{5 + -7}{2} \right) = (-3, -1) \quad m = \frac{5 - -7}{-11 - 5} = \frac{12}{-16} = \frac{3}{-4} \quad m_\perp = \frac{4}{3} \]

PTS: 2 REF: 061612geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
The slope of \(BC \) is \(\frac{2}{5} \). Altitude is perpendicular, so its slope is \(-\frac{5}{2} \).

PTS: 2
REF: 061614geo
NAT: G.GPE.B.5
TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line

Alternate interior angles

PTS: 2
REF: 061517geo
NAT: G.CO.C.9
TOP: Lines and Angles

Since linear angles are supplementary, \(m\angle GIH = 65^\circ \). Since \(GH \cong IH \), \(m\angle GHI = 50^\circ \) \((180 - (65 + 65))\). Since \(\angle EGB \cong \angle GHI \), the corresponding angles formed by the transversal and lines are congruent and \(AB \parallel CD \).

PTS: 4
REF: 061532geo
NAT: G.CO.C.9
TOP: Lines and Angles

\[
\frac{f}{4} = \frac{15}{6}
\]

\[f = 10\]

PTS: 2
REF: 061617geo
NAT: G.CO.C.9
TOP: Lines and Angles

\[
s^2 + s^2 = 7^2
\]

\[2s^2 = 49\]

\[s^2 = 24.5\]

\[s \approx 4.9\]

PTS: 2
REF: 081511geo
NAT: G.SRT.C.8
TOP: Pythagorean Theorem
28 ANS:
\[\frac{16}{9} = \frac{x}{20.6} \quad D = \sqrt{36.6^2 + 20.6^2} \approx 42 \]
\[x \approx 36.6 \]

PTS: 4 REF: 011632geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem
KEY: without graphics

29 ANS: 3
\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2 REF: 081608geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem
KEY: without graphics

30 ANS:
\[\triangle MNO \text{ is congruent to } \triangle PNO \text{ by SAS. Since } \triangle MNO \cong \triangle PNO, \text{ then } \overrightarrow{MO} \cong \overrightarrow{PO} \text{ by CPCTC. So } NO \text{ must divide } MP \text{ in half, and } MO = 8. \]

PTS: 2 REF: fall1405geo NAT: G.SRT.B.5 TOP: Isosceles Triangles

31 ANS: 3
\[\frac{9}{5} = \frac{9.2}{x} \quad 5.1 + 9.2 = 14.3 \]
\[9x = 46 \]
\[x \approx 5.1 \]

PTS: 2 REF: 061511geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

32 ANS: 4
\[\frac{2}{6} = \frac{5}{15} \]

PTS: 2 REF: 081517geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

33 ANS: 2
\[\frac{12}{4} = \frac{36}{x} \]
\[12x = 144 \]
\[x = 12 \]

PTS: 2 REF: 061621geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

34 ANS:
\[\frac{3.75}{5} = \frac{4.5}{6} \quad \overrightarrow{AB} \text{ is parallel to } \overrightarrow{CD} \text{ because } AB \text{ divides the sides proportionately.} \]
\[39.375 = 39.375 \]

PTS: 2 REF: 061627geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem
ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles and a right triangle.

\[m_{BC} = -\frac{3}{2}, \quad -1 = -\frac{2}{3}(-3) + b \quad \text{or} \quad -4 = \frac{2}{3}(-1) + b \]

\[m_{\perp} = \frac{2}{3} \quad -1 = -2 + b \quad \frac{-12}{3} = \frac{-2}{3} + b \]

\[1 = b \quad \frac{10}{3} = b \]

\[3 = \frac{2}{3}x + 1 \quad 3 = \frac{2}{3}x - \frac{10}{3} \]

\[2 = \frac{2}{3}x \quad 9 = 2x - 10 \]

\[3 = x \quad 19 = 2x \]

\[9.5 = x \]

PTS: 4 REF: 081533geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

36 ANS: 1

\[m_{RT} = \frac{5 - (-3)}{4 - (-2)} = \frac{8}{6} = \frac{4}{3}, \quad m_{ST} = \frac{5 - 2}{4 - 8} = \frac{3}{4} \]

Slopes are opposite reciprocals, so lines form a right angle.

PTS: 2 REF: 011618geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane

37 ANS: 4

TOP: Parallelograms

38 ANS:
Opposite angles in a parallelogram are congruent, so \(m \angle O = 118^\circ \). The interior angles of a triangle equal 180°. \(180 - (118 + 22) = 40 \).

