Dear Sir

I have to acknowledge the receipt of your favor of May 14. in which you mention that you have finished the 6. first books of Euclid, plane trigonometry, surveying & algebra and ask whether I think a further pursuit of that branch of science would be useful to you. there are some propositions in the latter books of Euclid, & some of Archimedes, which are useful, & I have no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he will not resort to it for some of the purposes of common life. the science of calculation also is indispensable as far as the extraction of the square & cube roots; Algebra as far as the quadratic equation & the use of logarithms are often of value in ordinary cases: but all beyond these is but a luxury; a delicious luxury indeed; but not to be indulged in by one who is to have a profession to follow for his subsistence. in this light I view the conic sections, curves of the higher orders, perhaps even spherical trigonometry, Algebraical operations beyond the 2d dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PI: SUBTOPIC</th>
<th>QUESTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPHS AND STATISTICS</td>
<td>A 2 . S . 1 - 2 : Analysis of Data ... 1 - 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 3 : Average Known with Missing Data 6 - 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 4 : Dispersion .. 8 - 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 6 - 7 : Regression .. 11 - 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 8 : Correlation Coefficient .. 16 - 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 5 : Normal Distributions .. 19 - 23</td>
<td></td>
</tr>
<tr>
<td>PROBABILITY</td>
<td>A 2 . S . 10 : Permutations .. 24 - 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 11 : Combinations .. 28 - 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 9 : Differentiating Permutations and Combinations 32 - 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 12 : Sample Space ... 34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 13 : Geometric Probability .. 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . S . 15 : Binomial Probability .. 36 - 41</td>
<td></td>
</tr>
<tr>
<td>ABSOLUTE VALUE</td>
<td>A 2 . A . 1 : Absolute Value Equations and Equalities 42 - 45</td>
<td></td>
</tr>
<tr>
<td>QUADRATICS</td>
<td>A 2 . A . 20 - 21 : Roots of Quadratics ... 46 - 51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 7 : Factoring Polynomials .. 52 - 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 7 : Factoring the Difference of Perfect Squares 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 7 : Factoring by Grouping ... 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 25 : Quadratic Formula .. 57 - 58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 2 : Using the Discriminant .. 59 - 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 24 : Completing the Square ... 62 - 64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 4 : Quadratic Inequalities .. 65 - 67</td>
<td></td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>A 2 . A . 3 : Quadratic-Linear Systems ... 68 - 69</td>
<td></td>
</tr>
<tr>
<td>POWERS</td>
<td>A 2 . N . 3 : Operations with Polynomials ... 70 - 74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 1 , A . 8 - 9 : Negative and Fractional Exponents 75 - 81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 12 : Evaluating Exponential Expressions 82 - 84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 18 : Evaluating Logarithmic Expressions 85 - 86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 53 : Graphing Exponential Functions ... 87 - 88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 54 : Graphing Logarithmic Functions .. 89 - 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 28 : Logarithmic Equations ... 95 - 99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 6 , 27 : Exponential Equations .. 100 - 106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 36 : Binomial Expansions ... 107 - 111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 26 , 50 : Solving Polynomial Equations 112 - 117</td>
<td></td>
</tr>
<tr>
<td>RADICALS</td>
<td>A 2 . A . 13 : Simplifying Radicals .. 118 - 119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 5 , A . 15 : Rationalizing Denominators 124 - 128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . A . 10 - 11 : Exponents as Radicals ... 133 - 135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 6 : Square Roots of Negative Numbers .. 136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 7 : Imaginary Numbers .. 137 - 139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 8 : Conjugates of Complex Numbers .. 140 - 143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A 2 . N . 9 : Multiplication and Division of Complex Numbers 144</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>RATIONALS</td>
<td>A2.N.9: Multiplication and Division of Rationals</td>
<td>145-146</td>
</tr>
<tr>
<td></td>
<td>A2.A.23: Solving Rationals</td>
<td>147-148</td>
</tr>
<tr>
<td></td>
<td>A2.A.17: Complex Fractions</td>
<td>149-150</td>
</tr>
<tr>
<td></td>
<td>A2.A.5: Inverse Variation</td>
<td>151-152</td>
</tr>
<tr>
<td>FUNCTIONS</td>
<td>A2.A.40-41: Functional Notation</td>
<td>153-154</td>
</tr>
<tr>
<td></td>
<td>A2.A.52: Families of Functions</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>A2.A.46: Properties of Graphs of Functions and Relations</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>A2.A.52: Identifying the Equation of a Graph</td>
<td>157-158</td>
</tr>
<tr>
<td></td>
<td>A2.A.38, 43: Defining Functions</td>
<td>159-166</td>
</tr>
<tr>
<td></td>
<td>A2.A.39, 51: Domain and Range</td>
<td>167-172</td>
</tr>
<tr>
<td></td>
<td>A2.A.42: Compositions of Functions</td>
<td>173-177</td>
</tr>
<tr>
<td></td>
<td>A2.A.44: Inverse of Functions</td>
<td>178-179</td>
</tr>
<tr>
<td></td>
<td>A2.A.46: Transformations with Functions and Relations</td>
<td>180-181</td>
</tr>
<tr>
<td>SEQUENCES AND SERIES</td>
<td>A2.A.29-33: Sequences</td>
<td>182-191</td>
</tr>
<tr>
<td></td>
<td>A2.N.10, A.34: Sigma Notation</td>
<td>192-198</td>
</tr>
<tr>
<td></td>
<td>A2.A.35: Series</td>
<td>199-200</td>
</tr>
<tr>
<td>TRIGONOMETRY</td>
<td>A2.A.55: Trigonometric Ratios</td>
<td>201-203</td>
</tr>
<tr>
<td></td>
<td>A2.M.1-2: Radian Measure</td>
<td>204-210</td>
</tr>
<tr>
<td></td>
<td>A2.A.60: Unit Circle</td>
<td>211-213</td>
</tr>
<tr>
<td></td>
<td>A2.A.62, 66: Determining Trigonometric Functions</td>
<td>214-217</td>
</tr>
<tr>
<td></td>
<td>A2.A.64: Using Inverse Trigonometric Functions</td>
<td>218-220</td>
</tr>
<tr>
<td></td>
<td>A2.A.57: Reference Angles</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>A2.A.61: Arc Length</td>
<td>222-223</td>
</tr>
<tr>
<td></td>
<td>A2.A.58-59: Cofunction/Reciprocal Trigonometric Functions</td>
<td>224-227</td>
</tr>
<tr>
<td></td>
<td>A2.A.67: Proving Trigonometric Identities</td>
<td>228-229</td>
</tr>
<tr>
<td></td>
<td>A2.A.76: Angle Sum and Difference Identities</td>
<td>230-233</td>
</tr>
<tr>
<td></td>
<td>A2.A.77: Double and Half Angle Identities</td>
<td>234-236</td>
</tr>
<tr>
<td></td>
<td>A2.A.68: Trigonometric Equations</td>
<td>237-240</td>
</tr>
<tr>
<td></td>
<td>A2.A.69: Properties of Trigonometric Functions</td>
<td>241-242</td>
</tr>
<tr>
<td></td>
<td>A2.A.72: Identifying the Equation of a Trigonometric Graph</td>
<td>243-244</td>
</tr>
<tr>
<td></td>
<td>A2.A.65, 70-71: Graphing Trigonometric Functions</td>
<td>245-250</td>
</tr>
<tr>
<td></td>
<td>A2.A.63: Domain and Range</td>
<td>251-252</td>
</tr>
<tr>
<td></td>
<td>A2.A.74: Using Trigonometry to Find Area</td>
<td>253-257</td>
</tr>
<tr>
<td></td>
<td>A2.A.73: Law of Sines</td>
<td>258-259</td>
</tr>
<tr>
<td></td>
<td>A2.A.75: Law of Sines - The Ambiguous Case</td>
<td>260-263</td>
</tr>
<tr>
<td></td>
<td>A2.A.73: Law of Cosines</td>
<td>264-266</td>
</tr>
<tr>
<td></td>
<td>A2.A.73: Vectors</td>
<td>267-268</td>
</tr>
<tr>
<td>CONICS</td>
<td>A2.A.47, 49: Equations of Circles</td>
<td>269-273</td>
</tr>
</tbody>
</table>
1. Which task is not a component of an observational study?
 1. The researcher decides who will make up the sample.
 2. The researcher analyzes the data received from the sample.
 3. The researcher gathers data from the sample, using surveys or taking measurements.
 4. The researcher divides the sample into two groups, with one group acting as a control group.

2. A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?
 1. census
 2. survey
 3. observation
 4. controlled experiment

3. Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

4. A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?
 1. the size of the sample
 2. the size of the population
 3. the method of analyzing the data
 4. the method of choosing the students who were surveyed

5. The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey
 1. every third student sent to the office
 2. every third student to enter the library
 3. every third student to enter the gym for the basketball game
 4. every third student arriving at school in the morning

6. The number of minutes students took to complete a quiz is summarized in the table below.

<table>
<thead>
<tr>
<th>Minutes</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>5</td>
<td>3</td>
<td>x</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

If the mean number of minutes was 17, which equation could be used to calculate the value of x?

1. \(17 = \frac{119 + x}{x} \)
2. \(17 = \frac{119 + 16x}{x} \)
3. \(17 = \frac{446 + x}{26 + x} \)
4. \(17 = \frac{446 + 16x}{26 + x} \)
7 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

<table>
<thead>
<tr>
<th>Number of Pets</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>k</td>
<td>2</td>
</tr>
</tbody>
</table>

What is the value of \(k\) for this table?
1 9
2 2
3 8
4 4

A2.S.4: DISPERSION

8 The table below shows the first-quarter averages for Mr. Harper’s statistics class.

<table>
<thead>
<tr>
<th>Statistics Class Averages</th>
<th>99</th>
<th>97</th>
<th>95</th>
<th>92</th>
<th>90</th>
<th>87</th>
<th>84</th>
<th>81</th>
<th>75</th>
<th>70</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Averages Frequency</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Find the population standard deviation of these scores, to the nearest tenth.

9 The scores of one class on the Unit 2 mathematics test are shown in the table below.

<table>
<thead>
<tr>
<th>Unit 2 Mathematics Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Score</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>68</td>
</tr>
</tbody>
</table>

Determine the number of employees whose travel time is within one standard deviation of the mean.

10 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

25 55 40 65 29
45 59 35 25 37
52 30 8 40 55

Determine the number of employees whose travel time is within one standard deviation of the mean.

What is the population variance for this set of data?
1 8.2
2 8.3
3 67.3
4 69.3
11 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?
1 exponential
2 linear
3 logarithmic
4 power

12 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10-minute period.

<table>
<thead>
<tr>
<th>Time in Minutes (x)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature in °F (y)</td>
<td>180.2</td>
<td>168.8</td>
<td>146.3</td>
<td>135.4</td>
<td>127.7</td>
<td>110.5</td>
</tr>
</tbody>
</table>

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

13 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

<table>
<thead>
<tr>
<th>Time, hrs (x)</th>
<th>Number of Organisms (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>142</td>
</tr>
<tr>
<td>16</td>
<td>260</td>
</tr>
</tbody>
</table>

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.
14. The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of New Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>14</td>
</tr>
<tr>
<td>1987</td>
<td>27</td>
</tr>
<tr>
<td>1988</td>
<td>48</td>
</tr>
<tr>
<td>1989</td>
<td>80</td>
</tr>
<tr>
<td>1990</td>
<td>110</td>
</tr>
<tr>
<td>1991</td>
<td>153</td>
</tr>
<tr>
<td>1992</td>
<td>261</td>
</tr>
<tr>
<td>1993</td>
<td>403</td>
</tr>
<tr>
<td>1994</td>
<td>681</td>
</tr>
</tbody>
</table>

Using \(x = 1 \) to represent the year 1986 and \(y \) to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

15. The table below shows the results of an experiment involving the growth of bacteria.

<table>
<thead>
<tr>
<th>Time (x) (in minutes)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bacteria (y)</td>
<td>2</td>
<td>25</td>
<td>81</td>
<td>175</td>
<td>310</td>
<td>497</td>
</tr>
</tbody>
</table>

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria’s growth, to the nearest integer, after 15 minutes.

16. Which value of \(r \) represents data with a strong negative linear correlation between two variables?

1. \(-1.07\)
2. \(-0.89\)
3. \(-0.14\)
4. \(0.92\)

17. Which calculator output shows the strongest linear relationship between \(x \) and \(y \)?

* Lin Reg
 - \(y = a + bx \)
 - \(a = 59.026 \)
 - \(b = 6.767 \)
 - \(r = .8643 \)
* Lin Reg
 - \(y = a + bx \)
 - \(a = .7 \)
 - \(b = 24.2 \)
 - \(r = .8361 \)
* Lin Reg
 - \(y = a + bx \)
 - \(a = 2.45 \)
 - \(b = .95 \)
 - \(r = .6022 \)
* Lin Reg
 - \(y = a + bx \)
 - \(a = -2.9 \)
 - \(b = 24.1 \)
 - \(r = -.8924 \)
18. As shown in the table below, a person’s target heart rate during exercise changes as the person gets older.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Target Heart Rate (beats per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>135</td>
</tr>
<tr>
<td>25</td>
<td>132</td>
</tr>
<tr>
<td>30</td>
<td>129</td>
</tr>
<tr>
<td>35</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>122</td>
</tr>
<tr>
<td>45</td>
<td>119</td>
</tr>
<tr>
<td>50</td>
<td>115</td>
</tr>
</tbody>
</table>

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person’s age, in years, and that person’s target heart rate, in beats per minute?

1. -0.999
2. -0.664
3. 0.998
4. 1.503

A2.S.5: NORMAL DISTRIBUTIONS

19. The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies

1. below the 16th percentile
2. between the 50th and 84th percentiles
3. between the 16th and 50th percentiles
4. above the 84th percentile

20. If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1. 34.1%
2. 38.2%
3. 53.2%
4. 68.2%

21. An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1. 14
2. 17
3. 34
4. 48

A2.S.10: PERMUTATIONS

22. Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

23. In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20. Justify your answer.

PROBABILITY

24. A four-digit serial number is to be created from the digits 0 through 9. How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5?

