Geometry CCSS Regents Exam Questions at Random
www.jmap.org

Geometry Common Core State Standards Regents at Random

1 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
1) \((x,y) \rightarrow (y,x)\)
2) \((x,y) \rightarrow (x,-y)\)
3) \((x,y) \rightarrow (4x,4y)\)
4) \((x,y) \rightarrow (x+2,y-5)\)

2 In circle \(O\) shown below, diameter \(AC\) is perpendicular to \(CD\) at point \(C\), and chords \(AB\), \(BC\), \(AE\), and \(CE\) are drawn.

Which statement is not always true?
1) \(\angle ACB \cong \angle BCD\)
2) \(\angle ABC \cong \angle ACD\)
3) \(\angle BAC \cong \angle DCE\)
4) \(\angle CBA \cong \angle AEC\)

3 The line \(3y = -2x + 8\) is transformed by a dilation centered at the origin. Which linear equation could be its image?
1) \(2x + 3y = 5\)
2) \(2x - 3y = 5\)
3) \(3x + 2y = 5\)
4) \(3x - 2y = 5\)

4 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?
1) 1
2) 2
3) 3
4) 4

5 Find the value of \(R\) that will make the equation \(\sin 73^\circ = \cos R\) true when \(0^\circ < R < 90^\circ\). Explain your answer.

6 In triangle \(CHR\), \(O\) is on \(HR\), and \(D\) is on \(CR\) so that \(\angle H \cong RDO\).

If \(RD = 4\), \(RO = 6\), and \(OH = 4\), what is the length of \(CD\)?
1) \(2\frac{2}{3}\)
2) \(6\frac{2}{3}\)
3) 11
4) 15
7 In the diagram below, triangles \(XYZ \) and \(UYZ \) are drawn such that \(\angle X \cong \angle U \) and \(\angle XZY \cong \angle UZY \).

Describe a sequence of similarity transformations that shows \(\triangle XYZ \) is similar to \(\triangle UYZ \).

8 Which figure can have the same cross section as a sphere?

1)
2)
3)
4)

9 A sequence of transformations maps rectangle \(ABCD \) onto rectangle \(A'B'C'D' \), as shown in the diagram below.

Which sequence of transformations maps \(ABCD \) onto \(A'B'C'D' \) and then maps \(A'B'C'D' \) onto \(A''B''C''D'' \)?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

10 Given: Parallelogram \(ANDR \) with \(\overline{AW} \) and \(\overline{DE} \) bisecting \(NWD \) and \(REA \) at points \(W \) and \(E \), respectively

Prove that \(\triangle ANW \cong \triangle DRE \). Prove that quadrilateral \(AWDE \) is a parallelogram.
11 The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is $(8, -3)$. Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

12 The image of $\triangle ABC$ after a rotation of 90º clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?
1) $BC \cong DE$
2) $AB \cong DF$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

13 The coordinates of the endpoints of \overline{AB} are $A(-6, -5)$ and $B(4, 0)$. Point P is on AB. Determine and state the coordinates of point P, such that $AP:PB$ is 2:3. [The use of the set of axes below is optional.]

14 In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse \overline{AB} of right triangle $\triangle ABC$.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?
1) $AD = 2$ and $DB = 36$
2) $AD = 3$ and $AB = 24$
3) $AD = 6$ and $DB = 12$
4) $AD = 8$ and $AB = 17$
15 In parallelogram $QRST$ shown below, diagonal TR is drawn, U and V are points on TS and QR, respectively, and UV intersects TR at W.

![Diagram of parallelogram QRST with points U, V, and W labeled.]

If $m \angle S = 60^\circ$, $m \angle SRT = 83^\circ$, and $m \angle TWU = 35^\circ$, what is $m \angle WVQ$?

1) 37°
2) 60°
3) 72°
4) 83°

16 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $50,000.

17 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm. To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945

18 In the coordinate plane, the vertices of $\triangle RST$ are $R(6, -1)$, $S(1, -4)$, and $T(-5, 6)$. Prove that $\triangle RST$ is a right triangle. State the coordinates of point P such that quadrilateral $RSTP$ is a rectangle. Prove that your quadrilateral $RSTP$ is a rectangle. [The use of the set of axes below is optional.]

![Coordinate plane with points R(6,-1), S(1,-4), T(-5,6).]

19 The center of circle Q has coordinates $(3, -2)$. If circle Q passes through $R(7, 1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

20 After a reflection over a line, $\triangle A'B'C'$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle $A'B'C'$.

![Coordinate plane with points A, B, C, A', B', C'.]
21 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?
1) cone
2) pyramid
3) prism
4) sphere

22 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH.

23 Explain why $\cos(x) = \sin(90 - x)$ for x such that $0 < x < 90$.

24 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where $AB = 3$, $BC = 5.5$, $AC = 4.5$, $DE = 6$, $FD = 9$, and $EF = 11$.

![Diagram of triangles]

Which relationship must always be true?
1) $\frac{\angle A}{\angle D} = \frac{1}{2}$
2) $\frac{\angle C}{\angle F} = \frac{2}{1}$
3) $\frac{\angle A}{\angle C} = \frac{\angle F}{\angle D}$
4) $\frac{\angle B}{\angle E} = \frac{\angle C}{\angle F}$

25 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

![Diagram of parallelogram]

Prove: $\triangle AED \cong \triangle CEB$

Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.
26 In the diagram below, $FE \rightarrow \leftarrow \overrightarrow{AC}$ at B, and $GE \rightarrow \leftarrow \overrightarrow{BD}$ at C.

Which statement is always true?
1) $AB \cong DC$
2) $FB \cong EB$
3) $BD \overrightarrow{\text{bisects}} GE$ at C
4) $AC \overrightarrow{\text{bisects}} FE$ at B

27 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?
1) 10
2) 25
3) 50
4) 75

28 Prove the sum of the exterior angles of a triangle is 360°.

29 In the diagram below, secant ACD and tangent AB are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. ($AC \cdot AD = AB^2$)

30 In $\triangle CED$ as shown below, points A and B are located on sides CE and ED, respectively. Line segment AB is drawn such that $AE = 3.75$, $AC = 5$, $EB = 4.5$, and $BD = 6$.

Explain why \overline{AB} is parallel to \overline{CD}.

31 In the diagram below, $ABCD$ is a parallelogram, AB is extended through B to E, and CE is drawn.

If $CE \cong BE$ and $m\angle D = 112^\circ$, what is $m\angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

32 As shown in the diagram below, AB and CD intersect at E, and $AC \parallel BD$.

Given $\triangle AEC \sim \triangle BED$, which equation is true?

1) $\frac{CE}{DE} = \frac{EB}{EA}$
2) $\frac{AE}{BE} = \frac{AC}{BD}$
3) $\frac{EC}{AE} = \frac{BE}{ED}$
4) $\frac{ED}{EC} = \frac{AC}{BD}$

33 The ratio of similarity of $\triangle BOY$ to $\triangle GRL$ is 1:2. If $BO = x + 3$ and $GR = 3x - 1$, then the length of GR is

1) 5
2) 7
3) 10
4) 20

34 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

35 ‘Given right triangles ABC and DEF where $\angle C$ and $\angle F$ are right angles, $AC \cong DF$ and $CB \cong FE$.

Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

36 The line $y = 2x - 4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y = 2x - 4$
2) $y = 2x - 6$
3) $y = 3x - 4$
4) $y = 3x - 6$
37 In the diagram below, \(\angle BDC = 100^\circ \), \(\angle A = 50^\circ \), and \(\angle DBC = 30^\circ \). Which statement is true?
1) \(\triangle ABD \) is obtuse.
2) \(\triangle ABC \) is isosceles.
3) \(m\angle ABD = 80^\circ \)
4) \(\triangle ABD \) is scalene.

38 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point \(A \), the angle of elevation from the ship to the light was \(7^\circ \). A short time later, at point \(D \), the angle of elevation was \(16^\circ \). To the nearest foot, determine and state how far the ship traveled from point \(A \) to point \(D \).

39 Line \(y = 3x - 1 \) is transformed by a dilation with a scale factor of 2 and centered at \((3, 8) \). The line's image is
1) \(y = 3x - 8 \)
2) \(y = 3x - 4 \)
3) \(y = 3x - 2 \)
4) \(y = 3x - 1 \)

40 In parallelogram \(ABCD \) shown below, diagonals \(AC \) and \(BD \) intersect at \(E \). Prove: \(\angle ACD \cong \angle CAB \)

41 To find the distance across a pond from point \(B \) to point \(C \), a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point \(B \) to point \(C \), to the nearest yard.

42 Segment \(CD \) is the perpendicular bisector of \(AB \) at \(E \). Which pair of segments does not have to be congruent?
1) \(AD, BD \)
2) \(AC, BC \)
3) \(AE, BE \)
4) \(DE, CE \)
43 Using the information given below, which set of triangles can not be proven similar?

1) 2) 3) 4)

44 The diagonals of rhombus TEAM intersect at P(2,1). If the equation of the line that contains diagonal TA is \(y = -x + 3 \), what is the equation of a line that contains diagonal EM?

1) \(y = x - 1 \)
2) \(y = x - 3 \)
3) \(y = -x - 1 \)
4) \(y = -x - 3 \)

45 In the diagram below of circle \(O \), diameter \(AB \) and radii \(OC \) and \(OD \) are drawn. The length of \(AB \) is 12 and the measure of \(\angle COD \) is 20 degrees.

If \(\overline{AC} \cong \overline{BD} \), find the area of sector \(BOD \) in terms of \(\pi \).

46 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

47 In the diagram below of circle \(O \) with diameter \(BC \) and radius \(OA \), chord \(DC \) is parallel to chord \(BA \).

If \(m\angle BCD = 30^\circ \), determine and state \(m\angle AOB \).
48. Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle RST$?
1) $9\sqrt{3} + 15$
2) $9\sqrt{5} + 15$
3) 45
4) 90

49. In the diagram below, which single transformation was used to map triangle A onto triangle B?

1) line reflection
2) rotation
3) dilation
4) translation

50. In the diagram below of circle O, the area of the shaded sector LOM is 2π cm2.

If the length of NL is 6 cm, what is $m\angle N$?
1) 10º
2) 20º
3) 40º
4) 80º

51. Triangle ABC has vertices with $A(x, 3)$, $B(-3, -1)$, and $C(-1, -4)$. Determine and state a value of x that would make triangle ABC a right triangle. Justify why $\triangle ABC$ is a right triangle. [The use of the set of axes below is optional.]
52 Using a compass and straightedge, construct and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of AC and $A'C'$.

![Diagram of triangle ABC and its image A'B'C']

53 In the diagram of $\triangle LAC$ and $\triangle DNC$ below, $\overline{LA} \cong \overline{DN}$, $\overline{CA} \cong \overline{CN}$, and $\overline{DAC} \perp \overline{LCN}$.

a) Prove that $\triangle LAC \cong \triangle DNC$.

b) Describe a sequence of rigid motions that will map $\triangle LAC$ onto $\triangle DNC$.