PTS: 2 REF: 061526geo NAT: G.CO.C.11 TOP: Parallelograms

39 ANS: 2

TOP: Parallelograms
40 ANS: 3

41 ANS: 3

42 ANS: 1
1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

43 ANS: 3
(3) Could be a trapezoid.

44 ANS: 1
180 – (68 ⋅ 2)

45 ANS:
\[
M\left(\frac{4 + 0}{2}, \frac{6 - 1}{2}\right) = M\left(\frac{2 \cdot 5}{2}\right) \Rightarrow m = \frac{6 - (-1)}{4 - 0} = \frac{7}{4} \Rightarrow \frac{y - 2.5}{\frac{4}{7}} = \frac{4}{7}(x - 2) \\
\text{The diagonals, } MT \text{ and } AH, \text{ of rhombus } MATH \text{ are perpendicular bisectors of each other.}
\]
46 ANS:
\[m_{TS} = \frac{-10}{6} = -\frac{5}{3}, \quad m_{SR} = \frac{3}{5} \]
Since the slopes of \(TS \) and \(SR \) are opposite reciprocals, they are perpendicular and form a right angle. \(\triangle RST \) is a right triangle because \(\angle S \) is a right angle. \(P(0,9) \)
\[m_{RP} = \frac{-10}{6} = -\frac{5}{3}, \quad m_{PT} = \frac{3}{5} \]
Since the slopes of all four adjacent sides (\(TS \) and \(SR \), \(SR \) and \(RP \), \(PT \) and \(TS \), \(RP \) and \(PT \)) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral \(RSTP \) is a rectangle because it has four right angles.

![Diagram](image)

PTS: 6
REF: 061536geo
NAT: G.GPE.B.4
TOP: Polygons in the Coordinate Plane

47 ANS: 4
\[\frac{-2 - 1}{-1 - 3} = \frac{-3}{2}, \quad \frac{3 - 2}{0 - 5} = -\frac{1}{5}, \quad \frac{3 - 1}{0 - 3} = \frac{2}{3}, \quad \frac{2 - -2}{5 - -1} = \frac{4}{6} = \frac{2}{3} \]

PTS: 2
REF: 081522geo
NAT: G.GPE.B.4
TOP: Polygons in the Coordinate Plane

48 ANS: 1
\[m_{TA} = -1 \]
\[y = mx + b \]
\[m_{EM} = 1 \]
\[1 = 1(2) + b \]
\[-1 = b \]

PTS: 2
REF: 081614geo
NAT: G.GPE.B.4
TOP: Polygons in the Coordinate Plane

49 ANS: 2
\[\sqrt{(-1 - 2)^2 + (4 - 3)^2} = \sqrt{10} \]

PTS: 2
REF: 011615geo
NAT: G.GPE.B.7
TOP: Polygons in the Coordinate Plane

50 ANS: 3
\[\sqrt{45} = 3\sqrt{5}, \quad a = \frac{1}{2} \left(3\sqrt{5} \right) \left(6\sqrt{5} \right) = \frac{1}{2} (18)(5) = 45 \]
\[\sqrt{180} = 6\sqrt{5} \]

PTS: 2
REF: 061622geo
NAT: G.GPE.B.7
TOP: Polygons in the Coordinate Plane
51 ANS: 3
\[
A = \frac{1}{2} ab \quad 3 - 6 = -3 = x \\
24 = \frac{1}{2} a(8) \quad \frac{4 + 12}{2} = 8 = y \\
a = 6
\]

PTS: 2 REF: 081615geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

52 ANS: 3
\[
\theta = \frac{s}{r} = \frac{2\pi}{10} = \frac{\pi}{5}
\]

PTS: 2 REF: fall1404geo NAT: G.C.B.5 TOP: Arc Length

53 ANS:
\[
s = \theta \cdot r \\
\pi = A \cdot 4 \quad \frac{13\pi}{8} = B \cdot 6.5 \\
\frac{\pi}{4} = A \quad \frac{\pi}{4} = B
\]

Yes, both angles are equal.

54 ANS:
\[
\left(\frac{180 - 20}{2}\right) \times \pi(6)^2 = \frac{80}{360} \times 36\pi = 8\pi
\]

55 ANS:
\[
A = 6^2 \pi = 36\pi \quad 36\pi \cdot \frac{x}{360} = 12\pi \\
x = 360 \cdot \frac{12}{36} \\
x = 120
\]

PTS: 2 REF: 061529geo NAT: G.C.B.5 TOP: Sectors

56 ANS: 3
\[
\frac{60}{360} \cdot 6^2 \pi = 6\pi
\]

PTS: 2 REF: 081518geo NAT: G.C.B.5 TOP: Sectors
\[
\frac{x}{360} \cdot 3^2 \pi = 2\pi \\
180 - 80 = 100 \\
\frac{x}{2} = 40
\]

PTS: 2
REF: 011612geo
NAT: G.C.B.5
TOP: Sectors

\[
\frac{60}{360} \cdot 8^2 \pi = \frac{1}{6} \cdot 64\pi = \frac{32\pi}{3}
\]

PTS: 2
REF: 061624geo
NAT: G.C.B.5
TOP: Sectors

Circle \(A\) can be mapped onto circle \(B\) by first translating circle \(A\) along vector \(AB\) such that \(A\) maps onto \(B\), and then dilating circle \(A\), centered at \(A\), by a scale factor of \(\frac{5}{3}\). Since there exists a sequence of transformations that maps circle \(A\) onto circle \(B\), circle \(A\) is similar to circle \(B\).