1. 448
2. 504
3. 2,240
4. 2,520
25 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?

1 \(8!\)
2 \(\frac{8!}{4!}\)
3 \(\frac{8!}{2!+2!}\)
4 \(\frac{8!}{2!-2!}\)

26 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

27 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word “TENNESSEE” is greater than the number of different 7-letter arrangements of the word “VERMONT.” Is she correct? Justify your answer.

A2.S.11: COMBINATIONS

28 Ms. Bell’s mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1 210
2 3,876
3 5,040
4 93,024

29 The principal would like to assemble a committee of 8 students from the 15-member student council. How many different committees can be chosen?

1 120
2 6,435
3 32,432,400
4 259,459,200

30 If order does not matter, which selection of students would produce the most possible committees?

1 5 out of 15
2 5 out of 25
3 20 out of 25
4 15 out of 25

31 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

A2.S.9: DIFFERENTIATING BETWEEN PERMUTATIONS AND COMBINATIONS

32 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A. Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?

1 \(20!\)
2 \(\frac{20!}{3!}\)
3 \(20C_3\)
4 \(20P_3\)

33 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?

1 \(\frac{15C_2 \cdot 5C_1}{30C_3}\)
2 \(\frac{15P_2 \cdot 5P_1}{30C_3}\)
3 \(\frac{15C_2 \cdot 5C_1}{30P_3}\)
4 \(\frac{15P_2 \cdot 5P_1}{30P_3}\)
A2.S.12: SAMPLE SPACE

34 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

A2.S.13: GEOMETRIC PROBABILITY

35 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2\pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3?

1. $\frac{1}{6}$
2. $\frac{1}{3}$
3. $\frac{1}{2}$
4. $\frac{2}{3}$

A2.S.15: BINOMIAL PROBABILITY

36 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

1. $\binom{10}{6} \left(\frac{4}{5} \right)^6 \left(\frac{1}{5} \right)^4$
2. $\binom{10}{7} \left(\frac{4}{5} \right)^7 \left(\frac{1}{5} \right)^3$
3. $\binom{10}{8} \left(\frac{7}{10} \right)^8 \left(\frac{3}{10} \right)^2$
4. $\binom{10}{9} \left(\frac{7}{10} \right)^9 \left(\frac{3}{10} \right)^1$

37 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?

1. $\frac{25}{64}$
2. $\frac{45}{512}$
3. $\frac{75}{512}$
4. $\frac{225}{512}$

38 The members of a men’s club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

39 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.
40 The probability that the Stormville Sluggers will win a baseball game is \(\frac{2}{3}\). Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

41 The probability that a professional baseball player will get a hit is \(\frac{1}{3}\). Calculate the exact probability that he will get at least 3 hits in 5 attempts.

ABSOLUTE VALUE

A2.A.1: ABSOLUTE VALUE EQUATIONS AND INEQUALITIES

42 What is the solution set of the equation \(|4a + 6| - 4a = -10|\)?

- 1 \(\emptyset\)
- 2 \(\{0\}\)
- 3 \(\left\{\frac{1}{2}\right\}\)
- 4 \(\left\{0, \frac{1}{2}\right\}\)

43 Which graph represents the solution set of \(|6x - 7| \leq 5|\)?

- 1
- 2
- 3
- 4

44 Which graph represents the solution set of \(\frac{4x - 5}{3} > 1|\)?

- 1
- 2
- 3
- 4

45 Graph the inequality \(-3|6 - x| < -15\) for \(x\). Graph the solution on the line below.

QUADRATICS

A2.A.20-21: ROOTS OF QUADRATICS

46 What are the sum and product of the roots of the equation \(6x^2 - 4x - 12 = 0|\)?

- 1 sum = \(-\frac{2}{3}\); product = \(-2\)
- 2 sum = \(\frac{2}{3}\); product = \(-2\)
- 3 sum = \(-2\); product = \(\frac{2}{3}\)
- 4 sum = \(-2\); product = \(-\frac{2}{3}\)

47 Find the sum and product of the roots of the equation \(5x^2 + 11x - 3 = 0|\).

48 For which equation does the sum of the roots equal \(-3|\) and the product of the roots equal \(2|\)?

- 1 \(x^2 + 2x - 3 = 0\)
- 2 \(x^2 - 3x + 2 = 0\)
- 3 \(2x^2 + 6x + 4 = 0\)
- 4 \(2x^2 - 6x + 4 = 0\)

49 For which equation does the sum of the roots equal \(\frac{3}{4}\) and the product of the roots equal \(-2|\)?

- 1 \(4x^2 - 8x + 3 = 0\)
- 2 \(4x^2 + 8x + 3 = 0\)
- 3 \(4x^2 - 3x - 8 = 0\)
- 4 \(4x^2 + 3x - 2 = 0\)
50 Which equation has roots with the sum equal to \(\frac{9}{4} \) and the product equal to \(\frac{3}{4} \)?

1. \(4x^2 + 9x + 3 = 0 \)
2. \(4x^2 + 9x - 3 = 0 \)
3. \(4x^2 - 9x + 3 = 0 \)
4. \(4x^2 - 9x - 3 = 0 \)

51 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is \(-27\).

A2.A.7: FACTORING POLYNOMIALS

52 Factored completely, the expression \(6x - x^3 - x^2 \) is equivalent to

1. \(x(x + 3)(x - 2) \)
2. \(x(x - 3)(x + 2) \)
3. \(-x(x - 3)(x + 2) \)
4. \(-x(x + 3)(x - 2) \)

53 Factored completely, the expression \(12x^4 + 10x^3 - 12x^2 \) is equivalent to

1. \(x^2(4x + 6)(3x - 2) \)
2. \(2(2x^2 + 3x)(3x^2 - 2x) \)
3. \(2x^2(2x - 3)(3x + 2) \)
4. \(2x^2(2x + 3)(3x - 2) \)

54 Factor completely: \(10ax^2 - 23ax - 5a \)

A2.A.7: FACTORING THE DIFFERENCE OF PERFECT SQUARES

55 Factor the expression \(12t^8 - 75t^4 \) completely.

A2.A.7: FACTORING BY GROUPING

56 When factored completely, \(x^3 + 3x^2 - 4x - 12 \) equals

1. \((x + 2)(x - 2)(x - 3) \)
2. \((x + 2)(x - 2)(x + 3) \)
3. \((x^2 - 4)(x + 3) \)
4. \((x^2 - 4)(x - 3) \)

A2.A.25: QUADRATIC FORMULA

57 The roots of the equation \(2x^2 + 7x - 3 = 0 \) are

1. \(\frac{1}{2} \) and \(-3\)
2. \(\frac{1}{2} \) and \(3\)
3. \(\frac{-7 \pm \sqrt{73}}{4} \)
4. \(\frac{7 \pm \sqrt{73}}{4} \)

58 The solutions of the equation \(y^2 - 3y = 9 \) are

1. \(\frac{3 \pm 3i\sqrt{3}}{2} \)
2. \(\frac{3 \pm 3i\sqrt{4}}{2} \)
3. \(\frac{-3 \pm 3\sqrt{5}}{2} \)
4. \(\frac{3 \pm 3\sqrt{5}}{2} \)

A2.A.2: USING THE DISCRIMINANT

59 The roots of the equation \(x^2 - 10x + 25 = 0 \) are

1. imaginary
2. real and irrational
3. real, rational, and equal
4. real, rational, and unequal

60 The roots of the equation \(9x^2 + 3x - 4 = 0 \) are

1. imaginary
2. real, rational, and equal
3. real, rational, and unequal
4. real, irrational, and unequal

61 Use the discriminant to determine all values of \(k \) that would result in the equation \(x^2 - kx + 4 = 0 \) having equal roots.
A2.A.24: COMPLETING THE SQUARE

62 Brian correctly used a method of completing the square to solve the equation \(x^2 + 7x - 11 = 0 \). Brian's first step was to rewrite the equation as \(x^2 + 7x = 11 \). He then added a number to both sides of the equation. Which number did he add?

1 \(\frac{7}{2} \)
2 \(\frac{49}{4} \)
3 \(\frac{49}{2} \)
4 49

63 If \(x^2 + 2 = 6x \) is solved by completing the square, an intermediate step would be

1 \((x + 3)^2 = 7\)
2 \((x - 3)^2 = 7\)
3 \((x - 3)^2 = 11\)
4 \((x - 6)^2 = 34\)

64 Solve \(2x^2 - 12x + 4 = 0 \) by completing the square, expressing the result in simplest radical form.

A2.A.4: QUADRATIC INEQUALITIES

65 Which graph best represents the inequality \(y + 6 \geq x^2 - x \)?

1
2
3
4
66 The solution set of the inequality \(x^2 - 3x > 10 \) is
1 \{x | -2 < x < 5\}
2 \{x | 0 < x < 3\}
3 \{x | x <= -2 or x > 5\}
4 \{x | x <= -5 or x > 2\}

67 Find the solution of the inequality \(x^2 - 4x > 5 \), algebraically.

SYSTEMS

A2.A.3: QUADRATIC-LINEAR SYSTEMS

68 Which values of \(x \) are in the solution set of the following system of equations?

\[
\begin{align*}
y &= 3x - 6 \\
y &= x^2 - x - 6
\end{align*}
\]
1 0, -4
2 0, 4
3 -6, -2
4 -6, 2

69 Solve the following systems of equations algebraically:

\[
\begin{align*}
5 &= y - x \\
4x^2 &= -17x + y + 4
\end{align*}
\]

POWERS

A2.N.3: OPERATIONS WITH POLYNOMIALS

70 When \(\frac{3}{2} x^2 - \frac{1}{4} x - 4 \) is subtracted from \(\frac{5}{2} x^2 - \frac{3}{4} x + 1 \), the difference is
1 \(-x^2 + \frac{1}{2} x - 5\)
2 \(x^2 - \frac{1}{2} x + 5\)
3 \(-x^2 - x - 3\)
4 \(x^2 - x - 3\)

71 What is the product of \(\left(\frac{x}{4} - \frac{1}{3} \right) \) and \(\left(\frac{x}{4} + \frac{1}{3} \right) \)?
1 \(\frac{x^2}{8} - \frac{1}{9} \)
2 \(\frac{x^2}{16} - \frac{1}{9} \)
3 \(\frac{x^2}{8} - \frac{x}{6} - \frac{1}{9} \)
4 \(\frac{x^2}{16} - \frac{x}{6} - \frac{1}{9} \)

72 What is the product of \(\left(\frac{2}{5} x - \frac{3}{4} y^2 \right) \) and \(\left(\frac{2}{5} x + \frac{3}{4} y^2 \right) \)?
1 \(\frac{4}{25} x^2 - \frac{9}{16} y^4 \)
2 \(\frac{4}{25} x - \frac{9}{16} y^2 \)
3 \(\frac{2}{5} x^2 - \frac{3}{4} y^4 \)
4 \(\frac{4}{5} x \)

73 Express \(\left(\frac{2}{3} x - 1 \right)^2 \) as a trinomial.

74 Express the product of \(\left(\frac{1}{2} y^2 - \frac{1}{3} y \right) \) and \(\left(12y + \frac{3}{5} \right) \) as a trinomial.

A2.N.1, A.8-9: NEGATIVE AND FRACTIONAL EXPONENTS

75 If \(a = 3 \) and \(b = -2 \), what is the value of the expression \(\frac{a^{-2}}{b^{-3}} \)?
1 \(\frac{9}{8} \)
2 \(-1 \)
3 \(\frac{8}{9} \)
4 \(\frac{8}{9} \)
76 When simplified, the expression \(\frac{w^{-5}}{w^{-9}}^{\frac{1}{2}} \) is equivalent to

1. \(w^{-7} \)
2. \(w^2 \)
3. \(w^7 \)
4. \(w^{14} \)

77 The expression \(\frac{a^2 b^{-3}}{a^4 b^2} \) is equivalent to

1. \(\frac{a^6}{b^5} \)
2. \(\frac{b^5}{a^6} \)
3. \(\frac{a^2}{b} \)
4. \(a^{-2} b^{-1} \)

78 Which expression is equivalent to \(\frac{x^{-1} y^4}{3x^5 y^{-1}} \)?

1. \(\frac{x^4 y^5}{3} \)
2. \(\frac{x^5 y^4}{3} \)
3. \(3x^4 y^5 \)
4. \(\frac{y^4}{3x^5} \)

79 Simplify the expression \(\frac{3x^{-4} y^5}{(2x^3 y^{-7})^{-2}} \) and write the answer using only positive exponents.

80 When \(x^{-1} - 1 \) is divided by \(x - 1 \), the quotient is

1. \(-1 \)
2. \(\frac{1}{x} \)
3. \(\frac{1}{x^2} \)
4. \(\frac{1}{(x - 1)^2} \)

81 When \(x^{-1} + 1 \) is divided by \(x + 1 \), the quotient equals

1. \(1 \)
2. \(\frac{1}{x} \)
3. \(x \)
4. \(\frac{1}{x} \)

A2.A.12: EVALUATING EXPONENTIAL EXPRESSIONS

82 Evaluate \(e^{x \ln y} \) when \(x = 3 \) and \(y = 2 \).

83 The formula for continuously compounded interest is \(A = Pe^{rt} \), where \(A \) is the amount of money in the account, \(P \) is the initial investment, \(r \) is the interest rate, and \(t \) is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if \$750 is invested at an annual rate of 3%.

84 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula \(V = Pe^{rt} \), where \(V \) is the value of the account in \(t \) years, \(P \) is the principal initially invested, \(e \) is the base of a natural logarithm, and \(r \) is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

A2.A.18: EVALUATING LOGARITHMIC EXPRESSIONS

85 The expression \(\log_8 64 \) is equivalent to

1. \(8 \)
2. \(2 \)
3. \(\frac{1}{2} \)
4. \(\frac{1}{8} \)
86 The expression $\log_5 \left(\frac{1}{25} \right)$ is equivalent to

1. $\frac{1}{2}$
2. 2
3. $-\frac{1}{2}$
4. -2

A2.A.53: GRAPHING EXPONENTIAL FUNCTIONS

87 The graph of the equation $y = \left(\frac{1}{2} \right)^x$ has an asymptote. On the grid below, sketch the graph of $y = \left(\frac{1}{2} \right)^x$ and write the equation of this asymptote.