![Diagram of triangles LAC and DNC]
56 In the diagram of $\triangle ADC$ below, $EB \parallel DC$, $AE = 9$, $ED = 5$, and $AB = 9.2$.

![Diagram of triangle ADC with given lengths]

What is the length of AC, to the nearest tenth?
1) 5.1
2) 5.2
3) 14.3
4) 14.4

57 On the set of axes below, rectangle $ABCD$ can be proven congruent to rectangle $KLMN$ using which transformation?

![Diagram of axes with rectangles ABCD and KLMN]

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

58 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60-foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

![Diagram of projector and screen]

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

59 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

![Diagram of circle T with an equilateral triangle inscribed]

60 A parallelogram must be a rectangle when its
1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent
61 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?
1) 13
2) 9694
3) 13,536
4) 30,456

62 In the diagram below, quadrilateral $ABCD$ is inscribed in circle P.

What is $m \angle ADC$?
1) 70°
2) 72°
3) 108°
4) 110°

63 If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?
1) $3A'B' = AB$
2) $B'C' = 3BC$
3) $m \angle A' = 3(m \angle A)$
4) $3(m \angle C') = m \angle C$

64 The coordinates of the vertices of $\triangle RST$ are $R(-2, -3)$, $S(8, 2)$, and $T(4, 5)$. Which type of triangle is $\triangle RST$?
1) right
2) acute
3) obtuse
4) equiangular

65 The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?
1) $2AB = AD$
2) $AD \perp DE$
3) $AC = CE$
4) $BC \parallel DE$

66 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^2 + y^2 - 4x + 8y + 11 = 0$?
1) center $(2, -4)$ and radius 3
2) center $(-2, 4)$ and radius 3
3) center $(2, -4)$ and radius 9
4) center $(-2, 4)$ and radius 9
67 In the diagram below, the line of sight from the park ranger station, \(P \), to the lifeguard chair, \(L \), on the beach of a lake is perpendicular to the path joining the campground, \(C \), and the first aid station, \(F \). The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

68 What are the coordinates of the point on the directed line segment from \(K(-5,-4) \) to \(L(5,1) \) that partitions the segment into a ratio of 3 to 2?
1) \((-3,-3)\)
2) \((-1,-2)\)
3) \(0,-\frac{3}{2}\)
4) \((1,-1)\)

69 A circle has a center at \((1,-2)\) and radius of 4. Does the point \((3,4,1.2)\) lie on the circle? Justify your answer.

70 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

71 The coordinates of vertices \(A \) and \(B \) of \(\triangle ABC \) are \(A(3,4) \) and \(B(3,12) \). If the area of \(\triangle ABC \) is 24 square units, what could be the coordinates of point \(C \)?
1) \((3,6)\)
2) \((8,-3)\)
3) \((-3,8)\)
4) \((6,3)\)

72 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?
1) \(\frac{8\pi}{3}\)
2) \(\frac{16\pi}{3}\)
3) \(\frac{32\pi}{3}\)
4) \(\frac{64\pi}{3}\)
73 Triangles ABC and DEF are drawn below.

If $AB = 9$, $BC = 15$, $DE = 6$, $EF = 10$, and $\angle B \cong \angle E$, which statement is true?
1) $\angle CAB \cong \angle DEF$
2) $\frac{AB}{CB} = \frac{FE}{DE}$
3) $\triangle ABC \sim \triangle DEF$
4) $\frac{AB}{DE} = \frac{FE}{CB}$

74 In the diagram of $\triangle ABC$, points D and E are on AB and CB, respectively, such that $AC \parallel DE$.

If $AD = 24$, $DB = 12$, and $DE = 4$, what is the length of AC?
1) 8
2) 12
3) 16
4) 72

75 In circle O, diameter AB, chord BC, and radius OC are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector COB:

Amy $\frac{3}{10} \cdot \pi \cdot (BC)^2$
Beth $\frac{108}{360} \cdot \pi \cdot (OC)^2$
Carl $\frac{3}{10} \cdot \pi \cdot (\frac{1}{2} AB)^2$
Dex $\frac{108}{360} \cdot \pi \cdot (\frac{1}{2} AB)^2$

Which students wrote correct formulas?
1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

76 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?
1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches
77 Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below.

78 In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a transformation.

79 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

80 Triangle FGH is inscribed in circle O, the length of radius OH is 6, and $FH \cong OG$.

What is the area of the sector formed by angle FOH?

1) 2π
2) $\frac{3}{2}\pi$
3) 6π
4) 24π
81 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man’s head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

82 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

83 If \(x^2 + 4x + y^2 - 6y - 12 = 0\) is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

84 In isosceles \(\triangle MNP\), line segment \(NO\) bisects vertex \(\angle MNP\), as shown below. If \(MP = 16\), find the length of \(MO\) and explain your answer.

85 In the diagram below, \(\overline{CD}\) is the image of \(\overline{AB}\) after a dilation of scale factor \(k\) with center \(E\).

Which ratio is equal to the scale factor \(k\) of the dilation?

1) \(\frac{EC}{EA}\)
2) \(\frac{BA}{EA}\)
3) \(\frac{EA}{BA}\)
4) \(\frac{EA}{EC}\)
86 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

87 Triangle XYZ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle ABC$ is congruent to $\triangle XYZ$.

88 Quadrilateral $ABCD$ with diagonals \overline{AC} and \overline{BD} is shown in the diagram below.

Which information is not enough to prove $ABCD$ is a parallelogram?
1) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{DC}$
2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$
3) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
4) $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \parallel \overline{AD}$

89 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]
90 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

1)

2)

3)

4)

91 What are the coordinates of the center and length of the radius of the circle whose equation is $x^2 + 6x + y^2 - 4y = 23$?

1) (3, -2) and 36
2) (3, -2) and 6
3) (-3, 2) and 36
4) (-3, 2) and 6

92 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

93 Given: Parallelogram $ABCD$, EFG, and diagonal DFB

Prove: $\triangle DEF \sim \triangle BGF$
94 In $\triangle SCU$ shown below, points T and O are on SU and CU, respectively. Segment OT is drawn so that $\angle C \cong \angle OTU$.

If $TU = 4$, $OU = 5$, and $OC = 7$, what is the length of ST?
1) 5.6
2) 8.75
3) 11
4) 15

95 In scalene triangle ABC shown in the diagram below, $m\angle C = 90^\circ$.

Which equation is always true?
1) $\sin A = \sin B$
2) $\cos A = \cos B$
3) $\cos A = \sin C$
4) $\sin A = \cos B$

96 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

97 Given: Circle O, chords AB and CD intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $AE \cdot EB = CE \cdot ED$.
98 As graphed on the set of axes below, \(\triangle A'B'C' \) is the image of \(\triangle ABC \) after a sequence of transformations.

Is \(\triangle A'B'C' \) congruent to \(\triangle ABC \)? Use the properties of rigid motion to explain your answer.

99 In the diagram below, \(\overline{AC} \cong \overline{DF} \) and points \(A, C, D, \) and \(F \) are collinear on line \(\ell \).

Let \(\triangle D'E'F' \) be the image of \(\triangle DEF \) after a translation along \(\ell \), such that point \(D \) is mapped onto point \(A \). Determine and state the location of \(F' \). Explain your answer. Let \(\triangle D''E''F'' \) be the image of \(\triangle D'E'F' \) after a reflection across line \(\ell \). Suppose that \(E'' \) is located at \(B \). Is \(\triangle DEF \) congruent to \(\triangle ABC \)? Explain your answer.

100 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?

1)
2)
3)
4)

101 Quadrilateral \(ABCD \) has diagonals \(\overline{AC} \) and \(\overline{BD} \). Which information is not sufficient to prove \(ABCD \) is a parallelogram?

1) \(\overline{AC} \) and \(\overline{BD} \) bisect each other.
2) \(AB \cong CD \) and \(BC \cong AD \)
3) \(AB \cong CD \) and \(AB \parallel CD \)
4) \(AB \cong CD \) and \(BC \parallel AD \)
Geometry CCSS Regents Exam Questions at Random
www.jmap.org

102 As shown in the diagram below, circle \(A \) has a radius of 3 and circle \(B \) has a radius of 5.

Use transformations to explain why circles \(A \) and \(B \) are similar.

103 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone.

Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

104 Directed line segment \(PT \) has endpoints whose coordinates are \(P(-2,1) \) and \(T(4,7) \). Determine the coordinates of point \(J \) that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]

105 Point \(P \) is on the directed line segment from point \(X(-6,-2) \) to point \(Y(6,7) \) and divides the segment in the ratio 1:5. What are the coordinates of point \(P \)?

1) \(\left(4, 5\frac{1}{2} \right) \)
2) \(\left(\frac{1}{2}, -4 \right) \)
3) \(\left(-4\frac{1}{2}, 0 \right) \)
4) \(\left(-4, \frac{1}{2} \right) \)
106 Given: \(D \) is the image of \(A \) after a reflection over \(CH \).

\(CH \) is the perpendicular bisector of \(BCE \)

\(\triangle ABC \) and \(\triangle DEC \) are drawn

Prove: \(\triangle ABC \cong \triangle DEC \)

107 In the diagram below, radius \(OA \) is drawn in circle \(O \). Using a compass and a straightedge, construct a line tangent to circle \(O \) at point \(A \). [Leave all construction marks.]

108 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

109 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

110 The vertices of \(\triangle JKL \) have coordinates \(J(5,1), K(-2,-3), \) and \(L(-4,1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the \(x \)-axis
4) a dilation with a scale factor of 2 and centered at the origin
111 Line segment NY has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of NY?

1) $y + 1 = \frac{4}{3}(x + 3)$
2) $y + 1 = -\frac{3}{4}(x + 3)$
3) $y - 6 = \frac{4}{3}(x - 8)$
4) $y - 6 = -\frac{3}{4}(x - 8)$

112 Quadrilateral $ABCD$ is graphed on the set of axes below.

When $ABCD$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A'B'C'D'$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C'(1,2)$
2) no and $D'(2,4)$
3) yes and $A'(6,2)$
4) yes and $B'(-3,4)$

113 Line segment $A'B'$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of AB after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of AB?