PTS: 2
REF: spr1404geo
NAT: G.C.A.1
TOP: Properties of Circles

\[x \text{ is } \frac{1}{2} \text{ the circumference.} \quad \frac{C}{2} = \frac{10\pi}{2} \approx 16\]

PTS: 2
REF: 061523geo
NAT: G.GMD.A.1
TOP: Properties of Circles

\[
\frac{1000}{20\pi} \approx 15.9
\]

PTS: 2
REF: 011623geo
NAT: G.MG.A.3
TOP: Properties of Circles

\[
5 \cdot \frac{10}{4} = \frac{50}{4} = 12.5
\]

PTS: 2
REF: 081512geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents

\[
\frac{10}{4} = \frac{50}{4} = 12.5
\]

PTS: 2
REF: 011621geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents
67 ANS: \[180 - 2(30) = 120\]

PTS: 2 REF: 011626geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

68 ANS: 2

TOP: Chords, Secants and Tangents

69 ANS: 1

The other statements are true only if \(AD \perp BC\).

PTS: 2 REF: 061610geo NAT: G.C.A.2

70 ANS:

\[\frac{3}{8} \cdot 56 = 21\]

PTS: 2 REF: 081623geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

71 ANS: 3

TOP: Inscribed Quadrilaterals

72 ANS: 2

\[x^2 + y^2 + 6y + 9 = 7 + 9\]
\[x^2 + (y + 3)^2 = 16\]

PTS: 2 REF: 061514geo NAT: G.GPE.A.1 TOP: Equations of Circles

73 ANS: 3

\[x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9\]
\[(x + 2)^2 + (y - 3)^2 = 25\]

PTS: 2 REF: 081509geo NAT: G.GPE.A.1 TOP: Equations of Circles

74 ANS: 4

\[x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 9 + 4\]
\[(x + 3)^2 + (y - 2)^2 = 36\]

PTS: 2 REF: 011617geo NAT: G.GPE.A.1 TOP: Equations of Circles

75 ANS: 2

TOP: Equations of Circles
Since the midpoint of \(AB \) is \((3,-2)\), the center must be either \((5,-2)\) or \((1,-2)\).

\[
r = \sqrt{2^2 + 5^2} = \sqrt{29}
\]

\[
76 \quad \text{ANS: 1}
\]

\[
x^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16
\]

\[
(x - 2)^2 + (y + 4)^2 = 9
\]

\[
77 \quad \text{ANS: 1}
\]

\[
78 \quad \text{ANS: 3}
\]

\[
79 \quad \text{ANS: Yes}
\]

\[
80 \quad \text{ANS: 4}
\]

\[
81 \quad \text{ANS: 3}
\]

\[
82 \quad \text{ANS: 4}
\]

\[
83 \quad \text{ANS: 1}
\]

\[
84 \quad \text{ANS: 2}
\]

\[
85 \quad \text{ANS: 1}
\]

\[
86 \quad \text{ANS: 3}
\]

\[
\begin{align*}
76 \quad & \text{ANS: 1} \\
\text{PTS: 2} & \text{REF: 061623geo NAT: G.GPE.A.1 TOP: Equations of Circles} \\
77 \quad & \text{ANS: 1} \\
& \text{x}^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16 \\
& \quad (x - 2)^2 + (y + 4)^2 = 9 \\
\text{PTS: 2} & \text{REF: 081616geo NAT: G.GPE.A.1 TOP: Equations of Circles} \\
78 \quad & \text{ANS: 3} \\
& \text{r} = \sqrt{(7 - 3)^2 + (1 - 2)^2} = \sqrt{16 + 9} = 5 \\
\text{PTS: 2} & \text{REF: 061503geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane} \\
79 \quad & \text{ANS: Yes} \\
& \quad (x - 1)^2 + (y + 2)^2 = 4^2 \\
& \quad (3.4 - 1)^2 + (1.2 + 2)^2 = 16 \\
& \quad 5.76 + 10.24 = 16 \\
& \quad 16 = 16 \\
\text{PTS: 2} & \text{REF: 081630geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane} \\
80 \quad & \text{ANS: 4} \\
\text{PTS: 2} & \text{REF: 061501geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects} \\
81 \quad & \text{ANS: 3} \\
\text{PTS: 2} & \text{REF: 061601geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects} \\
82 \quad & \text{ANS: 4} \\
\text{PTS: 2} & \text{REF: 081503geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects} \\
83 \quad & \text{ANS: 1} \\
\text{PTS: 2} & \text{REF: 081603geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects} \\
84 \quad & \text{ANS: 2} \\
\text{PTS: 2} & \text{REF: 061506geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects} \\
85 \quad & \text{ANS: 1} \\
\text{PTS: 2} & \text{REF: 011601geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects} \\
86 \quad & \text{ANS: 3} \\
\text{PTS: 2} & \text{REF: 081613geo NAT: G.GMD.B.4 TOP: Cross-Sections of Three-Dimensional Objects}
\end{align*}
\]
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