88 On the axes below, for $-2 \leq x \leq 2$, graph $y = 2^{x+1} - 3$.
89 Which graph represents the function $\log_2 x = y$?

90 If a function is defined by the equation $f(x) = 4^x$, which graph represents the inverse of this function?
A2.A.19: PROPERTIES OF LOGARITHMS

91 The expression $2 \log x - (3 \log y + \log z)$ is equivalent to
1. $\log \frac{x^2}{y^3z}$
2. $\log \frac{x^2z}{y^3}$
3. $\log \frac{2x}{3yz}$
4. $\log \frac{2xz}{3y}$

92 If $r = \sqrt[3]{\frac{A^2B}{C}}$, then $\log r$ can be represented by
1. $\frac{1}{6} \log A + \frac{1}{3} \log B - \log C$
2. $3(\log A^2 + \log B - \log C)$
3. $\frac{1}{3} \log(A^2 + B) - C$
4. $\frac{2}{3} \log A + \frac{1}{3} \log B - \frac{1}{3} \log C$

93 If $\log x^2 - \log 2a = \log 3a$, then $\log x$ expressed in terms of $\log a$ is equivalent to
1. $\frac{1}{2} \log 5a$
2. $\frac{1}{2} \log 6 + \log a$
3. $\log 6 + \log a$
4. $\log 6 + 2 \log a$

94 If $\log_b x = 3 \log_b p - \left(2 \log_b t + \frac{1}{2} \log_b r\right)$, then the value of x is
1. $\frac{p^3}{\sqrt{t^2 r}}$
2. $p^3 \frac{1}{t^2 r^2}$
3. $p^3 \frac{r}{t^2}$
4. $\frac{p^3}{t^2 \sqrt{r}}$

A2.A.28: LOGARITHMIC EQUATIONS

95 What is the value of x in the equation $\log_5 x = 4$?
1. 116
2. 20
3. 625
4. 1,024

96 What is the solution of the equation $2 \log_4 (5x) = 3$?
1. 6.4
2. 2.56
3. $\frac{9}{5}$
4. $\frac{8}{5}$

97 If $\log_4 x = 2.5$ and $\log_3 125 = \frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

98 Solve algebraically for x: $\log_{x+3} \left(\frac{x^3 + x - 2}{x}\right) = 2$
99 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_0 is the temperature of the room and k is a constant.

$$\ln(T - T_0) = -kt + 4.718$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

A2.A.6, 27: EXPONENTIAL EQUATIONS

100 A population of rabbits doubles every 60 days according to the formula $P = 10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320?

1. 240
2. 300
3. 660
4. 960

101 Akeem invests $25,000 in an account that pays 4.75% annual interest compounded continuously. Using the formula $A = Pe^{rt}$, where A is the amount in the account after t years, P is principal invested, and r is the annual interest rate, how many years, to the nearest tenth, will it take for Akeem’s investment to triple?

1. 10.0
2. 14.6
3. 23.1
4. 24.0

102 What is the value of x in the equation $9^{3x+1} = 27^{x+2}$?

1. 1
2. $\frac{1}{3}$
3. $\frac{1}{2}$
4. $\frac{4}{3}$

103 The value of x in the equation $4^{2x+5} = 8^{3x}$ is

1. 1
2. 2
3. 5
4. -10

104 The solution set of $4x^2 + 4x = 2^{-6}$ is

1. $\{1, 3\}$
2. $\{-1, 3\}$
3. $\{-1, -3\}$
4. $\{1, -3\}$

105 Solve algebraically for x: $16^{2x+3} = 64^{x+2}$

106 Solve algebraically for all values of x: $81^{x^2 + 2x} = 27^{\frac{5x}{3}}$

A2.A.36: BINOMIAL EXPANSIONS

107 What is the fourth term in the expansion of $(3x - 2)^5$?

1. $-720x^2$
2. $-240x$
3. $720x^2$
4. $1,080x^3$

108 What is the coefficient of the fourth term in the expansion of $(a - 4b)^9$?

1. $-5,376$
2. -336
3. 336
4. $5,376$
109 Which expression represents the third term in the expansion of \((2x^4 - y)^3\)?

1. \(-y^3\)
2. \(-6x^4y^2\)
3. \(6x^4y^2\)
4. \(2x^2y^2\)

110 What is the middle term in the expansion of \(\left(\frac{x}{2} - 2y\right)^6\)?

1. \(20x^3y^3\)
2. \(\frac{15}{4}x^4y^2\)
3. \(-20x^3y^3\)
4. \(\frac{15}{4}x^4y^2\)

111 Write the binomial expansion of \((2x - 1)^5\) as a polynomial in simplest form.

A2.A.26, 50: SOLVING POLYNOMIAL EQUATIONS

112 What is the solution set of the equation \(3x^5 - 48x = 0\)?

1. \(\{0, \pm 2\}\)
2. \(\{0, \pm 2, 3\}\)
3. \(\{0, \pm 2, \pm 2i\}\)
4. \(\{\pm 2, \pm 2i\}\)

113 Which values of \(x\) are solutions of the equation \(x^3 + x^2 - 2x = 0\)?

1. \(0, 1, 2\)
2. \(0, 1, -2\)
3. \(0, -1, 2\)
4. \(0, -1, -2\)

114 Solve the equation \(8x^3 + 4x^2 - 18x - 9 = 0\) algebraically for all values of \(x\).

115 The graph of \(y = f(x)\) is shown below.

Which set lists all the real solutions of \(f(x) = 0\)?

1. \(\{-3, 2\}\)
2. \(\{-2, 3\}\)
3. \(\{-3, 0, 2\}\)
4. \(\{-2, 0, 3\}\)
116 The graph of \(y = x^3 - 4x^2 + x + 6 \) is shown below.

What is the product of the roots of the equation \(x^3 - 4x^2 + x + 6 = 0 \)?

1. -36
2. -6
3. 6
4. 4

117 How many negative solutions to the equation \(2x^3 - 4x^2 + 3x - 1 = 0 \) exist?

1. 1
2. 2
3. 3
4. 0

RADICALS
A2.A.13: SIMPLIFYING RADICALS

118 The expression \(\sqrt[3]{64a^{16}} \) is equivalent to

1. \(8a^4 \)
2. \(8a^8 \)
3. \(4a^5 \sqrt[3]{a} \)
4. \(4a^{\frac{3}{2}} \sqrt[3]{a^5} \)

119 Express in simplest form: \(\sqrt[3]{\frac{a^6b^9}{-64}} \)

A2.N.2, A.14: OPERATIONS WITH RADICALS

120 The product of \((3 + \sqrt{5})\) and \((3 - \sqrt{5})\) is

1. \(4 - 6\sqrt{5} \)
2. \(14 - 6\sqrt{5} \)
3. \(14 \)
4. \(4 \)

121 Express \(5\sqrt{3x^3} - 2\sqrt{27x^3} \) in simplest radical form.

122 The expression \(4ab\sqrt{2b} - 3a\sqrt{18b^3} + 7ab\sqrt{6b} \) is equivalent to

1. \(2ab\sqrt{6b} \)
2. \(16ab\sqrt{2b} \)
3. \(-5ab + 7ab\sqrt{6b} \)
4. \(-5ab\sqrt{2b} + 7ab\sqrt{6b} \)

123 Express \(\frac{\sqrt{108x^5}y^8}{\sqrt{6xy^5}} \) in simplest radical form.

A2.N.5, A.15: RATIONALIZING DENOMINATORS

124 The expression \(\frac{4}{5 - \sqrt{13}} \) is equivalent to

1. \(\frac{4\sqrt{13}}{5\sqrt{13} - 13} \)
2. \(\frac{4(5 - \sqrt{13})}{38} \)
3. \(\frac{5 + \sqrt{13}}{3} \)
4. \(\frac{4(5 + \sqrt{13})}{38} \)
125 Which expression is equivalent to \(\frac{\sqrt{3} + 5}{\sqrt{3} - 5} \)?

1 \(\frac{14 + 5\sqrt{3}}{11} \)
2 \(\frac{17 + 5\sqrt{3}}{11} \)
3 \(\frac{14 + 5\sqrt{3}}{14} \)
4 \(\frac{17 + 5\sqrt{3}}{14} \)

126 Express \(\frac{5}{3 - \sqrt{2}} \) with a rational denominator, in simplest radical form.

127 The fraction \(\frac{3}{\sqrt{3a^2b}} \) is equivalent to

1 \(\frac{1}{a\sqrt{b}} \)
2 \(\frac{\sqrt{b}}{ab} \)
3 \(\frac{\sqrt{3b}}{ab} \)
4 \(\frac{\sqrt{3}}{a} \)

128 The expression \(\frac{2x + 4}{\sqrt{x + 2}} \) is equivalent to

1 \(\frac{(2x + 4)\sqrt{x - 2}}{x - 2} \)
2 \(\frac{(2x + 4)\sqrt{x - 2}}{x - 4} \)
3 \(2\sqrt{x - 2} \)
4 \(2\sqrt{x + 2} \)

129 The solution set of the equation \(\sqrt{x + 3} = 3 - x \) is

1 \{1\}
2 \{0\}
3 \{1, 6\}
4 \{2, 3\}

130 The solution set of \(\sqrt{3x + 16} = x + 2 \) is

1 \{-3, 4\}
2 \{-4, 3\}
3 \{3\}
4 \{-4\}

131 What is the solution set for the equation \(\sqrt{5x + 29} = x + 3 \)?

1 \{4\}
2 \{-5\}
3 \{4, 5\}
4 \{-5, 4\}

132 Solve algebraically for \(x \): \(4 - \sqrt{2x - 5} = 1 \)

133 The expression \(x^{\frac{2}{5}} \) is equivalent to

1 \(\frac{3}{x^{5}} \)
2 \(\frac{5}{x^{2}} \)
3 \(\frac{1}{2x^{5}} \)
4 \(\frac{1}{5x^{2}} \)
134. The expression \((x^2 - 1)^{\frac{2}{3}}\) is equivalent to

1. \(\frac{2}{3}(x^2 - 1)^{\frac{2}{3}}\)
2. \(\frac{1}{3(x^2 - 1)^{\frac{2}{3}}}\)
3. \(\frac{1}{\sqrt[3]{x^2 - 1}}\)
4. \(\frac{1}{\sqrt[3]{(x^2 - 1)^3}}\)

A2.N.6: SQUARE ROOTS OF NEGATIVE NUMBERS

135. The expression \(\sqrt[3]{16x^2y^7}\) is equivalent to

1. \(2x^{\frac{3}{2}}y^{\frac{7}{2}}\)
2. \(2x^8y^{28}\)
3. \(4x^y y^{\frac{7}{4}}\)
4. \(4x^8y^{28}\)

A2.N.7: IMAGINARY NUMBERS

136. In simplest form, \(\sqrt{-300}\) is equivalent to

1. \(3i\sqrt{10}\)
2. \(5i\sqrt{12}\)
3. \(10i\sqrt{3}\)
4. \(12i\sqrt{5}\)

A2.N.8: CONJUGATES OF COMPLEX NUMBERS

140. What is the conjugate of \(-2 + 3i\)?

1. \(-3 + 2i\)
2. \(-2 - 3i\)
3. \(2 - 3i\)
4. \(3 + 2i\)

141. The conjugate of \(7 - 5i\) is

1. \(-7 - 5i\)
2. \(-7 + 5i\)
3. \(7 - 5i\)
4. \(7 + 5i\)

142. What is the conjugate of \(\frac{1}{2} + \frac{3}{2}i\)?

1. \(-\frac{1}{2} + \frac{3}{2}i\)
2. \(\frac{1}{2} - \frac{3}{2}i\)
3. \(\frac{3}{2} + \frac{1}{2}i\)
4. \(-\frac{1}{2} + \frac{3}{2}i\)

143. The conjugate of the complex expression \(-5x + 4i\) is

1. \(5x - 4i\)
2. \(5x + 4i\)
3. \(-5x - 4i\)
4. \(-5x + 4i\)

A2.N.9: MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS

144. The expression \((3 - 7i)^2\) is equivalent to

1. \(-40 + 0i\)
2. \(-40 - 42i\)
3. \(58 + 0i\)
4. \(58 - 42i\)

137. The product of \(i^7\) and \(i^5\) is equivalent to

1. 1
2. \(-1\)
3. \(i\)
4. \(-i\)

138. The expression \(2i^2 + 3i^3\) is equivalent to

1. \(-2 - 3i\)
2. \(2 - 3i\)
3. \(-2 + 3i\)
4. \(2 + 3i\)

139. Determine the value of \(n\) in simplest form:

\[i^{13} + i^{18} + i^{31} + n = 0\]
RATIONALS
A2.A.16: MULTIPLICATION AND DIVISION OF RATIONALS

145 Express in simplest form:
\[
\frac{4-x^2}{x^2+7x+12} \div \frac{2x-4}{x+3}
\]

146 Perform the indicated operations and simplify completely:
\[
\frac{x^3 - 3x^2 + 6x - 18}{x^2 - 4} \cdot \frac{2x - 4}{x^4 - 3x^3 + x^2 + 2x - 8} \div \frac{x^2 + 2x - 8}{16 - x^2}
\]

A2.A.23: SOLVING RATIONALS

147 Solve for \(x\):
\[
\frac{4x}{x - 3} = 2 + \frac{12}{x - 3}
\]

148 Solve algebraically for \(x\):
\[
\frac{1}{x + 3} - \frac{2}{3 - x} = \frac{4}{x^2 - 9}
\]

A2.A.17: COMPLEX FRACTIONS

149 Written in simplest form, the expression \(\frac{x}{4 - x} \div \frac{1}{2x + 1}\) is equivalent to
1. \(x - 1\)
2. \(x - 2\)
3. \(\frac{x - 2}{2}\)
4. \(\frac{x^2 - 4}{x + 2}\)

150 Express in simplest form:
\[
\frac{1}{d} - \frac{4}{2d} \div \frac{1}{d} + \frac{3}{2d}
\]

A2.A.5: INVERSE VARIATION

151 If \(p\) varies inversely as \(q\), and \(p = 10\) when \(q = \frac{3}{2}\), what is the value of \(p\) when \(q = \frac{3}{5}\)?
1. 25
2. 15
3. 9
4. 4

152 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6. For this set of rectangles, calculate the width of a rectangle whose length is 9.