1) 5
2) 10
3) 20
4) 40

114 In the diagram below, $\triangle ABC$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to BC?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $\frac{1}{2}$
4) $-\frac{5}{2}$
Geometry CCSS Regents Exam Questions at Random
www.jmap.org

115 Given: \(\triangle ABE \) and \(\triangle CBD \) shown in the diagram below with \(DB \cong BE \)

Which statement is needed to prove \(\triangle ABE \cong \triangle CBD \) using only \(\text{SAS} \) \(\cong \text{SAS} \)?
1) \(\angle CDB \cong \angle AEB \)
2) \(\angle ADF \cong \angle EFC \)
3) \(AD \cong CE \)
4) \(AE \cong CD \)

116 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?
1) \(x = 5 \)
2) \(y = 2 \)
3) \(y = x \)
4) \(x + y = 4 \)

117 Kevin’s work for deriving the equation of a circle is shown below.

\[
\begin{align*}
& x^2 + 4x = -(y^2 - 20) \\
& \text{STEP 1} \quad x^2 + 4x = -y^2 + 20 \\
& \text{STEP 2} \quad x^2 + 4x + 4 = -y^2 + 20 - 4 \\
& \text{STEP 3} \quad (x + 2)^2 = -y^2 + 20 - 4 \\
& \text{STEP 4} \quad (x + 2)^2 + y^2 = 16
\end{align*}
\]

In which step did he make an error in his work?
1) Step 1
2) Step 2
3) Step 3
4) Step 4

118 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

119 The equation of line \(h \) is \(2x + y = 1 \). Line \(m \) is the image of line \(h \) after a dilation of scale factor 4 with respect to the origin. What is the equation of the line \(m \)?
1) \(y = -2x + 1 \)
2) \(y = -2x + 4 \)
3) \(y = 2x + 4 \)
4) \(y = 2x + 1 \)
120 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a
1) circle
2) square
3) triangle
4) rectangle

121 Given MN shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to MN?

1) $y = -\frac{2}{3}x + 5$
2) $y = -\frac{2}{3}x - 3$
3) $y = \frac{3}{2}x + 7$
4) $y = \frac{3}{2}x - 8$

122 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is
1) 72
2) 144
3) 288
4) 432

123 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is
1) 54°
2) 72°
3) 108°
4) 360°
124 In the diagram of \(\triangle ABC \) shown below, use a compass and straightedge to construct the median to \(AB \). [Leave all construction marks.]

125 In the diagram below of circle \(O \), the area of the shaded sector \(AOC \) is \(12\pi \) in\(^2\) and the length of \(\overline{OA} \) is 6 inches. Determine and state \(m\angle AOC \).

126 Which equation represents a line that is perpendicular to the line represented by \(2x - y = 7 \)?

1) \(y = -\frac{1}{2} x + 6 \)
2) \(y = \frac{1}{2} x + 6 \)
3) \(y = -2x + 6 \)
4) \(y = 2x + 6 \)

127 In the diagram below, \(\triangle ABC \sim \triangle DEC \).

If \(AC = 12, DC = 7, DE = 5 \), and the perimeter of \(\triangle ABC \) is 30, what is the perimeter of \(\triangle DEC \)?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

128 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

129 The endpoints of one side of a regular pentagon are (-1, 4) and (2, 3). What is the perimeter of the pentagon?

1) \(\sqrt{10} \)
2) \(5\sqrt{10} \)
3) \(5\sqrt{2} \)
4) \(25\sqrt{2} \)
130 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

131 Given: Quadrilateral $ABCD$ with diagonals AC and BD that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle ACD$ is an isosceles triangle and $\triangle AEB$ is a right triangle

132 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

133 Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?
1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y = x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

134 Which object is formed when right triangle RST shown below is rotated around leg RS?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone
135 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

136 The graph below shows AB, which is a chord of circle O. The coordinates of the endpoints of AB are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of AB to the center of circle O is 2 units.

What could be a correct equation for circle O?
1) $(x - 1)^2 + (y + 2)^2 = 29$
2) $(x + 5)^2 + (y - 2)^2 = 29$
3) $(x - 1)^2 + (y - 2)^2 = 25$
4) $(x - 5)^2 + (y + 2)^2 = 25$

137 Two right triangles must be congruent if
1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

138 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?
1) 3.3
2) 3.5
3) 4.7
4) 13.3

139 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri’s principle to explain why the volumes of these two stacks of quarters are equal.

140 Lines AE and BD are tangent to circles O and P at $A, E, B,$ and D, as shown in the diagram below. If $AC:CE = 5:3$, and $BD = 56$, determine and state the length of CD.
141 Line segment EA is the perpendicular bisector of ZT, and ZE and TE are drawn.

Which conclusion can not be proven?
1) EA bisects angle ZET.
2) Triangle EZT is equilateral.
3) EA is a median of triangle EZT.
4) Angle Z is congruent to angle T.

142 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

1) $AB = DE$ and $BC = EF$
2) $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
3) There is a sequence of rigid motions that maps AB onto DE, BC onto EF, and AC onto DF.
4) There is a sequence of rigid motions that maps point A onto point D, AB onto DE, and $\angle B$ onto $\angle E$.

143 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?
1) 29.7
2) 16.6
3) 13.5
4) 11.2

144 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?
1) $10 + 2\pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$
145 Which sequence of transformations will map \(\triangle ABC \) onto \(\triangle A'B'C' \)?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

146 In the diagram of parallelogram \(ABCD \) below, \(BE \perp CED \), \(DF \perp BFC \), \(CE \cong CF \).

Prove \(ABCD \) is a rhombus.

147 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?
1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

148 In the diagram of right triangle \(ABC \) shown below, \(AB = 14 \) and \(AC = 9 \).

What is the measure of \(\angle A \), to the nearest degree?
1) 33
2) 40
3) 50
4) 57
149 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

150 Using a compass and straightedge, construct an altitude of triangle ABC below. [Leave all construction marks.]

151 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13\pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

152 In the diagram of right triangle ABC, \overline{CD} intersects hypotenuse \overline{AB} at D.

If $AD = 4$ and $DB = 6$, which length of \overline{AC} makes $\overline{CD} \perp \overline{AB}$?
1) $2\sqrt{6}$
2) $2\sqrt{10}$
3) $2\sqrt{15}$
4) $4\sqrt{2}$

153 In the diagram below, \overline{EF} intersects \overline{AB} and \overline{CD} at G and H, respectively, and \overline{GI} is drawn such that $GH \cong IH$.

If $m\angle EGB = 50^\circ$ and $m\angle DIG = 115^\circ$, explain why $AB \parallel CD$.

154 Given the theorem, “The sum of the measures of the interior angles of a triangle is 180°,” complete the proof for this theorem.

Given: $\triangle ABC$
Prove: $m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ$
Fill in the missing reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $\triangle ABC$</td>
<td>(1) Given</td>
</tr>
<tr>
<td>(2) Through point C, draw DCE parallel to AB.</td>
<td>(2) __________</td>
</tr>
<tr>
<td>(3) $m\angle 1 = m\angle ACD$, $m\angle 3 = m\angle BCE$</td>
<td>(3) __________</td>
</tr>
<tr>
<td>(4) $m\angle ACD + m\angle 2 + m\angle BCE = 180^\circ$</td>
<td>(4) __________</td>
</tr>
<tr>
<td>(5) $m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ$</td>
<td>(5) __________</td>
</tr>
</tbody>
</table>
155 Triangles \(RST \) and \(XYZ \) are drawn below. If \(RS = 6, ST = 14, XY = 9, YZ = 21, \) and \(\angle S \cong \angle Y \), is \(\triangle RST \) similar to \(\triangle XYZ \)? Justify your answer.

156 In right triangle \(ABC \) with the right angle at \(C \), \(\sin A = 2x + 0.1 \) and \(\cos B = 4x - 0.7 \). Determine and state the value of \(x \). Explain your answer.

157 Which expression is always equivalent to \(\sin x \) when \(0^\circ < x < 90^\circ \)?
1) \(\cos(90^\circ - x) \)
2) \(\cos(45^\circ - x) \)
3) \(\cos(2x) \)
4) \(\cos x \)

158 A company is creating an object from a wooden cube with an edge length of 8.5 cm. A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?
1) \((8.5)^3 - \pi(8)^2(8) \)
2) \((8.5)^3 - \pi(4)^2(8) \)
3) \((8.5)^3 - \frac{1}{3} \pi(8)^2(8) \)
4) \((8.5)^3 - \frac{1}{3} \pi(4)^2(8) \)

159 The equation of a circle is \(x^2 + y^2 + 6y = 7 \). What are the coordinates of the center and the length of the radius of the circle?
1) center \((0,3) \) and radius 4
2) center \((0,-3) \) and radius 4
3) center \((0,3) \) and radius 16
4) center \((0,-3) \) and radius 16

160 A quadrilateral has vertices with coordinates \((-3,1), (0,3), (5,2), \) and \((-1,-2)\). Which type of quadrilateral is this?
1) rhombus
2) rectangle
3) square
4) trapezoid

161 If the rectangle below is continuously rotated about side \(w \), which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

162 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.
163 In the diagram below, BC is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle BCD$ is a right triangle.
2) $\triangle BCD$ is an isosceles triangle.
3) $\triangle BAD$ and $\triangle CBD$ are similar triangles.
4) $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

164 In the diagram below, $\triangle ABC \sim \triangle DEF$.

If $AB = 6$ and $AC = 8$, which statement will justify similarity by SAS?

1) $DE = 9$, $DF = 12$, and $\angle A \cong \angle D$
2) $DE = 8$, $DF = 10$, and $\angle A \cong \angle D$
3) $DE = 36$, $DF = 64$, and $\angle C \cong \angle F$
4) $DE = 15$, $DF = 20$, and $\angle C \cong \angle F$

165 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

166 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $37.83 for the molds and charges $1.95 for each candle, what is Walter's profit after selling 100 candles?

167 The diagram below shows parallelogram $LMNO$ with diagonal LN, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$.

Explain why $m\angle NLO$ is 40 degrees.

168 The endpoints of \overline{DEF} are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $DE:EF = 2:3$.

169 If $\triangle A'B'C'$ is the image of $\triangle ABC$, under which transformation will the triangles not be congruent?
1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

170 In the diagram below, \overline{DC}, \overline{AC}, \overline{DOB}, \overline{CB}, and \overline{AB} are chords of circle O, \overrightarrow{FDE} is tangent at point D, and radius AO is drawn. Sam decides to apply this theorem to the diagram: “An angle inscribed in a semi-circle is a right angle.”

Which angle is Sam referring to?
1) $\angle AOB$
2) $\angle BAC$
3) $\angle DCB$
4) $\angle FDB$

172 An equation of a line perpendicular to the line represented by the equation $y = -\frac{1}{2}x - 5$ and passing through $(6, -4)$ is
1) $y = -\frac{1}{2}x + 4$
2) $y = -\frac{1}{2}x - 1$
3) $y = 2x + 14$
4) $y = 2x - 16$

173 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is 0.697 g/cm³, and the cost, per kilogram, of ice is $3.83. Determine and state the cost of the ice needed to make 50 snow cones.

174 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2. The equation of line ℓ is $3x - y = 4$. Determine and state an equation for line m.

171 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
1) 3591
2) 65
3) 55
4) 4
175 In the diagram of parallelogram \(FRED\) shown below, \(ED\) is extended to \(A\), and \(AF\) is drawn such that \(AF \cong DF\).