\[
2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5
\]

\[230 \approx s\]

\[
V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144
\]

\[
\frac{4}{3} \pi \left(\frac{9.5}{2} \right)^3 \approx 55
\]

\[
\frac{4}{3} \pi \left(\frac{2.5}{2} \right)^3
\]

\[
\pi \cdot 11.25^2 \cdot 33.5 \approx 57.7
\]
Similar triangles are required to model and solve a proportion.

\[\frac{x + 5}{1.5} = \frac{x}{1} \]

\[\frac{1}{3} \pi (1.5)^2 (15) - \frac{1}{3} \pi (1)^2 (10) \approx 24.9 \]

\[x + 5 = 1.5x \]

\[5 = .5x \]

\[10 = x \]

\[10 + 5 = 15 \]

\[V = \pi \left(\frac{6.7}{2} \right)^2 (4 \cdot 6.7) \approx 945 \]

\[\frac{864}{450} = 1.92 \]

\[r = 25 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 0.25 \text{ m} \]

\[V = \pi (0.25 \text{ m})^2 (10 \text{ m}) = 0.625 \pi \text{ m}^3 \]

\[W = 0.625 \pi \text{ m}^3 \left(\frac{380 \text{ K}}{1 \text{ m}^3} \right) \approx 746.1 \text{ K} \]

\[n = \left(\frac{\$50,000}{\text{K}} \right) \left(746.1 \text{ K} \right) = 14.1 \text{ trees} \]

\[V = 12 \cdot 8.5 \cdot 4 = 408 \]

\[W = 408 \cdot 0.25 = 102 \]
100 ANS:
\[
\frac{137.8}{6^3} \approx 0.638 \text{ Ash}
\]

PTS: 2 REF: 081525geo NAT: G.MG.A.2 TOP: Density

101 ANS:
\[
\tan 47 = \frac{x}{8.5} \quad \text{Cone: } V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6 \quad \text{Cylinder: } V = \pi (8.5)^2 (25) \approx 5674.5 \quad \text{Hemisphere:}
\]
\[
x \approx 9.115
\]
\[
V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3 \right) \approx 1286.3 \quad 689.6 + 5674.5 + 1286.3 \approx 7650 \quad \text{No, because } 7650 \cdot 62.4 = 477,360
\]
\[
477,360 \cdot 0.85 = 405,756, \text{ which is greater than } 400,000.
\]

102 ANS: 1
\[
V = \frac{4}{3} \pi \left(\frac{10}{2} \right)^3 \approx 261.8 \cdot 62.4 = 16,336
\]

PTS: 2 REF: 081516geo NAT: G.MG.A.2 TOP: Density

103 ANS:
\[
V = \frac{1}{3} \pi \left(\frac{3}{2} \right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \quad 1885 \cdot 0.52 \cdot 0.10 = 98.02 \quad 1.95(100) - (37.83 + 98.02) = 59.15
\]

PTS: 6 REF: 081536geo NAT: G.MG.A.2 TOP: Density

104 ANS: 2
\[
\frac{4}{3} \pi \cdot 4^3 + 0.075 \approx 20
\]

PTS: 2 REF: 011619geo NAT: G.MG.A.2 TOP: Density

105 ANS:
\[
\frac{40000}{\pi \left(\frac{51}{2} \right)^2} \approx 19.6 \quad \frac{72000}{\pi \left(\frac{75}{2} \right)^2} \approx 16.3 \quad \text{Dish A}
\]

PTS: 2 REF: 011630geo NAT: G.MG.A.2 TOP: Density

106 ANS: 2
\[
\frac{1.1}{1.2} \left(\frac{16 \text{ oz}}{1 \text{ lb}} \right) = \frac{13.31}{1 \text{ lb}} \text{ lb} \left(\frac{1 \text{ g}}{3.7851} \right) \approx 3.5 \text{ g} \text{ lb}
\]

PTS: 2 REF: 061618geo NAT: G.MG.A.2 TOP: Density
\[\frac{1}{2} \left(\frac{4}{3} \right) \pi \cdot 5^3 \cdot 62.4 \approx 16,336 \]