FUNCTIONS
A2.A.40-41: FUNCTIONAL NOTATION

153 The equation \(y - 2\sin \theta = 3\) may be rewritten as
1. \(f(y) = 2\sin x + 3\)
2. \(f(y) = 2\sin \theta + 3\)
3. \(f(x) = 2\sin \theta + 3\)
4. \(f(\theta) = 2\sin \theta + 3\)

154 If \(f(x) = \frac{x}{x^2 - 16}\), what is the value of \(f(-10)\)?
1. \(-\frac{5}{2}\)
2. \(\frac{5}{42}\)
3. \(\frac{5}{58}\)
4. \(\frac{5}{18}\)
A2.A.52: FAMILIES OF FUNCTIONS

155 On January 1, a share of a certain stock cost $180. Each month thereafter, the cost of a share of this stock decreased by one-third. If \(x \) represents the time, in months, and \(y \) represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?

A2.A.52: PROPERTIES OF GRAPHS OF FUNCTIONS AND RELATIONS

156 Which statement about the graph of the equation \(y = e^x \) is not true?
1. It is asymptotic to the \(x \)-axis.
2. The domain is the set of all real numbers.
3. It lies in Quadrants I and II.
4. It passes through the point \((e, 1)\).

A2.A.52: IDENTIFYING THE EQUATION OF A GRAPH

157 Four points on the graph of the function \(f(x) \) are shown below.
\{(0,1),(1,2),(2,4),(3,8)\}
Which equation represents \(f(x) \)?
1. \(f(x) = 2^x \)
2. \(f(x) = 2x \)
3. \(f(x) = x + 1 \)
4. \(f(x) = \log_2 x \)

158 Which equation is represented by the graph below?

\[\begin{align*}
1 & \quad y = 5^x \\
2 & \quad y = 0.5^x \\
3 & \quad y = 5^{-x} \\
4 & \quad y = 0.5^{-x}
\end{align*} \]
A2.A.38, 43: DEFINING FUNCTIONS

159 Which graph does not represent a function?

160 Which graph does not represent a function?
161 Which graph represents a relation that is not a function?

162 Which relation is not a function?
1. $(x - 2)^2 + y^2 = 4$
2. $x^2 + 4x + y = 4$
3. $x + y = 4$
4. $xy = 4$

163 Which graph represents a one-to-one function?

164 Which function is not one-to-one?
1. $\{(0,1),(1,2),(2,3),(3,4)\}$
2. $\{(0,0),(1,1),(2,2),(3,3)\}$
3. $\{(0,1),(1,0),(2,3),(3,2)\}$
4. $\{(0,1),(1,0),(2,0),(3,2)\}$

165 Which function is one-to-one?
1. $f(x) = |x|$
2. $f(x) = 2^x$
3. $f(x) = x^2$
4. $f(x) = \sin x$
166 Which function is one-to-one?
1 k(x) = x^2 + 2
2 g(x) = x^3 + 2
3 f(x) = |x| + 2
4 j(x) = x^4 + 2

A2.A.39, 51: DOMAIN AND RANGE

167 What is the domain of the function
\[f(x) = \sqrt{x - 2} + 3? \]
1 (−∞, ∞)
2 (2, ∞)
3 [2, ∞)
4 [3, ∞)

168 What is the range of \(f(x) = (x + 4)^2 + 7? \)
1 \(y \geq -4 \)
2 \(y \geq 4 \)
3 \(y = 7 \)
4 \(y \geq 7 \)

169 What is the range of \(f(x) = |x - 3| + 2? \)
1 \(\{x \mid x \geq 3\} \)
2 \(\{y \mid y \geq 2\} \)
3 \(\{x \mid x \in \text{real numbers}\} \)
4 \(\{y \mid y \in \text{real numbers}\} \)

170 What is the domain of the function shown below?

1 \(-1 \leq x \leq 6\)
2 \(-1 \leq y \leq 6\)
3 \(-2 \leq x \leq 5\)
4 \(-2 \leq y \leq 5\)

171 What are the domain and the range of the function shown in the graph below?

1 \(\{x \mid x > -4\}; \{y \mid y > 2\} \)
2 \(\{x \mid x \geq -4\}; \{y \mid y \geq 2\} \)
3 \(\{x \mid x > 2\}; \{y \mid y > -4\} \)
4 \(\{x \mid x \geq 2\}; \{y \mid y \geq -4\} \)
172 The graph below represents the function \(y = f(x) \).

State the domain and range of this function.

A2.A.42: COMPOSITIONS OF FUNCTIONS

173 If \(f(x) = \frac{1}{2} x - 3 \) and \(g(x) = 2x + 5 \), what is the value of \((g \circ f)(4)\)?

1. 13
2. 3
3. 6

174 If \(f(x) = x^2 - 5 \) and \(g(x) = 6x \), then \(g(f(x)) \) is equal to

1. \(6x^3 - 30x \)
2. \(6x^2 - 30 \)
3. \(36x^2 - 5 \)
4. \(x^2 + 6x - 5 \)

175 If \(f(x) = 4x - x^2 \) and \(g(x) = \frac{1}{x} \), then \((f \circ g) \left(\frac{1}{2} \right) \) is equal to

1. \(\frac{4}{7} \)
2. \(-2 \)
3. \(\frac{7}{2} \)
4. 4

176 Which expression is equivalent to \((n \circ m \circ p)(x)\), given \(m(x) = \sin x \), \(n(x) = 3x \), and \(p(x) = x^2 \)?

1. \(\sin(3x)^2 \)
2. \(3 \sin x^2 \)
3. \(\sin^2(3x) \)
4. \(3 \sin^2 x \)

177 If \(f(x) = x^2 - 6 \) and \(g(x) = 2^x - 1 \), determine the value of \((g \circ f)(-3)\).

A2.A.44: INVERSE OF FUNCTIONS

178 Which two functions are inverse functions of each other?

1. \(f(x) = \sin x \) and \(g(x) = \cos x \)
2. \(f(x) = 3 + 8x \) and \(g(x) = 3 - 8x \)
3. \(f(x) = e^x \) and \(g(x) = \ln x \)
4. \(f(x) = 2x - 4 \) and \(g(x) = -\frac{1}{2}x + 4 \)

179 If \(f(x) = x^2 - 6 \), find \(f^{-1}(x) \).
180 The graph below shows the function \(f(x) \).

Which graph represents the function \(f(x + 2) \)?

181 The minimum point on the graph of the equation \(y = f(x) \) is \((-1, -3)\). What is the minimum point on the graph of the equation \(y = f(x) + 5 \)?

1 \((-1, 2)\)
2 \((-1, -8)\)
3 \((4, -3)\)
4 \((-6, -3)\)

182 What is a formula for the \(n \)th term of sequence \(B \) shown below?

\[
B = 10, 12, 14, 16, \ldots
\]

1 \(b_n = 8 + 2n \)
2 \(b_n = 10 + 2n \)
3 \(b_n = 10(2)^n \)
4 \(b_n = 10(2)^{n-1} \)

183 A sequence has the following terms: \(a_1 = 4, a_2 = 10, a_3 = 25, a_4 = 62.5 \). Which formula represents the \(n \)th term in the sequence?

1 \(a_n = 4 + 2.5n \)
2 \(a_n = 4 + 2.5(n - 1) \)
3 \(a_n = 4(2.5)^n \)
4 \(a_n = 4(2.5)^{n-1} \)

184 What is the formula for the \(n \)th term of the sequence 54, 18, 6, \ldots?

1 \(a_n = 6 \left(\frac{1}{3} \right)^n \)
2 \(a_n = 6 \left(\frac{1}{3} \right)^{n-1} \)
3 \(a_n = 54 \left(\frac{1}{3} \right)^n \)
4 \(a_n = 54 \left(\frac{1}{3} \right)^{n-1} \)
185 What is the common difference of the arithmetic sequence 5, 8, 11, 14?
1 \(\frac{8}{5} \)
2 \(-3\)
3 \(3\)
4 \(9\)

186 Which arithmetic sequence has a common difference of 4?
1 \(\{0, 4n, 8n, 12n, \ldots\}\)
2 \(\{n, 4n, 16n, 64n, \ldots\}\)
3 \(\{n + 1, n + 5, n + 9, n + 13, \ldots\}\)
4 \(\{n + 4, n + 16, n + 64, n + 256, \ldots\}\)

187 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64?
1 \(\frac{3}{4}\)
2 \(\frac{64}{81}\)
3 \(\frac{4}{3}\)
4 \(\frac{37}{3}\)

188 What is the fifteenth term of the sequence 5, -10, 20, -40, 80, \ldots?
1 \(-163,840\)
2 \(-81,920\)
3 \(81,920\)
4 \(327,680\)

189 What is the fifteenth term of the geometric sequence \(-\sqrt{5}, \sqrt{10}, -2\sqrt{5}, \ldots\)?
1 \(-128\sqrt{5}\)
2 \(128\sqrt{10}\)
3 \(-16384\sqrt{5}\)
4 \(16384\sqrt{10}\)

190 Find the third term in the recursive sequence
\(a_{k+1} = 2a_k - 1\), where \(a_1 = 3\).

191 Find the first four terms of the recursive sequence defined below.
\(a_1 = -3\)
\(a_n = a_{(n-1)} - n\)

192 The value of the expression \(\sum_{r=3}^{5} (-r^2 + r)\) is
1 \(-38\)
2 \(-12\)
3 \(26\)
4 \(62\)

193 The value of the expression \(\sum_{n=0}^{2} (n^2 + 2^n)\) is
1 \(12\)
2 \(22\)
3 \(24\)
4 \(26\)

194 Evaluate: \(\sum_{n=1}^{3} (-n^4 - n)\)

195 Evaluate: \(10 + \sum_{n=1}^{5} (n^3 - 1)\)

196 Mrs. Hill asked her students to express the sum \(1 + 3 + 5 + 7 + 9 + \ldots + 39\) using sigma notation. Four different student answers were given. Which student answer is correct?
1 \(\sum_{k=1}^{20} (2k - 1)\)
2 \(\sum_{k=2}^{40} (k - 1)\)
3 \(\sum_{k=-1}^{37} (k + 2)\)
4 \(\sum_{k=1}^{39} (2k - 1)\)
197 Which summation represents
5 + 7 + 9 + 11 +…+ 43?

1 \[\sum_{n=5}^{43} n \]
2 \[\sum_{n=1}^{20} (2n + 3) \]
3 \[\sum_{n=4}^{24} (2n - 3) \]
4 \[\sum_{n=3}^{23} (3n - 4) \]

198 Express the sum 7 + 14 + 21 + 28 +…+ 105 using sigma notation.

A2.A.35: SERIES

199 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1 540
2 567
3 760
4 798

200 What is the sum of the first 19 terms of the sequence 3,10,17,24,31,…?

1 1188
2 1197
3 1254
4 1292

TRIGONOMETRY
A2.A.55: TRIGONOMETRIC RATIOS

201 In the diagram below of right triangle \(KTW\), \(KW = 6\), \(KT = 5\), and \(m\angle KTW = 90\).

What is the measure of \(\angle K\), to the nearest minute?

1 \(33^\circ33'\)
2 \(33^\circ34'\)
3 \(33^\circ55'\)
4 \(33^\circ56'\)

202 Which ratio represents \(\csc A\) in the diagram below?

1 \(\frac{25}{24}\)
2 \(\frac{25}{7}\)
3 \(\frac{24}{7}\)
4 \(\frac{7}{24}\)
203 In the diagram below of right triangle \(\triangle JTM\),
\(JT = 12, JM = 6,\) and \(\angle JMT = 90\).

What is the value of \(\cot J\)?

1 \(\frac{\sqrt{3}}{3}\)
2 \(2\)
3 \(\sqrt{3}\)
4 \(\frac{2\sqrt{3}}{3}\)

204 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o’clock?

1 \(\frac{\pi}{2}\)
2 \(\frac{2\pi}{3}\)
3 \(\frac{5\pi}{6}\)
4 \(\frac{7\pi}{6}\)

205 What is the radian measure of an angle whose measure is \(-420^\circ\)?

1 \(\frac{7\pi}{3}\)
2 \(\frac{7\pi}{6}\)
3 \(\frac{7\pi}{6}\)
4 \(\frac{7\pi}{3}\)

206 What is the number of degrees in an angle whose measure is 2 radians?

1 \(\frac{360}{\pi}\)
2 \(\frac{\pi}{360}\)
3 \(360\)
4 \(90\)

207 What is the number of degrees in an angle whose radian measure is \(\frac{11\pi}{12}\)?

1 \(150\)
2 \(165\)
3 \(330\)
4 \(518\)

208 Find, to the nearest minute, the angle whose measure is 3.45 radians.

209 Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.

210 Find, to the nearest tenth, the radian measure of 216°.
211 In which graph is θ coterminal with an angle of -70°?

212 If $m\angle \theta = -50^\circ$, which diagram represents θ drawn in standard position?
213 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240° and find the exact value of $\sin 240°$.

214 If θ is an angle in standard position and its terminal side passes through the point $(-3, 2)$, find the exact value of $\csc \theta$.