If \(m \angle R = 124^\circ\), what is \(m \angle AFD\)?
1) 124°
2) 112°
3) 68°
4) 56°

176 A line that passes through the points whose coordinates are \((1,1)\) and \((5,7)\) is dilated by a scale factor of 3 and centered at the origin. The image of the line
1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

177 In \(\triangle ABC\), where \(\angle C\) is a right angle,
\[
\cos A = \frac{\sqrt{21}}{5}.
\]
What is \(\sin B\)?
1) \(\frac{\sqrt{21}}{5}\)
2) \(\frac{\sqrt{21}}{2}\)
3) \(\frac{2}{5}\)
4) \(\frac{5}{\sqrt{21}}\)

178 Point \(P\) is on segment \(AB\) such that \(AP:PB\) is 4:5. If \(A\) has coordinates \((4,2)\), and \(B\) has coordinates \((22,2)\), determine and state the coordinates of \(P\).

179 Triangle \(ABC\) is graphed on the set of axes below. Graph and label \(\triangle A'B'C'\), the image of \(\triangle ABC\) after a reflection over the line \(x = 1\).

180 In the diagram below, \(\triangle ERM \sim \triangle JTM\).

Which statement is always true?
1) \(\cos J = \frac{RM}{RE}\)
2) \(\cos R = \frac{JM}{JT}\)
3) \(\tan T = \frac{RM}{EM}\)
4) \(\tan E = \frac{TM}{JM}\)
181 In the diagram below of circle O, OB and OC are radii, and chords AB, BC, and AC are drawn.

Which statement must always be true?
1) $\angle BAC \cong \angle BOC$
2) $m\angle BAC = \frac{1}{2} m\angle BOC$
3) $\triangle BAC$ and $\triangle BOC$ are isosceles.
4) The area of $\triangle BAC$ is twice the area of $\triangle BOC$.

182 Given: $\triangle AEC$, $\triangle DEF$, and $FE \perp CE$

What is a correct sequence of similarity transformations that shows $\triangle AEC \sim \triangle DEF$?
1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

183 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $ABCD \parallel EFG$?
1) $\angle CFG \cong \angle FCB$
2) $\angle ABF \cong \angle BFC$
3) $\angle EFB \cong \angle CFB$
4) $\angle CBF \cong \angle GFC$

184 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

<table>
<thead>
<tr>
<th>Type of Wood</th>
<th>Density (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>0.373</td>
</tr>
<tr>
<td>Hemlock</td>
<td>0.431</td>
</tr>
<tr>
<td>Elm</td>
<td>0.554</td>
</tr>
<tr>
<td>Birch</td>
<td>0.601</td>
</tr>
<tr>
<td>Ash</td>
<td>0.638</td>
</tr>
<tr>
<td>Maple</td>
<td>0.676</td>
</tr>
<tr>
<td>Oak</td>
<td>0.711</td>
</tr>
</tbody>
</table>
185 Which transformation would not always produce an image that would be congruent to the original figure?
1) translation
2) dilation
3) rotation
4) reflection

186 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?
1) 6.8
2) 6.9
3) 18.7
4) 18.8

187 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?
1) $\ell \parallel n$
2) $\ell \parallel p$
3) $m \parallel p$
4) $m \parallel n$

188 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

![Water Tower Diagram]

If $AC = 8.5$ feet, $BF = 25$ feet, and $m\angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

189 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?
1) 73
2) 77
3) 133
4) 230
190 In the diagram shown below, \(\overline{AC} \) is tangent to circle \(O \) at \(A \) and to circle \(P \) at \(C \), \(\overline{OP} \) intersects \(\overline{AC} \) at \(B \), \(OA = 4 \), \(AB = 5 \), and \(PC = 10 \).

What is the length of \(\overline{BC} \)?
1) 6.4
2) 8
3) 12.5
4) 16

191 In the diagram below, \(\triangle ABC \) has coordinates \(A(1,1), B(4,1), \) and \(C(4,5) \). Graph and label \(\triangle A'B'C' \), the image of \(\triangle ABC \) after the translation five units to the right and two units up followed by the reflection over the line \(y = 0 \).

192 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
1) 1,632
2) 408
3) 102
4) 92

193 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

194 In \(\triangle ABC \), the complement of \(\angle B \) is \(\angle A \). Which statement is always true?
1) \(\tan \angle A = \tan \angle B \)
2) \(\sin \angle A = \sin \angle B \)
3) \(\cos \angle A = \tan \angle B \)
4) \(\sin \angle A = \cos \angle B \)

195 Given: \(\triangle XYZ \), \(\overline{XY} \cong \overline{ZY} \), and \(\overline{YW} \) bisects \(\angle XYZ \)
Prove that \(\angle YWZ \) is a right angle.
196 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

197 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm, and the density of each brick is 1920 kg/m³. The maximum capacity of the contractor’s trailer is 900 kg. Can the trailer hold the weight of 500 bricks? Justify your answer.

198 In \(\triangle RST \) shown below, altitude \(SU \) is drawn to \(RT \) at \(U \).

If \(SU = h \), \(UT = 12 \), and \(RT = 42 \), which value of \(h \) will make \(\triangle RST \) a right triangle with \(\angle RST \) as a right angle?

1) \(6\sqrt{3} \)
2) \(6\sqrt{10} \)
3) \(6\sqrt{14} \)
4) \(6\sqrt{35} \)

199 In the diagram below, \(DB \) and \(AF \) intersect at point \(C \), and \(AD \) and \(FBE \) are drawn.

If \(AC = 6 \), \(DC = 4 \), \(FC = 15 \), \(m \angle D = 65^\circ \), and \(m \angle CBE = 115^\circ \), what is the length of \(CB \)?

1) 10
2) 12
3) 17
4) 22.5
200 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

201 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

202 In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed.

Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

203 In the diagram of circle A shown below, chords \overline{CD} and \overline{EF} intersect at G, and chords \overline{CE} and \overline{FD} are drawn.

Which statement is not always true?
1) $\overline{CG} \cong \overline{FG}$
2) $\angle CEG \cong \angle FDG$
3) $\frac{CE}{EG} = \frac{FD}{DG}$
4) $\triangle CEG \sim \triangle FDG$
204 Which transformation of \overline{OA} would result in an image parallel to \overline{OA}?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

205 In parallelogram $ABCD$, diagonals \overline{AC} and \overline{BD} intersect at E. Which statement does not prove parallelogram $ABCD$ is a rhombus?

1) $\overline{AC} \cong \overline{DB}$
2) $\overline{AB} \cong \overline{BC}$
3) $\overline{AC} \perp \overline{DB}$
4) \overline{AC} bisects $\angle DCB$

206 Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

207 In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0)$, $B(3,0)$, $C(4.5,0)$, $D(0,6)$, and $E(0,4)$.

The ratio of the lengths of \overline{BE} to \overline{CD} is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$
Geometry Common Core State Standards Regents at Random
Answer Section

1 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A.2
TOP: Analytical Representations of Transformations

2 ANS: 1 PTS: 2 REF: 061520geo NAT: G.C.A.2
TOP: Chords, Secants and Tangents

3 ANS: 1
The line $3y = -2x + 8$ does not pass through the center of dilation, so the dilated line will be distinct from $3y = -2x + 8$. Since a dilation preserves parallelism, the line $3y = -2x + 8$ and its image $2x + 3y = 5$ are parallel, with slopes of $-\frac{2}{3}$.

4 ANS: 2 REF: 061522geo NAT: G.SRT.A.1 TOP: Line Dilations

5 ANS: 2
$SA = 6 \cdot 12^2 = 864$
\[
\frac{864}{450} = 1.92
\]

6 ANS: 3 REF: 061519geo NAT: G.MG.A.3 TOP: Surface and Lateral Area

7 ANS: 1
Equal cofunctions are complementary.

8 ANS: 2 REF: spr1406geo NAT: G.SRT.A.2 TOP: Similarity

9 ANS: 1 PTS: 2 REF: 081507geo NAT: G.CO.A.5 TOP: Compositions of Transformations
ANS:
Parallelogram \(\text{ANDR}\) with \(\overline{AW}\) and \(\overline{DE}\) bisecting \(\overline{NWD}\) and \(\overline{REA}\) at points \(W\) and \(E\) (Given). \(\overline{AN} \cong \overline{RD}, \overline{AR} \cong \overline{DN}\) (Opposite sides of a parallelogram are congruent). \(\overline{AE} = \frac{1}{2} \overline{AR}, \overline{WD} = \frac{1}{2} \overline{DN}, \) so \(\overline{AE} \cong \overline{WD}\) (Definition of bisect and division property of equality). \(\overline{AR} \parallel \overline{DN}\) (Opposite sides of a parallelogram are parallel). \(\overline{AWDE}\) is a parallelogram (Definition of parallelogram). \(\overline{RE} = \frac{1}{2} \overline{AR}, \overline{NW} = \frac{1}{2} \overline{DN}\), so \(\overline{RE} \cong \overline{NW}\) (Definition of bisect and division property of equality). \(\overline{ED} \cong \overline{AW}\) (Opposite sides of a parallelogram are congruent). \(\triangle ANW \cong \triangle DRE\) (SSS).

PTS: 6
REF: 011635geo
NAT: G.CO.C.11
TOP: Quadrilateral Proofs

ANS:
\(\triangle ABC\) – point of reflection \(\rightarrow (-y,x) + \) point of reflection
\(\triangle DEF \cong \triangle A'B'C'\) because \(\triangle DEF\) is a reflection of \(A(2,-3) - (2,-3) = (0,0) \rightarrow (0,0) + (2,-3) = A'(2,-3)\)
\(B(6,-8) - (2,-3) = (4,-5) \rightarrow (5,4) + (2,-3) = B'(7,1)\)
\(C(2,-9) - (2,-3) = (0,-6) \rightarrow (6,0) + (2,-3) = C'(8,-3)\)
\(\triangle A'B'C'\) and reflections preserve distance.