PTS: 2 \quad \text{REF: 061620geo} \quad \text{NAT: G.MG.A.2} \quad \text{TOP: Density}

108 ANS: 2

\[C = \pi d \quad V = \pi \left(\frac{2.25}{\pi} \right)^2 \cdot 8 \approx 12.8916 \quad W = 12.8916 \cdot 752 \approx 9694 \]

\[4.5 = \pi d \quad \frac{4.5}{\pi} = d \quad \frac{2.25}{\pi} = r \]

PTS: 2 \quad \text{REF: 081617geo} \quad \text{NAT: G.MG.A.2} \quad \text{TOP: Density}

109 ANS:

\[V = \frac{1}{3} \pi \left(\frac{8.3}{2} \right)^2 (10.2) + \frac{1}{2} \cdot \frac{4}{3} \pi \left(\frac{8.3}{2} \right)^3 \approx 183.961 + 149.693 \approx 333.65 \text{ cm}^3 \quad 333.65 \times 50 = 16682.7 \text{ cm}^3 \]

\[16682.7 \times 0.697 = 11627.8 \text{ g} \quad 11.6278 \times 3.83 = \$44.53 \]

PTS: 6 \quad \text{REF: 081636geo} \quad \text{NAT: G.MG.A.2} \quad \text{TOP: Density}

110 ANS:

Triangle \(X' Y' Z' \) is the image of \(\triangle XYZ \) after a rotation about point \(Z \) such that \(\overline{ZX} \) coincides with \(\overline{ZU} \). Since rotations preserve angle measure, \(\overline{ZY} \) coincides with \(\overline{ZV} \), and corresponding angles \(X \) and \(Y \), after the rotation, remain congruent, so \(\overline{XY} \parallel \overline{UV} \). Then, dilate \(\triangle X' Y' Z' \) by a scale factor of \(\frac{\overline{ZU}}{\overline{ZX}} \) with its center at point \(Z \). Since dilations preserve parallelism, \(\overline{XY} \) maps onto \(\overline{UV} \). Therefore, \(\triangle XYZ \sim \triangle UVZ \).

PTS: 2 \quad \text{REF: spr1406geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}

111 ANS: 2 \quad \text{PTS: 2} \quad \text{REF: 061516geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}

112 ANS: 4 \quad \text{PTS: 2} \quad \text{REF: 081506geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}

113 ANS: 4 \quad \text{PTS: 2} \quad \text{REF: 081514geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}

114 ANS: 1

\[3^2 = 9 \]

PTS: 2 \quad \text{REF: 081520geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}

115 ANS: 1

\[\frac{4}{6} = \frac{3}{4.5} = \frac{2}{3} \]

PTS: 2 \quad \text{REF: 081523geo} \quad \text{NAT: G.SRT.A.2} \quad \text{TOP: Similarity}
116 ANS: 3
1) \(\frac{12}{9} = \frac{4}{3}\) 2) AA 3) \(\frac{32}{16} = \frac{8}{2}\) 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.A.2 TOP: Similarity

117 ANS:
A dilation of \(\frac{5}{2}\) about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo NAT: G.SRT.A.3 TOP: Similarity

118 ANS: 3
\(\frac{AB}{BC} = \frac{DE}{EF}\)
\(\frac{9}{15} = \frac{6}{10}\)
90 = 90

PTS: 2 REF: 061515geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

119 ANS: 4
\(\frac{7}{12} \cdot 30 = 17.5\)

PTS: 2 REF: 061521geo NAT: G.SRT.B.5 TOP: Similarity
KEY: perimeter and area

120 ANS:

\(1.65 = \frac{x}{16.6}\)
\(4.15x = 27.39\)
\(x = 6.6\)

PTS: 2 REF: 061531geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

121 ANS:
\(x = \sqrt{.55^2 - .25^2} \approx 0.49\) No, \(.49^2 = .25\) \(.9604 + .25 < 1.5\)
\(.9604 = y\)

PTS: 4 REF: 061534geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg
122 ANS: 2 PTS: 2 REF: 081519geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

123 ANS: \[\frac{120}{230} = \frac{x}{315} \]
\[x = 164 \]

PTS: 2 REF: 081527geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

124 ANS: \[\frac{6}{14} = \frac{9}{21} \]
SAS

126 = 126

PTS: 2 REF: 081529geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

125 ANS: 1
\[\frac{6}{8} = \frac{9}{12} \]

PTS: 2 REF: 011613geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

126 ANS: 4
\[\frac{1}{2} = \frac{x+3}{3x-1} \]
\[GR = 3(7) - 1 = 20 \]
\[3x - 1 = 2x + 6 \]
\[x = 7 \]

PTS: 2 REF: 011620geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

127 ANS: 2
\[\sqrt{3 \cdot 21} = \sqrt{63} = 3\sqrt{7} \]

PTS: 2 REF: 011622geo NAT: G.SRT.B.5 TOP: Similarity KEY: altitude

128 ANS: 3
\[\frac{12}{4} = \frac{x}{5} \]
\[15 - 4 = 11 \]
\[x = 15 \]

PTS: 2 REF: 011624geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic
129 ANS: 2
\[h^2 = 30 \cdot 12 \]
\[h^2 = 360 \]
\[h = 6\sqrt{10} \]