215 The value of $\tan 126°43'$ to the nearest ten-thousandth is
1. -1.3407
2. -1.3408
3. -1.3548
4. -1.3549

216 The value of $\csc 138°23'$ rounded to four decimal places is
1. -1.3376
2. -1.3408
3. 1.5012
4. 1.5057

217 Which expression, when rounded to three decimal places, is equal to -1.155?
1. $\sec \left(\frac{5\pi}{6} \right)$
2. $\tan(49°20')$
3. $\sin \left(-\frac{3\pi}{5} \right)$
4. $\csc(-118°)$

218 What is the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2} \right)$?
1. $-30°$
2. $60°$
3. $150°$
4. $240°$

219 In the diagram below of a unit circle, the ordered pair $\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \right)$ represents the point where the terminal side of θ intersects the unit circle. What is $m\angle \theta$?
1. 45
2. 135
3. 225
4. 240
220 If $\sin^{-1}\left(\frac{5}{8}\right) = A$, then

1. $\sin A = \frac{5}{8}$
2. $\sin A = \frac{8}{5}$
3. $\cos A = \frac{5}{8}$
4. $\cos A = \frac{8}{5}$

A2.A.57: REFERENCE ANGLES

221 Expressed as a function of a positive acute angle, $\cos(-305^\circ)$ is equal to

1. $-\cos 55^\circ$
2. $\cos 55^\circ$
3. $-\sin 55^\circ$
4. $\sin 55^\circ$

A2.A.61: ARC LENGTH

222 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1. 2π
2. 2
3. 8π
4. 8

223 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?

1. $\frac{3\pi}{4}$
2. π
3. $\frac{3\pi}{2}$
4. 3π

A2.A.58-59: COFUNCTION AND RECIPROCAL TRIGONOMETRIC FUNCTIONS

224 If $\angle A$ is acute and $\tan A = \frac{2}{3}$, then

1. $\cot A = \frac{2}{3}$
2. $\cot A = \frac{1}{3}$
3. $\cot(90^\circ - A) = \frac{2}{3}$
4. $\cot(90^\circ - A) = \frac{1}{3}$

225 The expression $\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta}$ is equivalent to

1. $\cos^2 \theta$
2. $\sin^2 \theta$
3. $\sec^2 \theta$
4. $\csc^2 \theta$

226 Express $\cos \theta (\sec \theta - \cos \theta)$, in terms of $\sin \theta$.

227 Express the exact value of $\csc 60^\circ$, with a rational denominator.

A2.A.67: PROVING TRIGONOMETRIC IDENTITIES

228 Which expression always equals 1?

1. $\cos^2 x - \sin^2 x$
2. $\cos^2 x + \sin^2 x$
3. $\cos x - \sin x$
4. $\cos x + \sin x$

229 Starting with $\sin^2 A + \cos^2 A = 1$, derive the formula $\tan^2 A + 1 = \sec^2 A$.

33
A2.A.76: ANGLE SUM AND DIFFERENCE IDENTITIES

230 The expression \(\cos 4x \cos 3x + \sin 4x \sin 3x \) is equivalent to
1 \(\sin x \)
2 \(\sin 7x \)
3 \(\cos x \)
4 \(\cos 7x \)

231 Given angle \(A \) in Quadrant I with \(\sin A = \frac{12}{13} \) and angle \(B \) in Quadrant II with \(\cos B = -\frac{3}{5} \), what is the value of \(\cos(A - B) \)?
1 \(\frac{33}{65} \)
2 \(\frac{33}{65} \)
3 \(\frac{63}{65} \)
4 \(\frac{63}{65} \)

232 If \(\tan A = \frac{2}{3} \) and \(\sin B = \frac{5}{\sqrt{41}} \) and angles \(A \) and \(B \) are in Quadrant I, find the value of \(\tan(A + B) \).

233 Express as a single fraction the exact value of \(\sin 75^\circ \).

A2.A.77: DOUBLE AND HALF ANGLE IDENTITIES

234 The expression \(\cos^2 \theta - \cos 2\theta \) is equivalent to
1 \(\sin^2 \theta \)
2 \(-\sin^2 \theta \)
3 \(\cos^2 \theta + 1 \)
4 \(-\cos^2 \theta - 1 \)

235 If \(\sin A = \frac{2}{3} \) where \(0^\circ < A < 90^\circ \), what is the value of \(\sin 2A \)?
1 \(\frac{2\sqrt{5}}{3} \)
2 \(\frac{2\sqrt{5}}{9} \)
3 \(\frac{4\sqrt{5}}{9} \)
4 \(-\frac{4\sqrt{5}}{9} \)

236 What is a positive value of \(\tan \frac{1}{2} x \), when \(\sin x = 0.8 \)?
1 0.5
2 0.4
3 0.33
4 0.25

A2.A.68: TRIGONOMETRIC EQUATIONS

237 What is the solution set for \(2 \cos \theta - 1 = 0 \) in the interval \(0^\circ \leq \theta < 360^\circ \)?
1 \(\{30^\circ, 150^\circ\} \)
2 \(\{60^\circ, 120^\circ\} \)
3 \(\{30^\circ, 330^\circ\} \)
4 \(\{60^\circ, 300^\circ\} \)

238 What are the values of \(\theta \) in the interval \(0^\circ \leq \theta < 360^\circ \) that satisfy the equation \(\tan \theta - \sqrt{3} = 0 \)?
1 \(60^\circ, 240^\circ \)
2 \(72^\circ, 252^\circ \)
3 \(72^\circ, 108^\circ, 252^\circ, 288^\circ \)
4 \(60^\circ, 120^\circ, 240^\circ, 300^\circ \)

239 Solve the equation \(2\tan C - 3 = 3\tan C - 4 \) algebraically for all values of \(C \) in the interval \(0^\circ \leq C < 360^\circ \).

240 Find all values of \(\theta \) in the interval \(0^\circ \leq \theta < 360^\circ \) that satisfy the equation \(\sin 2\theta = \sin \theta \).
A2.A.69: PROPERTIES OF TRIGONOMETRIC FUNCTIONS

241 What is the period of the function \(f(\theta) = -2 \cos 3\theta \)?

1 \(\pi \)
2 \(\frac{2\pi}{3} \)
3 \(\frac{3\pi}{2} \)
4 \(2\pi \)

242 What is the period of the function

\[y = \frac{1}{2} \sin \left(\frac{x}{3} - \pi \right) \]?

1 \(\frac{1}{2} \)
2 \(\frac{1}{3} \)
3 \(\frac{2}{3} \pi \)
4 \(6\pi \)

A2.A.72: IDENTIFYING THE EQUATION OF A TRIGONOMETRIC GRAPH

243 Which equation is graphed in the diagram below?

1 \[y = 3 \cos \left(\frac{\pi}{30} x \right) + 8 \]
2 \[y = 3 \cos \left(\frac{\pi}{15} x \right) + 5 \]
3 \[y = -3 \cos \left(\frac{\pi}{30} x \right) + 8 \]
4 \[y = -3 \cos \left(\frac{\pi}{15} x \right) + 5 \]

244 Write an equation for the graph of the trigonometric function shown below.
A2.A.65, 70-71: GRAPHING TRIGONOMETRIC FUNCTIONS

245 Which graph represents the equation \(y = \cos^{-1} x \)?

246 Which graph shows \(y = \cos^{-1} x \)?
247 Which graph represents one complete cycle of the equation \(y = \sin 3\pi x \)?

248 Which equation is represented by the graph below?

1. \(y = \cot x \)
2. \(y = \csc x \)
3. \(y = \sec x \)
4. \(y = \tan x \)

249 Which equation is sketched in the diagram below?

1. \(y = \csc x \)
2. \(y = \sec x \)
3. \(y = \cot x \)
4. \(y = \tan x \)
250. Which is a graph of \(y = \cot x \)?

1.

\[
\begin{array}{c}
\text{Graph 1} \\
\end{array}
\]

2.

\[
\begin{array}{c}
\text{Graph 2} \\
\end{array}
\]

3.

\[
\begin{array}{c}
\text{Graph 3} \\
\end{array}
\]

4.

\[
\begin{array}{c}
\text{Graph 4} \\
\end{array}
\]

A2.A.63: DOMAIN AND RANGE

251. The function \(f(x) = \tan x \) is defined in such a way that \(f^{-1}(x) \) is a function. What can be the domain of \(f(x) \)?

1. \(\{ x | 0 \leq x \leq \pi \} \)
2. \(\{ x | 0 \leq x \leq 2\pi \} \)
3. \(\{ x | -\frac{\pi}{2} < x < \frac{\pi}{2} \} \)
4. \(\{ x | -\frac{\pi}{2} < x < \frac{3\pi}{2} \} \)

252. In which interval of \(f(x) = \cos(x) \) is the inverse also a function?

1. \(-\frac{\pi}{2} < x < \frac{\pi}{2} \)
2. \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \)
3. \(0 \leq x \leq \pi \)
4. \(\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \)

A2.A.74: USING TRIGONOMETRY TO FIND AREA

253. In \(\triangle ABC \), \(\angle A = 120 \), \(b = 10 \), and \(c = 18 \). What is the area of \(\triangle ABC \) to the nearest square inch?

1. 52
2. 78
3. 90
4. 156

254. The sides of a parallelogram measure 10 cm and 18 cm. One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1. 65
2. 125
3. 129
4. 162

255. In parallelogram \(BFLO \), \(OL = 3.8 \), \(LF = 7.4 \), and \(\angle O = 126 \). If diagonal \(BL \) is drawn, what is the area of \(\triangle BLF \)?

1. 11.4
2. 14.1
3. 22.7
4. 28.1

256. Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

257. The two sides and included angle of a parallelogram are 18, 22, and 60°. Find its exact area in simplest form.
A2.A.73: LAW OF SINES

258 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

259 In \(\triangle ABC \), \(m\angle A = 32 \), \(a = 12 \), and \(b = 10 \). Find the measures of the missing angles and side of \(\triangle ABC \). Round each measure to the nearest tenth.

A2.A.75: LAW OF SINES-THE AMBIGUOUS CASE

260 How many distinct triangles can be formed if \(m\angle A = 35 \), \(a = 10 \), and \(b = 13 \)?
1. 1
2. 2
3. 3
4. 0

261 Given \(\triangle ABC \) with \(a = 9 \), \(b = 10 \), and \(m\angle B = 70 \), what type of triangle can be drawn?
1. an acute triangle, only
2. an obtuse triangle, only
3. both an acute triangle and an obtuse triangle
4. neither an acute triangle nor an obtuse triangle

262 In \(\triangle ABC \), \(m\angle A = 74 \), \(a = 59.2 \), and \(c = 60.3 \). What are the two possible values for \(m\angle C \), to the nearest tenth?
1. 73.7 and 106.3
2. 73.7 and 163.7
3. 78.3 and 101.7
4. 78.3 and 168.3

263 In \(\triangle MNP \), \(m = 6 \) and \(n = 10 \). Two distinct triangles can be constructed if the measure of angle \(M \) is
1. 35
2. 40
3. 45
4. 50

A2.A.73: LAW OF COSINES

264 In \(\triangle ABC \), \(a = 15 \), \(b = 14 \), and \(c = 13 \), as shown in the diagram below. What is the \(m\angle C \), to the nearest degree?

265 In \(\triangle ABC \), \(a = 3 \), \(b = 5 \), and \(c = 7 \). What is \(m\angle C \)?
1. 53
2. 59
3. 67
4. 127

266 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.
A2.A.73: VECTORS

267 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

268 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

CONICS

A2.A.47, 49: EQUATIONS OF CIRCLES

269 Which equation represents the circle shown in the graph below that passes through the point (0,−1)?

1. \((x − 3)^2 + (y + 4)^2 = 16\)
2. \((x − 3)^2 + (y + 4)^2 = 18\)
3. \((x + 3)^2 + (y − 4)^2 = 16\)
4. \((x + 3)^2 + (y − 4)^2 = 18\)

270 A circle shown in the diagram below has a center of (−5, 3) and passes through point (−1, 7).

271 Write an equation of the circle shown in the diagram below.
272 Write an equation of the circle shown in the graph below.

273 The equation \(x^2 + y^2 - 2x + 6y + 3 = 0 \) is equivalent to

1. \((x - 1)^2 + (y + 3)^2 = -3 \)
2. \((x - 1)^2 + (y + 3)^2 = 7 \)
3. \((x + 1)^2 + (y + 3)^2 = 7 \)
4. \((x + 1)^2 + (y + 3)^2 = 10 \)
Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 4 PTS: 2 REF: 011127a2 STA: A2.S.1
 TOP: Analysis of Data
2 ANS: 4 PTS: 2 REF: 061101a2 STA: A2.S.1
 TOP: Analysis of Data
3 ANS:
 Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.
 PTS: 2 REF: 081030a2 STA: A2.S.1 TOP: Analysis of Data
4 ANS: 4
 Students entering the library are more likely to spend more time studying, creating bias.
 PTS: 2 REF: fall0904a2 STA: A2.S.2 TOP: Analysis of Data
5 ANS: 4 PTS: 2 REF: 011201a2 STA: A2.S.2
 TOP: Analysis of Data
6 ANS: 4 PTS: 2 REF: 061124a2 STA: A2.S.3
 TOP: Average Known with Missing Data
7 ANS: 4
 \[
 \frac{4 \cdot 0 + 6 \cdot 1 + 10 \cdot 2 + 0 \cdot 3 + 4k + 2 \cdot 5}{4 + 6 + 10 + 0 + k + 2} = 2
 \]
 \[
 \frac{4k + 36}{k + 22} = 2
 \]
 \[
 4k + 36 = 2k + 44
 \]
 \[
 2k = 8
 \]
 \[
 k = 4
 \]
 PTS: 2 REF: 061221a2 STA: A2.S.3 TOP: Average Known with Missing Data
8 ANS: 3
 PTS: 2 REF: fall0924a2 STA: A2.S.4 TOP: Dispersion
 KEY: variance
9 ANS:
 7.4
 PTS: 2 REF: 061029a2 STA: A2.S.4 TOP: Dispersion
 KEY: basic, group frequency distributions

1
10 ANS:
\[\sigma_x = 14.9, \ \bar{x} = 40. \] There are 8 scores between 25.1 and 54.9.