PTS: 4
REF: 081633geo
NAT: G.CO.A.5
TOP: Rotations
KEY: grids

ANS: 4

The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2
REF: fall1402geo
NAT: G.CO.B.6
TOP: Properties of Transformations
KEY: graphics

ANS:

\[-6 + \frac{2}{5}(4 -6) \quad -5 + \frac{2}{5}(0 -5) \quad (-2,-3)\]
\[-6 + \frac{2}{5}(10) \quad -5 + \frac{2}{5}(5)\]
\[-6 + 4 \quad -5 + 2\]
\[-2 \quad -3\]

PTS: 2
REF: 061527geo
NAT: G.GPE.B.6
TOP: Directed Line Segments
14. ANS: 2
\[\sqrt{3 \cdot 21} = \sqrt{63} = 3\sqrt{7} \]

PTS: 2 REF: 011622geo NAT: G.SRT.B.5 TOP: Similarity KEY: altitude

15. ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C.11 TOP: Parallelograms

16. ANS:
\[r = 25 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 0.25 \text{ m} \]
\[V = \pi (0.25 \text{ m})^2 (10 \text{ m}) = 0.625\pi \text{ m}^3 \]
\[W = 0.625\pi \text{ m}^3 \left(\frac{380 \text{ K}}{1 \text{ m}^3} \right) \approx 746.1 \text{ K} \]
\[n = \frac{\$50,000}{(\frac{4.75}{\text{K}})} = 14.1 \text{ trees} \]

PTS: 4 REF: spr1412geo NAT: G.MG.A.2 TOP: Density

17. ANS: 4
\[V = \pi \left(\frac{6.7}{2} \right)^2 (4 \cdot 6.7) \approx 945 \]

PTS: 2 REF: 081620geo NAT: G.MG.A.3 TOP: Volume

18. ANS:
\[m_{TS} = \frac{-10}{6} = -\frac{5}{3} \]
\[m_{SR} = \frac{3}{5} \]
Since the slopes of \(TS \) and \(SR \) are opposite reciprocals, they are perpendicular and form a right angle. \(\triangle RST \) is a right triangle because \(\angle S \) is a right angle. \(P(0,9) \)
\[m_{RP} = \frac{-10}{6} = -\frac{5}{3} \]
\[m_{PT} = \frac{3}{5} \]
Since the slopes of all four adjacent sides (\(TS, SR, RP, PT \)) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral \(RSTP \) is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B.4 TOP: Polygons in the Coordinate Plane
19 ANS: 3
\[r = \sqrt{(7-3)^2 + (1-2)^2} = \sqrt{16 + 9} = 5 \]

PTS: 2 REF: 061503geo NAT: G.GPE.B.4 TOP: Circles in the Coordinate Plane

20 ANS: Reflections are rigid motions that preserve distance.

PTS: 2 REF: 061530geo NAT: G.CO.B.7 TOP: Triangle Congruency

21 ANS: 1

PTS: 2 REF: 081603geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects

22 ANS:
\[M\left(\frac{4+0}{2}, \frac{6-1}{2}\right) = M\left(2, \frac{5}{2}\right) \]
\[m = \frac{6-1}{4-0} = \frac{5}{4}, \quad m_\perp = \frac{4}{7}, \quad y - 2.5 = \frac{4}{7}(x - 2) \]
The diagonals, \(\overline{MT}\) and \(\overline{AH}\), of rhombus \(MATH\) are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo NAT: G.GPE.B.4 TOP: Polygons in the Coordinate Plane

23 ANS: The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C.7 TOP: Cofunctions

24 ANS: 4

PTS: 2 REF: 081514geo NAT: G.SRT.A.2 TOP: Similarity

25 ANS:
Quadrilateral \(ABCD\) is a parallelogram with diagonals \(\overline{AC}\) and \(\overline{BD}\) intersecting at \(E\) (Given). \(\overline{AD} \cong \overline{BC}\) (Opposite sides of a parallelogram are congruent). \(\angle AED \cong \angle CEB\) (Vertical angles are congruent). \(\overline{BC} \parallel \overline{DA}\) (Definition of parallelogram). \(\angle DBC \cong \angle BDA\) (Alternate interior angles are congruent). \(\triangle AED \cong \triangle CEB\) (AAS). 180° rotation of \(\triangle AED\) around point \(E\).

26 ANS: 1

PTS: 2 REF: 011606geo NAT: G.CO.C.9 TOP: Lines and Angles

27 ANS: 2

\[14 \times 16 \times 10 = 2240 \]
\[\frac{2240 - 1680}{2240} = 0.25 \]

PTS: 2 REF: 011604geo NAT: G.GMD.A.3 TOP: Volume

28 ANS:
As the sum of the measures of the angles of a triangle is 180°, \(m\angle ABC + m\angle BCA + m\angle CAB = 180°\). Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so \(m\angle ABC + m\angle FBC = 180°\), \(m\angle BCA + m\angle DCA = 180°\), and \(m\angle CAB + m\angle EAB = 180°\). By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C.10 TOP: Triangle Proofs
29 ANS:
Circle O, secant \overline{ACD}, tangent \overline{AB} (Given). Chords \overline{BC} and \overline{BD} are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overline{BC} \cong \overline{BC}$ (Reflexive property). $m\angle BDC = \frac{1}{2} m\overline{BC}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $m\angle CBA = \frac{1}{2} m\overline{BC}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle BDC \cong \angle CBA$ (Angles equal to half of the same arc are congruent).

$\triangle ABC \sim \triangle ADB$ (AA). $\frac{AB}{AC} = \frac{AD}{AB}$ (Corresponding sides of similar triangles are proportional). $AC \cdot AD = AB^2$
(In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B.4 TOP: Circle Proofs

30 ANS:
$\frac{3.75}{5} = \frac{4.5}{6}$ \overline{AB} is parallel to \overline{CD} because \overline{AB} divides the sides proportionately.

$39.375 = 39.375$

PTS: 2 REF: 061627geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

31 ANS: 1
$180 - (68 \cdot 2)$

PTS: 2 REF: 081624geo NAT: G.CO.C.11 TOP: Parallelograms

32 ANS: 2
TOP: Similarity KEY: basic

33 ANS: 4
$\frac{1}{2} = \frac{x + 3}{3x - 1}$ $GR = 3(7) - 1 = 20$

$3x - 1 = 2x + 6$

$x = 7$

PTS: 2 REF: 011620geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

34 ANS: 1
$\frac{1000}{20\pi} \approx 15.9$

35 ANS:
Translate $\triangle ABC$ along \overrightarrow{CF} such that point C maps onto point F, resulting in image $\triangle A'B'C'$. Then reflect $\triangle A'B'C'$ over \overline{DF} such that $\triangle A'B'C'$ maps onto $\triangle DEF$.

or

Reflect $\triangle ABC$ over the perpendicular bisector of \overline{EB} such that $\triangle ABC$ maps onto $\triangle DEF$.

PTS: 2 REF: fall1408geo NAT: G.CO.B.8 TOP: Triangle Congruency
The line \(y = 2x - 4 \) does not pass through the center of dilation, so the dilated line will be distinct from \(y = 2x - 4 \). Since a dilation preserves parallelism, the line \(y = 2x - 4 \) and its image will be parallel, with slopes of 2. To obtain the \(y \)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{2} \), can be applied to the \(y \)-intercept, \((0, -4)\). Therefore, \(\left(0 \cdot \frac{3}{2}, -4 \cdot \frac{3}{2}\right) \rightarrow (0, -6) \). So the equation of the dilated line is \(y = 2x - 6 \).

\[
\begin{align*}
\text{PTS: } & 2 \\
\text{REF: } & \text{fall1403geo} \\
\text{NAT: } & \text{G.SRT.A.1} \\
\text{TOP: } & \text{Line Dilations}
\end{align*}
\]

The line \(y = 3x - 1 \) passes through the center of dilation, so the dilated line is not distinct.

\[
\begin{align*}
\text{PTS: } & 2 \\
\text{REF: } & \text{081524geo} \\
\text{NAT: } & \text{G.SRT.A.1} \\
\text{TOP: } & \text{Line Dilations}
\end{align*}
\]

Parallelogram \(ABCD \), diagonals \(AC \) and \(BD \) intersect at \(E \) (given). \(\overline{DC} \parallel \overline{AB}; \overline{DA} \parallel \overline{CB} \) (opposite sides of a parallelogram are parallel). \(\angle ACD \cong \angle CAB \) (alternate interior angles formed by parallel lines and a transversal are congruent).

\[
\begin{align*}
\text{PTS: } & 2 \\
\text{REF: } & \text{081528geo} \\
\text{NAT: } & \text{G.CO.C.11} \\
\text{TOP: } & \text{Quadrilateral Proofs}
\end{align*}
\]
43 ANS: 3
1) \(\frac{12}{9} = \frac{4}{3}\) 2) AA 3) \(\frac{32}{16} \neq \frac{8}{2}\) 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.A.2 TOP: Similarity

44 ANS: 1

\[m_{\overline{TA}} = -1 \quad y = mx + b\]
\[m_{\overline{EM}} = 1 \quad 1 = 1(2) + b\]
\[-1 = b\]

PTS: 2 REF: 081614geo NAT: G.GPE.B.4 TOP: Polygons in the Coordinate Plane

45 ANS:

\[
\left(\frac{180 - 20}{2}\right) \times \pi \left(\frac{6}{360}\right)^2 = \frac{80}{560} \times 36\pi = 8\pi
\]

46 ANS: 1

\[
\frac{360^\circ}{45^\circ} = 8
\]

PTS: 2 REF: 061510geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

47 ANS:

\[
\sqrt{180 - 2(30)} = 120
\]

PTS: 2 REF: 011626geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

48 ANS: 3

\[
\sqrt{45} = 3\sqrt{5} \quad a = \frac{1}{2} \left(3\sqrt{5}\right)\left(6\sqrt{5}\right) = \frac{1}{2} (18)(5) = 45
\]
\[
\sqrt{180} = 6\sqrt{5}
\]

PTS: 2 REF: 061622geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

49 ANS: 2

50 ANS: 3
\[
\frac{x}{360} \cdot 3^2 \pi = 2\pi \quad 180 - 80 = 100
\]
\[
x = 80 \quad \frac{180 - 100}{2} = 40
\]

PTS: 2 REF: 011612geo NAT: G.C.B.5 TOP: Sectors

51 ANS:
The slopes of perpendicular lines are opposite reciprocals. Since the lines are perpendicular, they form right angles

and a right triangle. \(m_{BC} = -\frac{3}{2} \)

\[
-1 = \frac{2}{3} (-3) + b \quad \text{or} \quad -4 = \frac{2}{3} (-1) + b
\]

\[
m_{\perp} = \frac{2}{3} \quad -1 = -2 + b
\]

\[
1 = b
\]

\[
3 = \frac{2}{3} x + 1
\]

\[
-12 = \frac{2}{3} (x) + b
\]

\[
1 = b
\]

\[
2 = \frac{2}{3} x
\]

\[
3 = \frac{2}{3} x - \frac{10}{3}
\]

\[
9 = 2x - 10
\]

\[
19 = 2x
\]

\[
9.5 = x
\]

PTS: 4 REF: 081533geo NAT: G.GPE.B.4 TOP: Triangles in the Coordinate Plane
52 ANS:

The length of $\overline{A'C}$ is twice \overline{AC}.

PTS: 4 REF: 081632geo NAT: G.CO.D.12 TOP: Constructions

53 ANS:

$LA \cong DN$, $CA \cong CN$, and $DAC \perp LCN$ (Given). $\angle LCA$ and $\angle DCN$ are right angles (Definition of perpendicular lines). $\triangle LAC$ and $\triangle DNC$ are right triangles (Definition of a right triangle). $\triangle LAC \cong \triangle DNC$ (HL).

$\triangle LAC$ will map onto $\triangle DNC$ after rotating $\triangle LAC$ counterclockwise 90º about point C such that point L maps onto point D.