PTS: 2 REF: 061613geo NAT: G.SRT.B.5 TOP: Similarity
KEY: altitude

130 ANS: 2
\[x^2 = 4 \cdot 10 \]
\[x = \sqrt{40} \]
\[x = 2\sqrt{10} \]

PTS: 2 REF: 081610geo NAT: G.SRT.B.5 TOP: Similarity
KEY: leg

131 ANS: 3
\[\frac{x}{10} = \frac{6}{4} \]
\[CD = 15 - 4 = 11 \]
\[x = 15 \]

PTS: 2 REF: 081612geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

132 ANS: 2
The given line \(h, 2x + y = 1 \), does not pass through the center of dilation, the origin, because the \(y \)-intercept is at (0,1). The slope of the dilated line, \(m \), will remain the same as the slope of line \(h, 2 \). All points on line \(h \), such as (0,1), the \(y \)-intercept, are dilated by a scale factor of 4; therefore, the \(y \)-intercept of the dilated line is (0,4) because the center of dilation is the origin, resulting in the dilated line represented by the equation \(y = -2x + 4 \).

PTS: 2 REF: spr1403geo NAT: G.SRT.A.1 TOP: Line Dilations

133 ANS: 2
The line \(y = 2x - 4 \) does not pass through the center of dilation, so the dilated line will be distinct from \(y = 2x - 4 \). Since a dilation preserves parallelism, the line \(y = 2x - 4 \) and its image will be parallel, with slopes of 2. To obtain the \(y \)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{2} \), can be applied to the \(y \)-intercept, (0,-4). Therefore, \(\left(0, \frac{3}{2}, -4 \cdot \frac{3}{2} \right) \rightarrow (0,-6) \). So the equation of the dilated line is \(y = 2x - 6 \).

PTS: 2 REF: fall1403geo NAT: G.SRT.A.1 TOP: Line Dilations
The line $3y = -2x + 8$ does not pass through the center of dilation, so the dilated line will be distinct from $3y = -2x + 8$. Since a dilation preserves parallelism, the line $3y = -2x + 8$ and its image $2x + 3y = 5$ are parallel, with slopes of $-\frac{2}{3}$.

The line $y = 3x - 1$ passes through the center of dilation, so the dilated line is not distinct.

The line $y = 3x - 4$ and $m: y = 3x - 8$.

$3 \times 6 = 18$

$\sqrt{(32 - 8)^2 + (28 - 4)^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40$

ABC is a reflection of $A'B'C'$ because $\triangle DEF$ is a reflection of $\triangle A'B'C'$ and reflections preserve distance.
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

\[
\frac{360^\circ}{45^\circ} = 8
\]

The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.
Rotations do not change angle measurements.

\[M = 180 - (47 + 57) = 76 \]

\(T_{6,0} \circ R_{x-axis} \)

\[\text{PTS: 2 REF: 061625geo NAT: G.CO.A.5 TOP: Compositions of Transformations} \]

\[\text{KEY: grids} \]

\[\text{ANS:} \]

\[\text{PTS: 2 REF: 061626geo NAT: G.CO.A.5 TOP: Compositions of Transformations} \]

\[\text{KEY: grids} \]
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A = \cos B$.

$x \approx 1051.3 \\
y \approx 77.4$
\[
\tan 3.47 = \frac{M}{6336} \quad \text{and} \quad \tan 0.64 = \frac{A}{20,493}
\]

\[
M \approx 384 \quad \text{and} \quad A \approx 229
\]

\[
4960 + 384 = 5344 \quad \text{and} \quad 5344 - 229 = 5115
\]

\[\text{PTS: 6} \quad \text{REF: fall1413geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]

175 ANS: 3

\[
\tan 34 = \frac{T}{20}
\]

\[T \approx 13.5\]

\[\text{PTS: 2} \quad \text{REF: 061505geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]

176 ANS:

\[
\tan 7 = \frac{125}{x} \quad \text{and} \quad \tan 16 = \frac{125}{y}
\]

\[1018 - 436 \approx 582\]

\[x \approx 1018 \quad \text{and} \quad y \approx 436\]

\[\text{PTS: 4} \quad \text{REF: 081532geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]