PTS: 4 REF: 061237a2 STA: A2.S.4 TOP: Dispersion

KEY: advanced

11 ANS: 3 PTS: 2 REF: 061127a2 STA: A2.S.6

TOP: Regression

12 ANS:
\[y = 180.377(0.954)^x \]

PTS: 2 REF: 061231a2 STA: A2.S.7 TOP: Exponential Regression

13 ANS:
\[y = 27.2025(1.1509)^x, \ y = 27.2025(1.1509)^{18} \approx 341 \]

PTS: 4 REF: 011238a2 STA: A2.S.7 TOP: Exponential Regression

14 ANS:
\[y = 10.596(1.586)^x \]

PTS: 2 REF: 081031a2 STA: A2.S.7 TOP: Exponential Regression

15 ANS:
\[y = 2.001x^{2.298}, 1.009, \ y = 2.001(15)^{2.298} \approx 1009 \]

PTS: 4 REF: fall0938a2 STA: A2.S.7 TOP: Power Regression

16 ANS: 2 PTS: 2 REF: 061021a2 STA: A2.S.8

TOP: Correlation Coefficient

17 ANS: 1

(4) shows the strongest linear relationship, but if \(r < 0, b < 0. \)

PTS: 2 REF: 011223a2 STA: A2.S.8 TOP: Correlation Coefficient

18 ANS: 1

\[y = ax + b \]
\[a = 66.42057143 \]
\[b = -48.5397143 \]
\[r^2 = 0.9982689981 \]
\[r = 0.999133974 \]

PTS: 2 REF: 061225a2 STA: A2.S.8 TOP: Correlation Coefficient
19 ANS: 1

\[\begin{align*}
\text{PTS: 2} & \quad \text{REF: fall0915a2} & \text{STA: A2.S.5} & \text{TOP: Normal Distributions} \\
\text{KEY: interval}
\end{align*} \]

20 ANS: 3

\[34.1\% + 19.1\% = 53.2\% \]

\[\text{PTS: 2} \quad \text{REF: 011212a2} \quad \text{STA: A2.S.5} \quad \text{TOP: Normal Distributions} \]

\[\text{KEY: probability} \]

21 ANS: 3

\[68\% \times 50 = 34 \]

\[\text{PTS: 2} \quad \text{REF: 081013a2} \quad \text{STA: A2.S.5} \quad \text{TOP: Normal Distributions} \]

\[\text{KEY: predict} \]

22 ANS:

68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

\[\text{PTS: 2} \quad \text{REF: 011134a2} \quad \text{STA: A2.S.5} \quad \text{TOP: Normal Distributions} \]

\[\text{KEY: percent} \]

23 ANS:

no. over 20 is more than 1 standard deviation above the mean. \(0.159 \cdot 82 \approx 13.038 \)

\[\text{PTS: 2} \quad \text{REF: 061129a2} \quad \text{STA: A2.S.5} \quad \text{TOP: Normal Distributions} \]

\[\text{KEY: predict} \]

24 ANS: 1

\[8 \times 8 \times 7 \times 1 = 448. \text{ The first digit cannot be 0 or 5. The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.} \]

\[\text{PTS: 2} \quad \text{REF: 011125a2} \quad \text{STA: A2.S.10} \quad \text{TOP: Permutations} \]

25 ANS: 4

\[\text{PTS: 2} \quad \text{REF: fall0925a2} \quad \text{STA: A2.S.10} \quad \text{TOP: Permutations} \]

26 ANS:

\[39,916,800 \cdot \frac{\binom{12}{2} \cdot \binom{12}{2}}{3! \cdot 2!} = \frac{479,001,600}{12} = 39,916,800 \]

\[\text{PTS: 2} \quad \text{REF: 081035a2} \quad \text{STA: A2.S.10} \quad \text{TOP: Permutations} \]
No. TENNESSEE: \(\frac{9! \cdot 2!}{4! \cdot 2!} = \frac{362,880}{96} = 3,780 \). VERMONT: \(\gamma P_\gamma = 5,040 \)

PTS: 4 REF: 061038a2 STA: A2.S.10 TOP: Permutations

28 ANS: 1
\(\binom{10}{4} = 210 \)

PTS: 2 REF: 061113a2 STA: A2.S.11 TOP: Combinations

29 ANS: 2
\(\binom{15}{8} = 6,435 \)

PTS: 2 REF: 081012a2 STA: A2.S.11 TOP: Combinations

30 ANS: 4
\(\binom{15}{5} = 3,003 \). \(\binom{25}{5} = \binom{25}{20} = 53,130 \). \(\binom{25}{15} = 3,268,760 \).

PTS: 2 REF: 061227a2 STA: A2.S.11 TOP: Combinations

31 ANS:
\(\binom{25}{20} = 53,130 \)

PTS: 2 REF: 011232a2 STA: A2.S.11 TOP: Combinations

32 ANS: 3
PTS: 2 REF: 061007a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations

33 ANS: 1
PTS: 2 REF: 011117a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations

34 ANS:
\[
\begin{array}{c}
\binom{9}{2} \times \binom{20}{3} \\
41040
\end{array}
\]

PTS: 2 REF: fall0935a2 STA: A2.S.12 TOP: Sample Space
35 ANS: 2

\[\frac{\pi/3 + \pi/3}{2\pi} = \frac{2\pi}{2\pi} = \frac{1}{3}\]

PTS: 2 REF: 011108a2 STA: A2.S.13 TOP: Geometric Probability

36 ANS: 1

TOP: Binomial Probability KEY: modeling

37 ANS: 4

\[\binom{5}{2} \left(\frac{3}{8}\right)^1 \left(\frac{5}{8}\right)^2 = \frac{225}{512}\]

38 ANS:

\[0.167 \cdot 10C_8 \cdot 0.6^8 \cdot 0.4^2 + 10C_9 \cdot 0.6^9 \cdot 0.4^1 + 10C_{10} \cdot 0.6^{10} \cdot 0.4^0 \approx 0.167\]

PTS: 4 REF: 061036a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most

39 ANS:

\[26.2\% \cdot 10C_8 \cdot 0.65^8 \cdot 0.35^2 + 10C_9 \cdot 0.65^9 \cdot 0.35^1 + 10C_{10} \cdot 0.65^{10} \cdot 0.35^0 \approx 0.262\]

PTS: 4 REF: 081038a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most

40 ANS:

\[0.468 \cdot 8C_6 \left(\frac{2}{3}\right)^6 \left(\frac{1}{3}\right)^2 \approx 0.27313 \cdot 8C_7 \left(\frac{2}{3}\right)^7 \left(\frac{1}{3}\right)^1 \approx 0.15607 \cdot 8C_8 \left(\frac{2}{3}\right)^8 \left(\frac{1}{3}\right)^0 \approx 0.03902.\]

PTS: 4 REF: 011138a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most
41 ANS:

\[
\frac{51}{243}, \quad \binom{3}{1} \left(\frac{1}{3} \right)^3 \left(\frac{2}{3} \right)^2 = \frac{40}{243}
\]

\[
\binom{4}{1} \left(\frac{1}{3} \right)^4 \left(\frac{2}{3} \right)^1 = \frac{10}{243}
\]

\[
\binom{5}{1} \left(\frac{1}{3} \right)^5 \left(\frac{2}{3} \right)^0 = \frac{1}{243}
\]

KEY: at least or at most

42 ANS: 1

\[
4a + 6 = 4a - 10. \quad 4a + 6 = -4a + 10. \quad \left| 4 \left(\frac{1}{2} \right) + 6 \right| - 4 \left(\frac{1}{2} \right) = -10
\]

\[
6
eq -10 \quad 8a = 4 \quad 8 - 2
eq -10
\]

\[
a = \frac{4}{8} = \frac{1}{2}
\]

PTS: 2 REF: 011106a2 STA: A2.A.1 TOP: Absolute Value Equations

43 ANS: 1

\[
6x - 7 \leq 5 \quad 6x - 7 \geq -5
\]

\[
6x \leq 12 \quad 6x \geq 2
\]

\[
x \leq 2 \quad x \geq \frac{1}{3}
\]

PTS: 2 REF: fall0905a2 STA: A2.A.1 TOP: Absolute Value Inequalities

KEY: graph

44 ANS: 3

\[
\frac{4x - 5}{3} > 1 \text{ or } \frac{4x - 5}{3} < -1
\]

\[
4x - 5 > 3 \quad 4x - 5 < -3
\]

\[
4x > 8 \quad 4x < 2
\]

\[
x > 2 \quad x < \frac{1}{2}
\]

PTS: 2 REF: 061209a2 STA: A2.A.1 TOP: Absolute Value Inequalities

KEY: graph
ANS:

\[-3|6-x| < -15\]

\[|6-x| > 5\]

\[6-x > 5 \text{ or } 6-x < -5\]

\[1 > x \text{ or } 11 < x\]

KEY: graph

46 ANS: 2

\[\frac{-b}{a} = \frac{4}{6} = \frac{2}{3}; \quad \text{product: } \frac{c}{a} = \frac{-12}{6} = -2\]

PTS: 2 REF: 011209a2 STA: A2.A20 TOP: Roots of Quadratics

47 ANS:

\[\text{Sum } \frac{-b}{a} = -\frac{11}{5}. \quad \text{Product } \frac{c}{a} = -\frac{3}{5}\]

PTS: 2 REF: 061030a2 STA: A2.A20 TOP: Roots of Quadratics

48 ANS: 3

\[\frac{-b}{a} = \frac{-6}{2} = -3, \quad \frac{c}{a} = \frac{4}{2} = 2\]

PTS: 2 REF: 011121a2 STA: A2.A21 TOP: Roots of Quadratics
KEY: basic

49 ANS: 3

\[S = \frac{-b}{a} = \frac{-(-3)}{4} = \frac{3}{4}, \quad P = \frac{c}{a} = \frac{-8}{4} = -2\]

PTS: 2 REF: fall0912a2 STA: A2.A21 TOP: Roots of Quadratics
KEY: basic

50 ANS: 3

\[\frac{-b}{a} = \frac{-(-9)}{4} = \frac{9}{4}, \quad \text{product of the roots, } \frac{c}{a} = \frac{3}{4}\]

PTS: 2 REF: 061208a2 STA: A2.A21 TOP: Roots of Quadratics
KEY: basic

51 ANS:

\[x^2 - 6x - 27 = 0, \quad \frac{-b}{a} = 6, \quad \frac{c}{a} = -27. \text{ If } a = 1 \text{ then } b = -6 \text{ and } c = -27\]

PTS: 4 REF: 061130a2 STA: A2.A21 TOP: Roots of Quadratics
KEY: basic
52. ANS: 4
\[6x - x^3 - x^2 = -x(x^2 + x - 6) = -x(x + 3)(x - 2)\]

PTS: 2
REF: fall0917a2
STA: A2.A.7
TOP: Factoring Polynomials
KEY: single variable

53. ANS: 4
\[12x^4 + 10x^3 - 12x^2 = 2x^2(6x^2 + 5x - 6) = 2x^2(2x + 3)(3x - 2)\]

PTS: 2
REF: 061008a2
STA: A2.A.7
TOP: Factoring Polynomials
KEY: single variable

54. ANS:
\[10ax^2 - 23ax - 5a = a(10x^2 - 23x - 5) = a(5x + 1)(2x - 5)\]

PTS: 2
REF: 081028a2
STA: A2.A.7
TOP: Factoring Polynomials
KEY: multiple variables

55. ANS:
\[12t^8 - 75t^4 = 3t^4(4t^4 - 25) = 3t^4(2t^2 + 5)(2t^2 - 5)\]

PTS: 2
REF: 061133a2
STA: A2.A.7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial

56. ANS: 2
\[x^3 + 3x^2 - 4x - 12\]
\[= x^2(x + 3) - 4(x + 3)\]
\[= (x^2 - 4)(x + 3)\]
\[= (x + 2)(x - 2)(x + 3)\]

PTS: 2
REF: 061214a2
STA: A2.A.7
TOP: Factoring by Grouping

57. ANS: 3
\[\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2(2)} = \frac{-7 \pm \sqrt{73}}{4}\]

PTS: 2
REF: 081009a2
STA: A2.A.25
TOP: Quadratic Formula

58. ANS: 4
\[\frac{3 \pm \sqrt{(-3)^2 - 4(1)(-9)}}{2(1)} = \frac{3 \pm \sqrt{45}}{2} = \frac{3 \pm 3\sqrt{5}}{2}\]

PTS: 2
REF: 061009a2
STA: A2.A.25
TOP: Quadratic Formula

59. ANS: 3
\[b^2 - 4ac = (-10)^2 - 4(1)(25) = 100 - 100 = 0\]

PTS: 2
REF: 011102a2
STA: A2.A.2
TOP: Using the Discriminant
KEY: determine nature of roots given equation
60 ANS: 4
\[b^2 - 4ac = 3^2 - 4(9)(-4) = 9 + 144 = 153 \]

PTS: 2 REF: 081016a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

61 ANS:
\[b^2 - 4ac = 0 \]
\[k^2 - 4(1)(4) = 0 \]
\[k^2 - 16 = 0 \]
\[(k + 4)(k - 4) = 0 \]
\[k = \pm 4 \]

PTS: 2 REF: 061028a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine equation given nature of roots

62 ANS: 2 PTS: 2 REF: 061122a2 STA: A2.A.24 TOP: Completing the Square

63 ANS: 2
\[x^2 + 2 = 6x \]
\[x^2 - 6x = -2 \]
\[x^2 - 6x + 9 = -2 + 9 \]
\[(x - 3)^2 = 7 \]

PTS: 2 REF: 011116a2 STA: A2.A.24 TOP: Completing the Square

64 ANS:
\[3 \pm \sqrt{7}. \quad 2x^2 - 12x + 4 = 0 \]
\[x^2 - 6x + 2 = 0 \]
\[x^2 - 6x = -2 \]
\[x^2 - 6x + 9 = -2 + 9 \]
\[(x - 3)^2 = 7 \]
\[x - 3 = \pm \sqrt{7} \]
\[x = 3 \pm \sqrt{7} \]

PTS: 4 REF: fall0936a2 STA: A2.A.24 TOP: Completing the Square
65 ANS: 1
\[y \geq x^2 - x - 6 \]
\[y \geq (x - 3)(x + 2) \]

PTS: 2 REF: 061017a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: two variables

66 ANS: 3
\[x^2 - 3x - 10 > 0 \]
\[(x - 5)(x + 2) > 0 \]
\[x - 5 > 0 \text{ and } x + 2 > 0 \]
\[x > 5 \text{ and } x > -2 \]
\[x > 5 \]