54 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D.13 TOP: Constructions

55 ANS: 4

$\frac{2}{6} = \frac{5}{15}$

PTS: 2 REF: 081517geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem
56 ANS: 3
\[
\frac{9}{5} = \frac{9.2}{x} \quad 5.1 + 9.2 = 14.3
\]
9x = 46
\[
x \approx 5.1
\]
PTS: 2 REF: 061511geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

57 ANS: 3 PTS: 2 REF: 061616geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: graphics

58 ANS:
\[
\tan x = \frac{12}{75} \quad \tan y = \frac{72}{75} \quad 43.83 - 9.09 \approx 34.7
\]
\[
x \approx 9.09 \quad y \approx 43.83
\]
PTS: 4 REF: 081634geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

59 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D.13 TOP: Constructions

60 ANS: 2 PTS: 2 REF: 081501geo NAT: G.CO.C.11
TOP: Parallelograms

61 ANS: 2
\[
C = \pi d \quad V = \pi \left(\frac{2.25}{\pi} \right)^2 \cdot 8 \approx 12.8916 \quad W = 12.8916 \cdot 752 \approx 9694
\]
\[
4.5 = \pi d
\]
\[
\frac{4.5}{\pi} = d
\]
\[
\frac{2.25}{\pi} = r
\]
PTS: 2 REF: 081617geo NAT: G.MG.A.2 TOP: Density

62 ANS: 3 PTS: 2 REF: 081515geo NAT: G.C.A.3
TOP: Inscribed Quadrilaterals

63 ANS: 2 PTS: 2 REF: 061516geo NAT: G.SRT.A.2
TOP: Similarity
Slopes are opposite reciprocals, so lines form a right angle.

\[m_{RT} = \frac{5 - 3}{4 - 2} = \frac{8}{6} = \frac{4}{3} \quad m_{ST} = \frac{5 - 2}{4 - 8} = \frac{3}{-4} = -\frac{3}{4} \]

\[x^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16 \]

\[(x - 2)^2 + (y + 4)^2 = 9 \]

\[x = \sqrt{.55^2 - .25^2} \approx 0.49 \quad \text{No, } .49^2 = .25 \text{y} \quad .9604 + .25 < 1.5 \]

\[.9604 = y \]

\[x = (\sqrt{5})^2 = 5 \]

\[-5 + \frac{3}{5} (5 - 5) - 4 + \frac{3}{5} (1 - 4) \]

\[-5 + \frac{3}{5} (10) - 4 + \frac{3}{5} (5) \]

\[-5 + 6 - 4 + 3 \]

\[1 - 1 \]

\[(x - 1)^2 + (y + 2)^2 = 4^2 \]

\[(3.4 - 1)^2 + (1.2 + 2)^2 = 16 \]

\[5.76 + 10.24 = 16 \]

\[16 = 16 \]

\[\sin 70 = \frac{30}{L} \]

\[L \approx 32 \]
71 ANS: 3
\[A = \frac{1}{2} ab \quad 3 - 6 = -3 = x \]
\[24 = \frac{1}{2} a(8) \quad \frac{4 + 12}{2} = 8 = y \]
\[a = 6 \]

PTS: 2 REF: 081615geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

72 ANS: 3
\[\frac{60}{360} \cdot 8 \pi = \frac{1}{6} \cdot 64\pi = \frac{32\pi}{3} \]

PTS: 2 REF: 061624geo NAT: G.C.B.5 TOP: Sectors

73 ANS: 3
\[\frac{AB}{DE} = \frac{BC}{EF} \]
\[\frac{9}{15} = \frac{6}{10} \]
\[90 = 90 \]

PTS: 2 REF: 061515geo NAT: G.SRT.B.5 TOP: Similarity
 KEY: basic

74 ANS: 2
\[\frac{12}{4} = \frac{36}{x} \]
\[12x = 144 \]
\[x = 12 \]

PTS: 2 REF: 061621geo NAT: G.SRT.B.5 TOP: Side Splitter Theorem

75 ANS: 2

TOP: Sectors

76 ANS: 4
\[3 \times 6 = 18 \]

PTS: 2 REF: 061602geo NAT: G.SRT.A.1 TOP: Line Dilations

77 ANS:
\[T_{0,0} \circ R_{x-axis} \]

PTS: 2 REF: 061625geo NAT: G.CO.A.5 TOP: Compositions of Transformations
 KEY: identify

78 ANS:
A dilation of \(\frac{5}{2} \) about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo NAT: G.SRT.A.3 TOP: Similarity
79 ANS: 1
\[3^2 = 9 \]

PTS: 2 REF: 081520geo NAT: G.SRT.A.2 TOP: Similarity

80 ANS: 3
\[\frac{60}{360} \cdot 6^2 \pi = 6\pi \]

PTS: 2 REF: 081518geo NAT: G.C.B.5 TOP: Sectors

81 ANS: 1
The man’s height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation.

\[
tan(x) = \frac{69}{102} \]
\[x \approx 34.1 \]

PTS: 2 REF: fall1401geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

82 ANS:
\[
tan(52.8) = \frac{h}{x} \]
\[x \cdot tan(52.8) = x \cdot tan(34.9) + 8 \cdot tan(34.9) \]
\[x \cdot tan(52.8) - x \cdot tan(34.9) = 8 \cdot tan(34.9) \]
\[x \cdot (tan(52.8) - tan(34.9)) = 8 \cdot tan(34.9) \]
\[x = \frac{8 \cdot tan(34.9)}{tan(52.8) - tan(34.9)} \]
\[x \approx 9 \]

PTS: 6 REF: 011636geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

83 ANS: 3
\[x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9 \]
\[(x + 2)^2 + (y - 3)^2 = 25 \]

PTS: 2 REF: 081509geo NAT: G.GPE.A.1 TOP: Equations of Circles

84 ANS:
\[
\triangle MNO \text{ is congruent to } \triangle PNO \text{ by SAS. Since } \triangle MNO \cong \triangle PNO, \text{ then } \overline{MO} \cong \overline{PO} \text{ by CPCTC. So } \overline{NO} \text{ must divide } \overline{MP} \text{ in half, and } MO = 8. \]

PTS: 2 REF: fall1405geo NAT: G.SRT.B.5 TOP: Isosceles Triangles

85 ANS: 1 PTS: 2 REF: 061518geo NAT: G.SRT.A.1 TOP: Line Dilations
86 ANS:
\[
\frac{16}{9} = \frac{x}{20.6} \quad D = \sqrt{36.6^2 + 20.6^2} \approx 42
\]
\[x \approx 36.6\]

PTS: 4 REF: 011632geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem
KEY: without graphics

87 ANS:

\[
\begin{array}{c}
A \\
\hline
B \\
C
\end{array}
\]

SAS \cong SAS

PTS: 4 REF: 011634geo NAT: G.CO.D.12 TOP: Constructions

88 ANS: 3

(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C.11 TOP: Parallelograms

89 ANS:

PTS: 2 REF: 061525geo NAT: G.CO.D.13 TOP: Constructions

90 ANS: 3

PTS: 2 REF: 061601geo NAT: G.GMD.B.4
TOP: Rotations of Two-Dimensional Objects

91 ANS: 4

\[x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 9 + 4\]
\[(x + 3)^2 + (y - 2)^2 = 36\]

PTS: 2 REF: 011617geo NAT: G.GPE.A.1 TOP: Equations of Circles

92 ANS: 2

\[x \text{ is } \frac{1}{2} \text{ the circumference. } \frac{C}{2} = \frac{10\pi}{2} \approx 16\]

PTS: 2 REF: 061523geo NAT: G.GMD.A.1 TOP: Properties of Circles
93 ANS:
Parallelogram $ABCD$, EFG, and diagonal DFB (given); $\angle DEF \cong \angle BFG$ (vertical angles); $\overline{AD} \parallel \overline{CB}$ (opposite sides of a parallelogram are parallel); $\angle EDF \cong \angle GFB$ (alternate interior angles are congruent); $\triangle DEF \sim \triangle BGF$ (AA)

PTS: 4 REF: 061633geo NAT: G.SRT.B.5 TOP: Quadrilateral Proofs

94 ANS: 3
$\frac{12}{4} = \frac{x}{5}$
$15 - 4 = 11$
$x = 15$

PTS: 2 REF: 011624geo NAT: G.SRT.B.5 TOP: Similarity

95 ANS: 4
PTS: 2 REF: 061512geo NAT: G.SRT.C.7
TOP: Cofunctions

96 ANS: 1
PTS: 2 REF: 081605geo NAT: G.CO.A.5
TOP: Rotations

97 ANS:
Circle O, chords \overline{AB} and \overline{CD} intersect at E (Given); Chords \overline{CB} and \overline{AD} are drawn (auxiliary lines drawn); $\angle CEB \cong \angle AED$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent); $\triangle BCE \sim \triangle DAE$ (AA); $\frac{AE}{CE} = \frac{ED}{EB}$ (Corresponding sides of similar triangles are proportional); $AE \cdot EB = CE \cdot ED$ (The product of the means equals the product of the extremes).

PTS: 6 REF: 081635geo NAT: G.SRT.B.5 TOP: Circle Proofs

98 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B.8 TOP: Triangle Congruency

99 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. $\triangle DEF \cong \triangle ABC$ as $\overline{AC} \cong \overline{DF}$ and points are collinear on line ℓ and a reflection preserves distance.

PTS: 4 REF: 081534geo NAT: G.CO.B.8 TOP: Triangle Congruency

100 ANS: 1
PTS: 2 REF: 011601geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

101 ANS: 4
PTS: 2 REF: 061513geo NAT: G.CO.C.11
TOP: Parallelograms

102 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector \overline{AB} such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.CA.1 TOP: Properties of Circles
103 ANS:

Similar triangles are required to model and solve a proportion.

\[
\frac{x + 5}{1.5} = \frac{x}{1} \quad \frac{1}{3} \pi (1.5)^2 (15) - \frac{1}{3} \pi (1)^2 (10) \approx 24.9
\]

\[
x + 5 = 1.5x
\]

\[
5 = 0.5x
\]

\[
x = 10
\]

\[
10 + 5 = 15
\]

PTS: 6 REF: 061636geo NAT: G.MG.A.1 TOP: Volume

104 ANS:

\[
x = \frac{2}{3} (4 - 2) = 4 \quad -2 + 4 = 2 \quad J(2, 5)
\]

\[
y = \frac{2}{3} (7 - 1) = 4 \quad 1 + 4 = 5
\]

PTS: 2 REF: 011627geo NAT: G.GPE.B.6 TOP: Directed Line Segments

105 ANS: 4

\[
x = -6 + \frac{1}{6} (6 - 6) = -6 + 2 = -4
\]

\[
y = -2 + \frac{1}{6} (7 - 2) = -2 + \frac{9}{6} = -\frac{1}{2}
\]

PTS: 2 REF: 081618geo NAT: G.GPE.B.6 TOP: Directed Line Segments

106 ANS:

It is given that point \(D\) is the image of point \(A\) after a reflection in line \(CH\). It is given that \(CH\) is the perpendicular bisector of \(BCE\) at point \(C\). Since a bisector divides a segment into two congruent segments at its midpoint, \(BC \cong EC\). Point \(E\) is the image of point \(B\) after a reflection over the line \(CH\), since points \(B\) and \(E\) are equidistant from point \(C\) and it is given that \(CH\) is perpendicular to \(BE\). Point \(C\) is on \(CH\), and therefore, point \(C\) maps to itself after the reflection over \(CH\). Since all three vertices of triangle \(ABC\) map to all three vertices of triangle \(DEC\) under the same line reflection, then \(\triangle ABC \cong \triangle DEC\) because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO.B.8 TOP: Triangle Congruency
107 ANS:

\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2 REF: 061631geo NAT: G.CO.D.12 TOP: Constructions

108 ANS: 3

\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2 REF: 081608geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem

KEY: without graphics

109 ANS:

\[\sin x = \frac{4.5}{11.75} \]

\[x \approx 23 \]

PTS: 2 REF: 061528geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

KEY: basic

111 ANS: 1

\[m = \left(\frac{-11 + 5}{2}, \frac{5 + (-7)}{2} \right) = (-3, -1) \]

\[m = \frac{5 - (-7)}{-11 - 5} = \frac{12}{-16} = -\frac{3}{4} \]

\[m_\perp = \frac{4}{3} \]

PTS: 2 REF: 061612geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines

KEY: perpendicular bisector

KEY: graphics

113 ANS: 4

\[\sqrt{(32 - 8)^2 + (28 - (-4))^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40 \]

PTS: 2 REF: 081621geo NAT: G.SRT.A.1 TOP: Line Dilations

114 ANS: 4

The slope of BC is \(\frac{2}{5} \). Altitude is perpendicular, so its slope is \(\frac{5}{2} \).