177 ANS:

\[
\sin 70 = \frac{30}{L}
\]

\[L \approx 32\]

\[\text{PTS: 2} \quad \text{REF: 011629geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]

178 ANS:

\[
\tan 52.8 = \frac{h}{x} \quad \text{and} \quad x \tan 52.8 = x \tan 34.9 + 8 \tan 34.9 \quad \tan 52.8 \approx \frac{h}{9} \quad 11.86 + 1.7 \approx 13.6
\]

\[x \approx 11.86\]

\[
\tan 34.9 = \frac{h}{x + 8}
\]

\[h = (x + 8) \tan 34.9\]

\[\text{PTS: 6} \quad \text{REF: 011636geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]

179 ANS: 4

\[
\sin 70 = \frac{x}{20}
\]

\[x \approx 18.8\]

\[\text{PTS: 2} \quad \text{REF: 061611geo} \quad \text{NAT: G.SRT.C.8} \quad \text{TOP: Using Trigonometry to Find a Side}\]
180 ANS:
\[\sin 75 = \frac{15}{x} \]
\[x = \frac{15}{\sin 75} \]
\[x \approx 15.5 \]

PTS: 2
REF: 081631geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side

181 ANS: 1
The man’s height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation.
\[\tan x = \frac{69}{102} \]
\[x \approx 34.1 \]

PTS: 2
REF: fall1401geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

182 ANS:
\[\sin x = \frac{4.5}{11.75} \]
\[x \approx 23 \]

PTS: 2
REF: 061528geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

183 ANS: 3
\[\cos A = \frac{9}{14} \]
\[A \approx 50^\circ \]

PTS: 2
REF: 011616geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

184 ANS:
\[\tan x = \frac{10}{4} \]
\[x \approx 68 \]

PTS: 2
REF: 061630geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

185 ANS:
\[\tan x = \frac{12}{75} \]
\[\tan y = \frac{72}{75} \]
\[43.83 - 9.09 \approx 34.7 \]
\[x \approx 9.09 \]
\[y \approx 43.83 \]

PTS: 4
REF: 081634geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find an Angle

186 ANS: 3
PTS: 2
REF: 061524geo
NAT: G.CO.B.7
TOP: Triangle Congruency
Reflections are rigid motions that preserve distance.

It is given that point D is the image of point A after a reflection in line CH. It is given that CH is the perpendicular bisector of BCE at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $BC \cong EC$. Point E is the image of point B after a reflection over the line CH, since points B and E are equidistant from point C and it is given that CH is perpendicular to BE. Point C is on CH, and therefore, point C maps to itself after the reflection over CH. Since all three vertices of triangle ABC map to all three vertices of triangle DEC under the same line reflection, then $\Delta ABC \cong \Delta DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

Translate ΔABC along CF such that point C maps onto point F, resulting in image $\Delta A'B'C'$. Then reflect $\Delta A'B'C'$ over DF such that $\Delta A'B'C'$ maps onto ΔDEF.

The transformation is a rotation, which is a rigid motion.

Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. $\Delta DEF \cong \Delta ABC$ as $AC \cong DF$ and points are collinear on line ℓ and a reflection preserves distance.

Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

(2) Euclid’s Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution
\[\triangle XYZ, XY \cong ZY, \text{ and } \overline{YW} \text{ bisects } \angle XYZ \text{ (Given). } \triangle XYZ \text{ is isosceles (Definition of isosceles triangle). } \overline{YW} \text{ is an altitude of } \triangle XYZ \text{ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). } \overline{YW} \perp \overline{XZ} \text{ (Definition of altitude). } \angle YWZ \text{ is a right angle (Definition of perpendicular lines).} \]

PTS: 4 REF: spr1411geo NAT: G.CO.C.10 TOP: Triangle Proofs

196 ANS:
As the sum of the measures of the angles of a triangle is 180°, \(m\angle ABC + m\angle BCA + m\angle CAB = 180^\circ \). Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so \(m\angle ABC + m\angle FBC = 180^\circ \), \(m\angle BCA + m\angle DCA = 180^\circ \), and \(m\angle CAB + m\angle EAB = 180^\circ \). By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C.10 TOP: Triangle Proofs

197 ANS: 3
1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2 REF: 061607geo NAT: G.CO.C.10 TOP: Triangle Proofs

198 ANS:
\(\overline{LA} \cong \overline{DN} \), \(\overline{CA} \cong \overline{CN} \), and \(\angle DAC \perp \angle LCN \) (Given). \(\angle LCA \) and \(\angle DCN \) are right angles (Definition of perpendicular lines). \(\triangle LAC \) and \(\triangle DNC \) are right triangles (Definition of a right triangle). \(\triangle LAC \cong \triangle DNC \) (HL). \(\triangle LAC \) will map onto \(\triangle DNC \) after rotating \(\triangle LAC \) counterclockwise 90° about point \(C \) such that point \(L \) maps onto point \(D \).