PTS: 2 REF: 011115a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable

67 ANS:
\[x < -1 \text{ or } x > 5. \]
\[x^2 - 4x - 5 > 0. \]
\[x - 5 > 0 \text{ and } x + 1 > 0 \text{ or } x - 5 < 0 \text{ and } x + 1 < 0 \]
\[(x - 5)(x + 1) > 0 \]
\[x > 5 \text{ and } x > -1 \]
\[x < 5 \text{ and } x < -1 \]
\[x > 5 \]
\[x < -1 \]

PTS: 2 REF: 011228a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable

68 ANS: 2
\[x^2 - x - 6 = 3x - 6 \]
\[x^2 - 4x = 0 \]
\[x(x - 4) = 0 \]
\[x = 0, 4 \]

PTS: 2 REF: 081015a2 STA: A2.A.3 TOP: Quadratic-Linear Systems
KEY: equations
69 ANS: \(\left(\frac{9}{2}, \frac{1}{2} \right) \) and \(\left(\frac{11}{2}, \frac{11}{2} \right) \)
\[y = x + 5 \quad \text{and} \quad 4x^2 + 17x - 4 = x + 5 \]
\[y = 4x^2 + 17x - 4 \quad \text{and} \quad 4x^2 + 16x - 9 = 0 \]
\[(2x + 9)(2x - 1) = 0 \]
\[x = \frac{9}{2} \text{ and } x = \frac{1}{2} \]
\[y = \frac{9}{2} + 5 = \frac{1}{2} \text{ and } y = \frac{1}{2} + 5 = \frac{11}{2} \]

70 ANS: 2 PTS: 2 REF: 011114a2 STA: A2.N.3 TOP: Operations with Polynomials

71 ANS: 2
The binomials are conjugates, so use FL.

72 ANS: 1
The binomials are conjugates, so use FL.

73 ANS:
\[\frac{4}{9}x^2 - \frac{4}{3}x + 1 \cdot \left(\frac{2}{3}x - 1 \right)^2 = \left(\frac{2}{3}x - 1 \right)^2 \left(\frac{2}{3}x - 1 \right) = \frac{4}{9}x^2 - \frac{2}{3}x - \frac{2}{3}x + 1 = \frac{4}{9}x^2 - \frac{4}{3}x + 1 \]

74 ANS:
\[6y^3 - \frac{37}{10}y^2 - \frac{1}{5}y \cdot \left(\frac{1}{2}y^2 - \frac{1}{3}y \right) \left(12y + \frac{3}{5} \right) = 6y^3 + \frac{3}{10}y^2 - 4y^2 - \frac{1}{5}y = 6y^3 - \frac{37}{10}y^2 - \frac{1}{5}y \]

75 ANS: 3
\[\frac{3^2}{(-2)^3} = \frac{1}{9} = -\frac{8}{9} \]

PTS: 2 REF: 061003a2 STA: A2.N.1 TOP: Negative and Fractional Exponents
76 ANS: 2
\[
\left(\frac{w^{-5}}{w^{-9}} \right)^{\frac{1}{2}} = (w^4)^{\frac{1}{2}} = w^2
\]

PTS: 2 REF: 081011a2 STA: A2.A.8 TOP: Negative and Fractional Exponents

77 ANS: 1
PTS: 2 REF: fall0914a2 STA: A2.A.9
TOP: Negative and Fractional Exponents

78 ANS: 1
PTS: 2 REF: 061210a2 STA: A2.A.9
TOP: Negative Exponents

79 ANS:
\[
\frac{12x^2}{y^9} \cdot \frac{3x^{-4}y^5}{(2x^3y^{-7})^2} = \frac{3y^5(2x^3y^{-7})^2}{x^4} = \frac{3y^5(4x^6y^{-14})}{x^4} = \frac{12x^6y^{-9}}{x^4} = 3x^2y^9
\]

PTS: 2 REF: 061134a2 STA: A2.A.9 TOP: Negative Exponents

80 ANS: 2
\[
\frac{x^{-1}}{x-1} = \frac{1}{x} - 1 = \frac{1-x}{x-1} = \frac{-x}{x-1} = -\frac{1}{x}
\]

PTS: 2 REF: 081018a2 STA: A2.A.9 TOP: Negative Exponents

81 ANS: 2
\[
\frac{x^{-1}+1}{x+1} = \frac{1}{x} + 1 = \frac{1+x}{x+1} = \frac{1}{x}
\]

PTS: 2 REF: 011211a2 STA: A2.A.9 TOP: Negative Exponents

82 ANS:
\[
e^{3\ln 2} = e^{\ln 2^3} = e^{\ln 8} = 8
\]

PTS: 2 REF: 061131a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

83 ANS:
\[
A = 750e^{0.03(8)} \approx 953
\]

PTS: 2 REF: 061229a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

84 ANS:
\[
12000e^{0.065*10} = 2298.648995
\]

2,298.65.

PTS: 2 REF: fall0932a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions
85 ANS: 2
8^2 = 64

PTS: 2 REF: fall0909a2 STA: A2.A.18 TOP: Evaluating Logarithmic Expressions

86 ANS: 4 PTS: 2 REF: 011124a2 STA: A2.A.18
TOP: Evaluating Logarithmic Expressions

87 ANS:
\[
\begin{align*}
y &= 0
\end{align*}
\]

PTS: 2 REF: 061031a2 STA: A2.A.53 TOP: Graphing Exponential Functions

88 ANS:
\[
\begin{align*}
f^{-1}(x) &= \log_4 x
\end{align*}
\]

PTS: 2 REF: 011234a2 STA: A2.A.53 TOP: Graphing Exponential Functions

89 ANS: 1 PTS: 2 REF: 061211a2 STA: A2.A.54
TOP: Graphing Logarithmic Functions

90 ANS: 2
\[
\begin{align*}
f^{-1}(x) &= \log_4 x
\end{align*}
\]

PTS: 2 REF: fall0916a2 STA: A2.A.54 TOP: Graphing Logarithmic Functions

91 ANS: 1
\[
\begin{align*}
2 \log x - (3 \log y + \log z) &= \log x^2 - \log y^3 - \log z = \log \frac{x^2}{y^3z}
\end{align*}
\]

PTS: 2 REF: 061010a2 STA: A2.A.19 TOP: Properties of Logarithms
\[
\log x^2 = \log 3a + \log 2a
\]

\[
2 \log x = \log 6a^2
\]

\[
\log x = \frac{\log 6}{2} + \frac{\log a^2}{2} = \frac{1}{2} \log 6 + \log a
\]

\[
\log x = \frac{1}{2} \log 6 + \frac{2 \log a}{2}
\]

\[
\log x = \frac{1}{2} \log 6 + \log a
\]
98 ANS:
\[x = \frac{1}{3}, -1 \quad \log_{x+3} \frac{x^3 + x - 2}{x} = 2 \]
\[\frac{x^3 + x - 2}{x} = (x + 3)^2 \]
\[\frac{x^3 + x - 2}{x} = x^2 + 6x + 9 \]
\[x^3 + x - 2 = x^3 + 6x^2 + 9x \]
\[0 = 6x^2 + 8x + 2 \]
\[0 = 3x^2 + 4x + 1 \]
\[0 = (3x + 1)(x + 1) \]
\[x = -\frac{1}{3}, -1 \]

PTS: 6

KEY: basic

99 ANS:
\[\ln(T - T_0) = -kt + 4.718 \quad \ln(T - 68) = -0.104(T) + 4.718. \]
\[\ln(150 - 68) = -k(3) + 4.718 \quad \ln(T - 68) = 3.678 \]
\[4.407 \approx -3k + 4.718 \quad T - 68 \approx 39.6 \]
\[k \approx 0.104 \quad T \approx 108 \]

PTS: 6

KEY: advanced

100 ANS:
\[320 = 10(2)^{\frac{t}{60}} \]
\[32 = (2)^{\frac{t}{60}} \]
\[\log 32 = \log(2)^{\frac{t}{60}} \]
\[\log 32 = \frac{t \log 2}{60} \]
\[\frac{60 \log 32}{\log 2} = t \]
\[300 = t \]

PTS: 2
101 ANS: 3

\[75000 = 25000e^{0.0475t} \]

\[3 = e^{0.0475t} \]

\[\ln 3 = \ln e^{0.0475t} \]

\[\frac{\ln 3}{0.0475} = 0.475t \cdot \ln e \]

\[23.1 \approx t \]

PTS: 2 REF: 061117a2 STA: A2.A.6 TOP: Exponential Growth

102 ANS: 4

\[9^{3x+1} = 27^{x+2} \]

\[(3^2)^{3x+1} = (3^3)^{x+2} \]

\[3^{6x+2} = 3^{3x+6} \]

\[6x + 2 = 3x + 6 \]

\[3x = 4 \]

\[x = \frac{4}{3} \]

PTS: 2 REF: 081008a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown

103 ANS: 2

\[4^{2x+5} = 8^{3x} \]

\[\left(2^2\right)^{2x+5} = \left(2^3\right)^{3x} \]

\[2^{4x+10} = 2^{9x} \]

\[4x + 10 = 9x \]

\[10 = 5x \]

\[2 = x \]

PTS: 2 REF: 061105a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown
104 ANS: 3

\[4^{x^2 + 4x} = 2^{-6}, \quad 2x^2 + 8x = -6\]

\[(2^2)^{x^2 + 4x} = 2^{-6}, \quad 2x^2 + 8x + 6 = 0\]

\[2^{x^2 + 8x} = 2^{-6}, \quad x^2 + 4x + 3 = 0\]

\[(x + 3)(x + 1) = 0\]

\[x = -3, \quad x = -1\]

PTS: 2 REF: 061015a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base shown

105 ANS:

\[16^{2x+3} = 64^{x+2}\]

\[(4^2)^{2x+3} = (4^3)^{x+2}\]

\[4x + 6 = 3x + 6\]

\[x = 0\]

PTS: 2 REF: 011128a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown

106 ANS:

\[81^{x^3 + 2x^2} = 27^{\frac{5x}{3}}\]

\[\left(3^4\right)^{x^3 + 2x^2} = \left(3^3\right)^{\frac{5x}{3}}\]

\[3^{4x^3 + 8x^2} = 3^{5x}\]

\[4x^3 + 8x^2 - 5x = 0\]

\[x(4x^2 + 8x - 5) = 0\]

\[x(2x - 1)(2x + 5) = 0\]

\[x = 0, \quad \frac{1}{2}, \quad -\frac{5}{2}\]

PTS: 6 REF: 061239a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base not shown

107 ANS: 1

\[\binom{x}{3}(3x)^3(-2)^1 = 10 \cdot 9x^2 \cdot -8 = -720x^2\]

PTS: 2 REF: fall0919a2 STA: A2.A.36 TOP: Binomial Expansions

108 ANS: 1

\[\binom{6}{3}(4b)^3 = -5376a^6b^3\]

PTS: 2 REF: 061126a2 STA: A2.A.36 TOP: Binomial Expansions
109 ANS: 3
\[3C_2(2x^4)^1(-y)^2 = 6x^4y^2 \]

PTS: 2 REF: 011215a2 STA: A2.A.36 TOP: Binomial Expansions

110 ANS: 3
\[6C_3 \left(\frac{x}{2} \right)^3 (-2y)^3 = 20 \cdot \frac{x^3}{8} \cdot -8y^3 = -20x^3y^3 \]

PTS: 2 REF: 061215a2 STA: A2.A.36 TOP: Binomial Expansions

111 ANS:
\[32x^5 - 80x^4 + 80x^3 - 40x^2 + 10x - 1. \]
\[sC_0(2x)^5(-1)^0 = 32x^5. \]
\[sC_1(2x)^4(-1)^1 = -80x^4. \]
\[sC_2(2x)^3(-1)^2 = 80x^3. \]
\[sC_3(2x)^2(-1)^3 = -40x^2. \]
\[sC_4(2x)^1(-1)^4 = 10x. \]
\[sC_5(2x)^0(-1)^5 = -1 \]

PTS: 4 REF: 011136a2 STA: A2.A.36 TOP: Binomial Expansions

112 ANS: 3
\[3x^5 - 48x = 0 \]
\[3x(x^4 - 16) = 0 \]
\[3x(x^2 + 4)(x^2 - 4) = 0 \]
\[3x(x^2 + 4)(x + 2)(x - 2) = 0 \]

PTS: 2 REF: 011216a2 STA: A2.A.26 TOP: Solving Polynomial Equations

113 ANS: 2
\[x^3 + x^2 - 2x = 0 \]
\[x(x^2 + x - 2) = 0 \]
\[x(x + 2)(x - 1) = 0 \]
\[x = 0, -2, 1 \]

PTS: 2 REF: 011103a2 STA: A2.A.26 TOP: Solving Polynomial Equations

114 ANS:
\[\pm \frac{3}{2}, -\frac{1}{2}. \]
\[8x^3 + 4x^2 - 18x - 9 = 0 \]
\[4x^2(2x + 1) - 9(2x + 1) = 0 \]
\[(4x^2 - 9)(2x + 1) = 0 \]
\[4x^2 - 9 = 0 \text{ or } 2x + 1 = 0 \]
\[(2x + 3)(2x - 3) = 0 \]
\[x = -\frac{1}{2} \]
\[x = \pm \frac{3}{2} \]

PTS: 4 REF: fall0937a2 STA: A2.A.26 TOP: Solving Polynomial Equations
115 ANS: 4 PTS: 2 REF: 061005a2 STA: A2.A.50
TOP: Solving Polynomial Equations

116 ANS: 2
The roots are \(-1, 2, 3\).

117 ANS: 4

118 ANS: 3
\[\sqrt[3]{4^3 a^{15}} = 4a^5 \sqrt[3]{a} \]

119 ANS: \[
\frac{a^2 b^3}{4}
\]

118 ANS: 4
\[(3 + \sqrt{5})(3 - \sqrt{5}) = 9 - \sqrt{25} = 4\]

123 ANS: \[
\sqrt{\frac{108 x^5 y^8}{6x y^5}} = \sqrt{18x^4 y^3} = 3x^2 y \sqrt{2y}
\]

124 ANS: 4
\[4ab \sqrt{2b} - 3a \sqrt{9b^2} \sqrt{2b} + 7ab \sqrt{6b} = 4ab \sqrt{2b} - 9ab \sqrt{2b} + 7ab \sqrt{6b} = -5ab \sqrt{2b} + 7ab \sqrt{6b} \]
124 ANS: 3

\[
\frac{4}{5 - \sqrt{13}} \cdot \frac{5 + \sqrt{13}}{5 + \sqrt{13}} = \frac{4(5 + \sqrt{13})}{25 - 13} = \frac{5 + \sqrt{13}}{3}
\]