PTS: 2 REF: 061614geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines

KEY: find slope of perpendicular line
115 ANS: 3 PTS: 2 REF: 081622geo NAT: C.CO.B.8
TOP: Triangle Congruency

116 ANS: 1 PTS: 2 REF: 081505geo NAT: G.CO.A.3
TOP: Mapping a Polygon onto Itself

117 ANS: 2 PTS: 2 REF: 061603geo NAT: G.GPE.A.1
TOP: Equations of Circles

118 ANS: 1
\[
\frac{4}{3} \pi \left(\frac{10}{2} \right)^3 \approx 261.8 \cdot 62.4 = 16,336
\]

PTS: 2 REF: 081516geo NAT: G.MG.A.2 TOP: Density

119 ANS: 2
The given line \(h \), \(2x + y = 1 \), does not pass through the center of dilation, the origin, because the \(y \)-intercept is at \((0,1) \). The slope of the dilated line, \(m \), will remain the same as the slope of line \(h \), 2. All points on line \(h \), such as \((0,1) \), the \(y \)-intercept, are dilated by a scale factor of 4; therefore, the \(y \)-intercept of the dilated line is \((0,4) \) because the center of dilation is the origin, resulting in the dilated line represented by the equation \(y = -2x + 4 \).

PTS: 2 REF: spr1403geo NAT: G.SRT.A.1 TOP: Line Dilations

120 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B.4
TOP: Cross-Sections of Three-Dimensional Objects

121 ANS: 1
\[
m = \frac{2}{3} - \left(\frac{2}{3} \right)6 + b
\]
\[
1 = -4 + b
\]
\[
5 = b
\]

PTS: 2 REF: 081510geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

122 ANS: 2
\[
V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144
\]

PTS: 2 REF: 011607geo NAT: G.GMD.A.3 TOP: Volume
123 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

124 ANS:

PTS: 2 REF: 081628geo NAT: G.CO.D.12 TOP: Constructions

125 ANS:
\[A = 6^2 \pi = 36\pi \quad 36\pi \cdot \frac{x}{360} = 12\pi \]
\[x = 360 \cdot \frac{12}{36} \]
\[x = 120 \]

PTS: 2 REF: 061529geo NAT: G.C.B.5 TOP: Sectors

126 ANS: 1
\[m = \frac{-A}{B} = \frac{-2}{-1} = 2 \]
\[m_\perp = -\frac{1}{2} \]

PTS: 2 REF: 061509geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

127 ANS: 4
\[\frac{7}{12} \cdot 30 = 17.5 \]

PTS: 2 REF: 061521geo NAT: G.SRT.B.5 TOP: Similarity
KEY: perimeter and area
128 ANS: 2
\[\frac{4}{3} \pi \cdot 4^3 + 0.075 \approx 20 \]

PTS: 2 REF: 011619geo NAT: G.MG.A.2 TOP: Density

129 ANS: 2
\[\sqrt{(-1 - 2)^2 + (4 - 3)^2} = \sqrt{10} \]

PTS: 2 REF: 01161geo NAT: G.GPE.B.7 TOP: Polygons in the Coordinate Plane

130 ANS:
\[\sin 75 = \frac{15}{x} \]
\[x = \frac{15}{\sin 75} \]
\[x \approx 15.5 \]

PTS: 2 REF: 081631geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

131 ANS:
Quadrilateral \(ABCD\) with diagonals \(AC\) and \(BD\) that bisect each other, and \(\angle 1 \cong \angle 2\) (given); quadrilateral \(ABCD\) is a parallelogram (the diagonals of a parallelogram bisect each other); \(AB \parallel CD\) (opposite sides of a parallelogram are parallel); \(\angle 1 \cong \angle 3\) and \(\angle 2 \cong \angle 4\) (alternate interior angles are congruent); \(\angle 2 \cong \angle 3\) and \(\angle 3 \cong \angle 4\) (substitution); \(\triangle ACD\) is an isosceles triangle (the base angles of an isosceles triangle are congruent); \(\overline{AD} \cong \overline{DC}\) (the sides of an isosceles triangle are congruent); quadrilateral \(ABCD\) is a rhombus (a rhombus has consecutive congruent sides); \(\overline{AE} \perp \overline{BE}\) (the diagonals of a rhombus are perpendicular); \(\angle BEA\) is a right angle (perpendicular lines form a right angle); \(\triangle AEB\) is a right triangle (a right triangle has a right angle).

132 ANS: 2
\[s^2 + s^2 = 7^2 \]
\[2s^2 = 49 \]
\[s^2 = 24.5 \]
\[s \approx 4.9 \]

PTS: 2 REF: 081511geo NAT: G.SRT.C.8 TOP: Pythagorean Theorem

133 ANS: 1 PTS: 2 REF: 011608geo NAT: G.CO.A.5 TOP: Compositions of Transformations KEY: identify

134 ANS: 4 PTS: 2 REF: 061501geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects

135 ANS: 1
\[\frac{1}{2} \left(\frac{4}{3} \right) \pi \cdot 5^3 \cdot 62.4 \approx 16,336 \]

PTS: 2 REF: 061620geo NAT: G.MG.A.2 TOP: Density
Since the midpoint of \overline{AB} is $(3, -2)$, the center must be either $(5, -2)$ or $(1, -2)$.

$$r = \sqrt{2^2 + 5^2} = \sqrt{29}$$

136 ANS: 1

137 ANS: 3
1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

138 ANS: 2

$$\frac{1}{1.2 \text{ oz}} \left(\frac{16 \text{ oz}}{1 \text{ lb}} \right) = \frac{13.31}{1 \text{ lb}} \left(\frac{1 \text{ g}}{3.7851} \right) \approx \frac{3.5 \text{ g}}{1 \text{ lb}}$$

139 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

140 ANS:
$$\frac{3}{8} \cdot 56 = 21$$

141 ANS: 2

142 ANS: 3

PTS: 2
REF: 081625geo
NAT: G.C.A.2
TOP: Chords, Secants and Tangents

TOP: Triangle Congruency
143 ANS: 3
\[\tan 34 = \frac{T}{20} \]
\[T \approx 13.5 \]

PTS: 2 REF: 061505geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

144 ANS: 3
\[\theta = \frac{s}{r} = \frac{2\pi}{10} = \frac{\pi}{5} \]

PTS: 2 REF: fall1404geo NAT: G.C.B.5 TOP: Arc Length

KEY: angle

145 ANS: 4 PTS: 2 REF: 061608geo NAT: G.SRT.A.2
TOP: Compositions of Transformations KEY: grids

146 ANS:
Parallelogram $ABCD$, $BE \perp CED$, $DF \perp BFC$, $CE \cong CF$ (given). $\angle BEC \cong \angle DFC$ (perpendicular lines form right angles, which are congruent). $\angle FCD \cong \angle BCE$ (reflexive property). $\triangle BEC \cong \triangle DFC$ (ASA). $BC \cong CD$ (CPCTC). $ABCD$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

147 ANS: 4 PTS: 2 REF: 061504geo NAT: G.CO.A.5
TOP: Compositions of Transformations KEY: identify

148 ANS: 3
\[\cos A = \frac{9}{14} \]
\[A \approx 50^\circ \]

PTS: 2 REF: 011616geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle

149 ANS:
\[\tan x = \frac{10}{4} \]
\[x \approx 68 \]

PTS: 2 REF: 061630geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find an Angle
150 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D.12 TOP: Constructions

151 ANS:

\[s = \theta \cdot r \quad s = \theta \cdot r \quad \text{Yes, both angles are equal.} \]

\[\pi = A \cdot 4 \quad \frac{13\pi}{8} = B \cdot 6.5 \]

\[\frac{\pi}{4} = A \quad \frac{\pi}{4} = B \]

KEY: arc length

152 ANS: 2

\[x^2 = 4 \cdot 10 \]

\[x = \sqrt{40} \]

\[x = 2\sqrt{10} \]

PTS: 2 REF: 081610geo NAT: G.SRT.B.5 TOP: Similarity

KEY: leg

153 ANS:

Since linear angles are supplementary, \(m\angle GHI = 65^\circ \). Since \(\overline{GH} \cong \overline{IH} \), \(m\angle GHI = 50^\circ \) \((180 - (65 + 65)) \). Since \(\angle EGB \cong \angle GHI \), the corresponding angles formed by the transversal and lines are congruent and \(\overline{AB} \parallel \overline{CD} \).