199 ANS: 2

PTS: 2 REF: 061619geo NAT: G.SRT.B.4 TOP: Triangle Proofs
200 ANS:
Quadrilateral $ABCD$ is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E (Given). $\overline{AD} \cong \overline{BC}$ (Opposite sides of a parallelogram are congruent). $\angle AED \cong \angle CEB$ (Vertical angles are congruent). $\overline{BC} \parallel \overline{DA}$ (Definition of parallelogram). $\angle DBC \cong \angle BDA$ (Alternate interior angles are congruent). $\triangle AED \cong \triangle CEB$ (AAS). 180° rotation of $\triangle AED$ around point E.

201 ANS:
Quadrilateral $ABCD$ with diagonals \overline{AC} and \overline{BD} that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $ABCD$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{AB} \parallel \overline{CD}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle ACD$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{AD} \cong \overline{DC}$ (the sides of an isosceles triangle are congruent); quadrilateral $ABCD$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{AE} \perp \overline{BE}$ (the diagonals of a rhombus are perpendicular); $\angle BEA$ is a right angle (perpendicular lines form a right angle); $\triangle AEB$ is a right triangle (a right triangle has a right angle).

202 ANS:
Parallelogram $ABCD$, diagonals \overline{AC} and \overline{BD} intersect at E (given). $\overline{DC} \parallel \overline{AB}$; $\overline{DA} \parallel \overline{CB}$ (opposite sides of a parallelogram are parallel). $\angle ACD \cong \angle CAB$ (alternate interior angles formed by parallel lines and a transversal are congruent).

203 ANS:
Parallelogram $ABCD$, $\overline{BE} \perp \overline{CED}$, $\overline{DF} \perp \overline{BFC}$, $\overline{CE} \cong \overline{CF}$ (given). $\angle BEC \cong \angle DFC$ (perpendicular lines form right angles, which are congruent). $\angle FCD \cong \angle BCE$ (reflexive property). $\triangle BEC \cong \triangle DFC$ (ASA). $\overline{BC} \cong \overline{CD}$ (CPCTC). $ABCD$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

204 ANS:
Parallelogram $ANDR$ with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E (Given). $\overline{AN} \cong \overline{RD}$, $\overline{AR} \cong \overline{DN}$ (Opposite sides of a parallelogram are congruent). $\overline{AE} = \frac{1}{2} \overline{AR}$, $\overline{WD} = \frac{1}{2} \overline{DN}$, so $\overline{AE} \cong \overline{WD}$ (Definition of bisect and division property of equality). $\overline{AR} \parallel \overline{DN}$ (Opposite sides of a parallelogram are parallel). $\triangle AWDE$ is a parallelogram (Definition of parallelogram). $\overline{RE} = \frac{1}{2} \overline{AR}$, $\overline{NW} = \frac{1}{2} \overline{DN}$, so $\overline{RE} \cong \overline{NW}$ (Definition of bisect and division property of equality). $\overline{ED} \cong \overline{AW}$ (Opposite sides of a parallelogram are congruent). $\triangle ANW \cong \triangle DRE$ (SSS).

205 ANS:
Parallelogram $ABCD$, EFG, and diagonal DFB (given); $\angle DFE \cong \angle BFG$ (vertical angles); $AD \parallel CB$ (opposite sides of a parallelogram are parallel); $\angle EDF \cong \angle GBF$ (alternate interior angles are congruent); $\triangle DEF \sim \triangle BGF$ (AA)

PTS: 4 REF: 061633geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

206 ANS:
Circle O, secant ACD, tangent AB (Given). Chords BC and BD are drawn (Auxiliary lines). $\angle A \cong \angle A$, $BC \cong BC$ (Reflexive property). $m\angle BDC = \frac{1}{2} m\overarc{BC}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $m\angle CBA = \frac{1}{2} m\overarc{BC}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle BDC \cong \angle CBA$ (Angles equal to half of the same arc are congruent).

$\triangle ABC \sim \triangle ADB$ (AA). $\frac{AB}{AC} = \frac{AD}{AB}$ (Corresponding sides of similar triangles are proportional). $AC \cdot AD = AB^2$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B.5 TOP: Circle Proofs

207 ANS:
Circle O, chords AB and CD intersect at E (Given); Chords CB and AD are drawn (auxiliary lines drawn); $\angle CEB \cong \angle AED$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);

$\triangle BCE \sim \triangle DAE$ (AA). $\frac{AE}{CE} = \frac{ED}{EB}$ (Corresponding sides of similar triangles are proportional);

$AE \cdot EB = CE \cdot ED$ (The product of the means equals the product of the extremes).

PTS: 6 REF: 081635geo NAT: G.SRT.B.5 TOP: Circle Proofs