PTS: 4 REF: 061532geo NAT: G.CO.C.9 TOP: Lines and Angles

154 ANS:

(2) Euclid’s Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

155 ANS:
\[
\frac{6}{14} = \frac{9}{21} \quad \text{SAS}
\]
\[
126 = 126
\]
PTS: 2 REF: 081529geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic
156 ANS:
\[
4x - .07 = 2x + .01 \quad \text{Sin}A \text{ is the ratio of the opposite side and the hypotenuse while cos } B \text{ is the ratio of the adjacent}
\]
\[
2x = 0.8
\]
\[
x = 0.4
\]
\[
\text{side and the hypotenuse. The side opposite angle } A \text{ is the same side as the side adjacent to angle } B. \text{ Therefore, sin}A = \cos B.
\]
PTS: 2 REF: fall1407geo NAT: G.SRT.C.7 TOP: Cofunctions
157 ANS: 1 PTS: 2 REF: 081504geo NAT: G.SRT.C.7 TOP: Cofunctions
158 ANS: 4 PTS: 2 REF: 061606geo NAT: G.GMD.A.3 TOP: Volume
159 ANS: 2
\[
x^2 + y^2 + 6y + 9 = 7 + 9
\]
\[
x^2 + (y + 3)^2 = 16
\]
PTS: 2 REF: 061514geo NAT: G.GPE.A.1 TOP: Equations of Circles
160 ANS: 4
\[
\frac{-2 - 1}{-1 - 3} = \frac{-3}{2} \quad \frac{3 - 2}{0 - 5} = \frac{1}{-5} \quad \frac{3 - 1}{3 - 3} = \frac{2}{0} \quad \frac{2 - 2}{5 - 1} = \frac{4}{6} = \frac{2}{3}
\]
PTS: 2 REF: 081522geo NAT: G.GPE.B.4 TOP: Polygons in the Coordinate Plane
161 ANS: 4 PTS: 2 REF: 081503geo NAT: G.GMD.B.4 TOP: Rotations of Two-Dimensional Objects
162 ANS:
\[
\frac{\pi \cdot 11.25^2 \cdot 33.5}{231} \approx 57.7
\]
PTS: 2 REF: 061632geo NAT: G.MG.A.1 TOP: Volume
163 ANS: 1
The other statements are true only if \(AD \perp BC \).
PTS: 2 REF: 081623geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
164 ANS: 1
\[
\frac{6}{8} = \frac{9}{12}
\]
PTS: 2 REF: 011613geo NAT: G.SRT.B.5 TOP: Similarity KEY: basic

165 ANS:
\[
\frac{360}{6} = 60
\]
PTS: 2 REF: 081627geo NAT: G.CO.A.3 TOP: Mapping a Polygon onto Itself

166 ANS:
\[
V = \frac{1}{3} \pi \left(\frac{3}{2} \right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \quad 1885 \cdot 0.52 \cdot 0.10 = 98.02 \quad 1.95(100) - (37.83 + 98.02) = 59.15
\]
PTS: 6 REF: 081536geo NAT: G.MG.A.2 TOP: Density

167 ANS:
Opposite angles in a parallelogram are congruent, so \(m\angle O = 118^\circ \). The interior angles of a triangle equal 180°.
\[
180 - (118 + 22) = 40.
\]

PTS: 2 REF: 061526geo NAT: G.CO.C.11 TOP: Parallelograms

168 ANS:
\[
\frac{2}{5} \cdot (16 - 1) = 6 \quad \frac{2}{5} \cdot (14 - 4) = 4 \quad (1 + 6,4 + 4) = (7,8)
\]
PTS: 2 REF: 081531geo NAT: G.GPE.B.6 TOP: Directed Line Segments

169 ANS: 3 PTS: 2 REF: 081502geo NAT: G.CO.A.2 TOP: Identifying Transformations KEY: basic

170 ANS: 3 PTS: 2 REF: 011621geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents

171 ANS: 3
\[
\frac{4}{3} \left(\frac{9.5}{2} \right)^3 \approx 55
\]
\[
\frac{4}{3} \left(\frac{2.5}{2} \right)^3
\]
PTS: 2 REF: 011614geo NAT: G.MG.A.1 TOP: Volume

172 ANS: 4
\[
m = \frac{-1}{2} \quad -4 = 2(6) + b
\]
\[
m \perp = 2 \quad -4 = 12 + b
\]
\[
-16 = b
\]
PTS: 2 REF: 011602geo NAT: G.GPE.B.5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS:

\[V = \frac{1}{3} \pi \left(\frac{8.3}{2} \right)^2 (10.2) + \frac{1}{2} \cdot \frac{4}{3} \pi \left(\frac{8.3}{2} \right)^3 \approx 183.961 + 149.693 \approx 333.65 \text{ cm}^3 \]

\[333.65 \times 50 = 16682.7 \text{ cm}^3 \]

\[16682.7 \times 0.697 = 11627.8 \text{ g} \quad 11.6278 \times 3.83 = 44.53 \]

PTS: 6
REF: 081636geo
NAT: G.MG.A.2
TOP: Density

174 ANS:
\[\ell: y = 3x - 4 \]
\[m: y = 3x - 8 \]

PTS: 2
REF: 011631geo
NAT: G.SRT.A.1
TOP: Line Dilations

175 ANS: 3

176 ANS: 2
PTS: 2
REF: 011610geo
NAT: G.SRT.A.1
TOP: Line Dilations

177 ANS: 1
PTS: 2
REF: 081606geo
NAT: G.SRT.C.7
TOP: Cofunctions

178 ANS:
\[4 + \frac{4}{9} (22 - 4) = 2 + \frac{4}{9} (2 - 2) = (12, 2) \]
\[4 + \frac{4}{9} (18) = 2 + \frac{4}{9} (0) \]
\[4 + 8 = 2 + 0 \]
\[12 = 2 \]

PTS: 2
REF: 061626geo
NAT: G.GPE.B.6
TOP: Directed Line Segments

179 ANS:

PTS: 2
REF: 011625geo
NAT: G.CO.A.5
TOP: Reflections

KEY: grids
180 ANS: 4 PTS: 2 REF: 061615geo NAT: G.SRT.C.6
TOP: Trigonometric Ratios

181 ANS: 2 PTS: 2 REF: 061610geo NAT: G.CO.C.9
TOP: Chords, Secants and Tangents

182 ANS: 4 PTS: 2 REF: 081609geo NAT: G.SRT.A.2
TOP: Compositions of Transformations KEY: grids

183 ANS: 1
Alternate interior angles

PTS: 2 REF: 061517geo NAT: G.CO.C.9 TOP: Lines and Angles

184 ANS:
\[
\frac{137.8}{6} \approx 0.638 \ Ash
\]

PTS: 2 REF: 081525geo NAT: G.MG.A.2 TOP: Density

185 ANS: 2 PTS: 2 REF: 081602geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: basic

186 ANS: 4
\[
sin 70 = \frac{x}{20}
\]
\[
x \approx 18.8
\]

PTS: 2 REF: 061611geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

187 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C.9
TOP: Lines and Angles

188 ANS:
\[
tan 47 = \frac{x}{8.5}
\]
Cone: \(V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6 \) Cylinder: \(V = \pi (8.5)^2 (25) \approx 5674.5 \) Hemisphere:
\[
x \approx 9.115
\]
\[
V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3 \right) \approx 1286.3 \ 689.6 + 5674.5 + 1286.3 \approx 7650 \) No, because 7650 \cdot 62.4 = 477,360
477,360 \cdot .85 = 405,756, which is greater than 400,000.

189 ANS: 4
\[
2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5
\]
\[
230 \approx s
\]

PTS: 2 REF: 081521geo NAT: G.GMD.A.3 TOP: Volume

190 ANS: 3
\[
5 \cdot \frac{10}{4} = \frac{50}{4} = 12.5
\]

PTS: 2 REF: 081512geo NAT: G.C.A.2 TOP: Chords, Secants and Tangents
191 ANS:

PTS: 2 REF: 081626geo NAT: G.CO.A.5 TOP: Compositions of Transformations
KEY: grids

192 ANS: 3

\[V = 12 \times 8.5 \times 4 = 408 \]
\[W = 408 \times 0.25 = 102 \]

PTS: 2 REF: 061507geo NAT: G.MG.A.2 TOP: Density

193 ANS:

\[\frac{1.65}{4.15} = \frac{x}{16.6} \]
\[4.15x = 27.39 \]
\[x = 6.6 \]

PTS: 2 REF: 061531geo NAT: G.SRT.B.5 TOP: Similarity
KEY: basic

194 ANS: 4 PTS: 2 REF: 011609geo NAT: G.SRT.C.7 TOP: Cofunctions
\[\triangle XYZ, \overline{XY} \cong \overline{ZY}, \text{ and } \overline{YW} \text{ bisects } \angle XYZ \text{ (Given). } \triangle XYZ \text{ is isosceles (Definition of isosceles triangle). } \overline{YW} \text{ is an altitude of } \triangle XYZ \text{ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). } \overline{YW} \perp \overline{XZ} \text{ (Definition of altitude). } \angle YWZ \text{ is a right angle (Definition of perpendicular lines).} \]

PTS: 4
REF: spr1411geo
NAT: G.CO.C.10
TOP: Triangle Proofs

\[\begin{align*}
\tan 3.47 &= \frac{M}{6336} \\
M &\approx 384 \\
4960 + 384 &= 5344
\end{align*} \]

\[\begin{align*}
\tan 0.64 &= \frac{A}{20,493} \\
A &\approx 229 \\
5344 - 229 &= 5115
\end{align*} \]

PTS: 6
REF: fall1413geo
NAT: G.SRT.C.8
TOP: Using Trigonometry to Find a Side

\[\text{No, the weight of the bricks is greater than 900 kg. } 500 \times (5.1 \text{ cm} \times 10.2 \text{ cm} \times 20.3 \text{ cm}) = 528,003 \text{ cm}^3. \]

\[528,003 \text{ cm}^3 \times \frac{1 \text{ m}^3}{100 \text{ cm}^3} = 0.528003 \text{ m}^3. \]

\[1920 \text{ kg/m}^3 \times 0.528003 \text{ m}^3 \approx 1013 \text{ kg}. \]

PTS: 2
REF: fall1406geo
NAT: G.MG.A.2
TOP: Density

\[\begin{align*}
h^2 &= 30 \cdot 12 \\
h^2 &= 360 \\
h &= 6\sqrt{10}
\end{align*} \]

PTS: 2
REF: 061613geo
NAT: G.SRT.B.5
TOP: Similarity

KEY: altitude
\[f = \frac{15}{6} \]

\[f = 10 \]

PTS: 2 REF: 061617geo NAT: G.CO.C.9 TOP: Lines and Angles

\[\left(\frac{51}{2} \right)^2 \approx 19.6 \quad \left(\frac{75}{2} \right)^2 \approx 16.3 \quad \text{Dish } A \]

PTS: 2 REF: 011630geo NAT: G.MG.A.2 TOP: Density

\[x \approx 1051.3 \quad y \approx 77.4 \]

PTS: 4 REF: spr1409geo NAT: G.SRT.C.8 TOP: Using Trigonometry to Find a Side

The transformation is a rotation, which is a rigid motion.

PTS: 2 REF: 081530geo NAT: G.CO.B.8 TOP: Triangle Congruency

TPS: 2 REF: 061508geo NAT: G.SRT.B.5 TOP: Chords, Secants and Tangents

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C.11 TOP: Parallelograms

\[M = 180^\circ - (47^\circ + 57^\circ) = 76 \quad \text{Rotations do not change angle measurements.} \]

PTS: 2 REF: 081629geo NAT: G.CO.B.6 TOP: Properties of Transformations

\[\frac{4}{6} = \frac{3}{4.5} = \frac{2}{3} \]

PTS: 2 REF: 081523geo NAT: G.SRT.A.2 TOP: Similarity