PTS: 2 REF: 061116a2 STA: A2.N.5 TOP: Rationalizing Denominators

125 ANS: 1

\[
\frac{\sqrt{3} + 5}{\sqrt{3} - 5} \cdot \frac{\sqrt{3} + 5}{\sqrt{3} + 5} = \frac{3 + 5\sqrt{3} + 5\sqrt{3} + 25}{3 - 25} = \frac{28 + 10\sqrt{3}}{-22} = \frac{14 + 5\sqrt{3}}{11}
\]

PTS: 2 REF: 061012a2 STA: A2.N.5 TOP: Rationalizing Denominators

126 ANS:

\[
\frac{5(3 + \sqrt{2})}{7} \cdot \frac{5}{3 - \sqrt{2}} \cdot \frac{3 + \sqrt{2}}{3 + \sqrt{2}} = \frac{5(3 + \sqrt{2})}{9 - 2} = \frac{5(3 + \sqrt{2})}{7}
\]

PTS: 2 REF: fall0928a2 STA: A2.N.5 TOP: Rationalizing Denominators

127 ANS: 3

\[
\frac{3}{\sqrt{3a^2b}} = \frac{3}{a\sqrt{3b}} \cdot \frac{\sqrt{3b}}{\sqrt{3b}} = \frac{3\sqrt{3b}}{3ab} = \frac{\sqrt{3b}}{ab}
\]

PTS: 2 REF: 081019a2 STA: A2.A.15 TOP: Rationalizing Denominators KEY: index = 2

128 ANS: 4

\[
\frac{2x + 4}{\sqrt{x + 2}} \cdot \frac{\sqrt{x + 2}}{\sqrt{x + 2}} = \frac{2(x + 2)\sqrt{x + 2}}{x + 2} = 2\sqrt{x + 2}
\]

PTS: 2 REF: 011122a2 STA: A2.A.15 TOP: Rationalizing Denominators KEY: index = 2

130 ANS: 3

\[
3x + 16 = (x + 2)^2 \quad \text{.} \quad -4 \text{ is an extraneous solution.}
\]

\[
3x + 16 = x^2 + 4x + 4
\]

\[
0 = x^2 + x - 12
\]

\[
0 = (x + 4)(x - 3)
\]

\[
x = -4 \text{ or } x = 3
\]

131 ANS: 1

\[5x + 29 = (x + 3)^2\] \((-5) + 3\) shows an extraneous solution.

\[5x + 29 = x^2 + 6x + 9\]
\[0 = x^2 + x - 20\]
\[0 = (x + 5)(x - 4)\]
\[x = -5, 4\]

PTS: 2 REF: 061213a2 STA: A2.A.22 TOP: Solving Radicals
KEY: extraneous solutions

132 ANS:

7. \[4 - \sqrt{2x - 5} = 1\]
\[-\sqrt{2x - 5} = -3\]
\[2x - 5 = 9\]
\[2x = 14\]
\[x = 7\]

PTS: 2 REF: 011229a2 STA: A2.A.22 TOP: Solving Radicals
KEY: basic

133 ANS: 4

\[x^{-\frac{2}{5}} = \frac{1}{\sqrt[5]{x}} = \frac{1}{\sqrt[5]{x^2}}\]

PTS: 2 REF: 011118a2 STA: A2.A.10 TOP: Fractional Exponents as Radicals

134 ANS: 2 PTS: 2 REF: 061011a2 STA: A2.A.10
TOP: Fractional Exponents as Radicals

135 ANS: 1

\[\sqrt[4]{16x^2y^7} = 16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}} = 2x^\frac{1}{2} y^\frac{7}{4}\]

PTS: 2 REF: 061107a2 STA: A2.A.11 TOP: Radicals as Fractional Exponents

136 ANS: 3

\[\sqrt{-300} = \sqrt{100} \sqrt{-1} \sqrt{3}\]

PTS: 2 REF: 061006a2 STA: A2.N.6 TOP: Square Roots of Negative Numbers

137 ANS: 1 PTS: 2 REF: 061019a2 STA: A2.N.7
TOP: Imaginary Numbers

138 ANS: 1

\[2i^2 + 3i^3 = 2(-1) + 3(-i) = -2 - 3i\]

PTS: 2 REF: 081004a2 STA: A2.N.7 TOP: Imaginary Numbers
139 ANS:
\[i^{13} + i^{18} + i^{31} + n = 0\]
\[i + (-1) - i + n = 0\]
\[-1 + n = 0\]
\[n = 1\]

PTS: 2 REF: 061228a2 STA: A2.N.7 TOP: Imaginary Numbers

140 ANS: 2 PTS: 2 REF: 081024a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

141 ANS: 4 PTS: 2 REF: 011111a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

142 ANS: 2 PTS: 2 REF: 011213a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

143 ANS: 3 PTS: 2 REF: 061219a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers

144 ANS: 2
\[(3 - 7i)(3 - 7i) = 9 - 21i - 21i + 49i^2 = 9 - 42i - 49 = -40 - 42i\]

PTS: 2 REF: fall0901a2 STA: A2.N.9 TOP: Multiplication and Division of Complex Numbers

145 ANS:
\[
\frac{-(x^2 - 4)}{(x + 4)(x + 3)} \times \frac{x + 3}{2(x - 2)} = \frac{-(x + 2)(x - 2)}{x + 4} \times \frac{1}{2(x - 2)} = \frac{-(x + 2)}{2(x + 4)}
\]

PTS: 4 REF: 061236a2 STA: A2.A.16 TOP: Multiplication and Division of Rationals
KEY: division

146 ANS:
\[
\frac{-2(x^2 + 6)}{x^4} \cdot \frac{x^2(x - 3) + 6(x - 3)}{x^2 - 4x} \cdot \frac{2x - 4}{x^4 - 3x^3} \cdot \frac{x^2 + 2x - 8}{16 - x^2}
\]
\[
= \frac{(x^2 + 6)(x - 3)}{x(x - 4)} \cdot \frac{2(x - 2)}{x^3(x - 3)} \cdot \frac{(4 + x)(4 - x)}{(x + 4)(x - 2)}
\]
\[
= \frac{-2(x^2 + 6)}{x^4}
\]

PTS: 6 REF: 011239a2 STA: A2.A.16 TOP: Multiplication and Division of Rationals
KEY: division
147 ANS: no solution.
\[
\frac{4x}{x - 3} = 2 + \frac{12}{x - 3}
\]
\[
4x - 12 = 2(x - 3)
\]
\[
4(x - 3) = 2(x - 3)
\]
\[
4 \neq 2
\]

PTS: 2 REF: fall0930a2 STA: A2.A.23 TOP: Solving Rationals
KEY: rational solutions

148 ANS:
\[
\frac{1}{3} \cdot \frac{1}{x + 3} - \frac{2}{3 - x} = \frac{4}{x^2 - 9}
\]
\[
\frac{1}{x + 3} + \frac{2}{x - 3} = \frac{4}{x^2 - 9}
\]
\[
x - 3 + 2(x + 3)
\frac{4}{(x + 3)(x - 3)} = \frac{4}{(x + 3)(x - 3)}
\]
\[
x - 3 + 2x + 6 = 4
3x = 1
x = \frac{1}{3}
\]

PTS: 4 REF: 081036a2 STA: A2.A.23 TOP: Solving Rationals
KEY: rational solutions

149 ANS: 2
\[
\frac{x}{4} - \frac{1}{x} = \frac{x^2 - 4}{4x}
\]
\[
\frac{1}{2x} + \frac{1}{4} = \frac{2x + 4}{8x}
\]
\[
= \frac{(x + 2)(x - 2)}{4x} \times \frac{8x}{2(x + 2)} = x - 2
\]

PTS: 2 REF: fall0920a2 STA: A2.A.17 TOP: Complex Fractions

150 ANS:
\[
\frac{1}{2} - \frac{4}{d} = \frac{d - 8}{2d}
\]
\[
\frac{1}{d} + \frac{3}{2d} = \frac{d - 8}{2d^2}
\]
\[
\frac{d - 8}{2d} \times \frac{2d^2}{5d} = \frac{d - 8}{5}
\]

PTS: 2 REF: 061035a2 STA: A2.A.17 TOP: Complex Fractions
151 ANS: 1
\[10 \cdot \frac{3}{2} = \frac{3}{5} p\]
\[15 = \frac{3}{5} p\]
\[25 = p\]

PTS: 2 REF: 011226a2 STA: A2.A.5 TOP: Inverse Variation

152 ANS:
\[12 \cdot 6 = 9w\]
\[8 = w\]

PTS: 2 REF: 011130a2 STA: A2.A.5 TOP: Inverse Variation

153 ANS: 4
\[y - 2 \sin \theta = 3\]
\[y = 2 \sin \theta + 3\]
\[f(\theta) = 2 \sin \theta + 3\]

PTS: 2 REF: fall0927a2 STA: A2.A.40 TOP: Functional Notation

154 ANS: 2
\[f(10) = \frac{-10}{(-10)^2 - 16} = \frac{-10}{84} = -\frac{5}{42}\]

PTS: 2 REF: 061102a2 STA: A2.A.41 TOP: Functional Notation

155 ANS: 3 PTS: 2 REF: 011119a2 STA: A2.A.52 TOP: Families of Functions

157 ANS: 1 PTS: 2 REF: 061004a2 STA: A2.A.52 TOP: Identifying the Equation of a Graph

158 ANS: 2 PTS: 2 REF: 061108a2 STA: A2.A.52 TOP: Identifying the Equation of a Graph

159 ANS: 4 PTS: 2 REF: fall0908a2 KEY: graphs STA: A2.A.38 TOP: Defining Functions

160 ANS: 4 PTS: 2 REF: 011101a2 KEY: graphs STA: A2.A.38 TOP: Defining Functions

161 ANS: 3 PTS: 2 REF: 061114a2 KEY: graphs STA: A2.A.38 TOP: Defining Functions

162 ANS: 1 PTS: 2 REF: 061013a2 KEY: graphs STA: A2.A.38 TOP: Defining Functions
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A.43 TOP: Defining Functions

4

(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 STA: A2.A.43 TOP: Defining Functions

2

PTS: 2 REF: 011225a2 STA: A2.A.43 TOP: Defining Functions

2

PTS: 2 REF: 061218a2 STA: A2.A.43 TOP: Defining Functions

3

PTS: 2 REF: fall0923a2 STA: A2.A.39 TOP: Domain and Range KEY: real domain

2

PTS: 2 REF: 061112a2 STA: A2.A.39 TOP: Domain and Range KEY: real domain

2

PTS: 2 REF: 011222a2 STA: A2.A.39 TOP: Domain and Range KEY: real domain

1

PTS: 2 REF: 061202a2 STA: A2.A.51 TOP: Domain and Range

2

D: $-5 \leq x \leq 8$. R: $-3 \leq y \leq 2$

PTS: 2 REF: 011132a2 STA: A2.A.51 TOP: Domain and Range

3

\[f(4) = \frac{1}{2} (4) - 3 = -1. \quad g(-1) = 2(-1) + 5 = 3 \]

PTS: 2 REF: fall0902a2 STA: A2.A.42 TOP: Compositions of Functions KEY: numbers

2

\[6(x^2 - 5) = 6x^2 - 30 \]

PTS: 2 REF: 011109a2 STA: A2.A.42 TOP: Compositions of Functions KEY: variables

4

\[g\left(\frac{1}{2}\right) = \frac{1}{4} = 2. \quad f(2) = 4(2) - 2^2 = 4 \]

PTS: 2 REF: 011204a2 STA: A2.A.42 TOP: Compositions of Functions KEY: numbers
7. \(f(-3) = (-3)^2 - 6 = 3 \). \(g(x) = 2^3 - 1 = 7 \).

\[f\left(\frac{-3}{2}\right) = (-3)^2 - 6 = 3. \quad g(x) = 2^3 - 1 = 7. \]

\[y = x^2 - 6. \quad f^{-1}(x) \text{ is not a function.} \]

\[x = y^2 - 6 \]

\[x + 6 = y^2 \]

\[\sqrt{x + 6} = y \]

\[b_n = x + 2n \]

\[10 = x + 2(1) \]

\[8 = x \]

\[\frac{10}{4} = 2.5 \]
187 ANS: 3
\[27r^{4-1} = 64\]
\[r^3 = \frac{64}{27}\]
\[r = \frac{4}{3}\]

PTS: 2 REF: 081025a2 STA: A2.A.31 TOP: Sequences

188 ANS: 3
\[a_n = 5(-2)^{n-1}\]
\[a_{15} = 5(-2)^{15-1} = 81,920\]

PTS: 2 REF: 011105a2 STA: A2.A.32 TOP: Sequences

189 ANS: 1
\[a_n = -\sqrt{5} (-\sqrt{2})^{n-1}\]
\[a_{15} = -\sqrt{5} (-\sqrt{2})^{15-1} = -\sqrt{5} (-\sqrt{2})^{14} = -\sqrt{5} \cdot 2^7 = -128\sqrt{5}\]

PTS: 2 REF: 061109a2 STA: A2.A.32 TOP: Sequences

190 ANS:
\[a_1 = 3, \ a_2 = 2(3) - 1 = 5, \ a_3 = 2(5) - 1 = 9.\]

PTS: 2 REF: 061233a2 STA: A2.A.33 TOP: Recursive Sequences

191 ANS:
\[-3, -5, -8, -12\]

PTS: 2 REF: fall0934a2 STA: A2.A.33 TOP: Recursive Sequences

192 ANS: 1

<table>
<thead>
<tr>
<th>(n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-r^2 + r)</td>
<td>(-3^2 + 3 = -6)</td>
<td>(-4^2 + 4 = -12)</td>
<td>(-5^2 + 5 = -20)</td>
<td>(-38)</td>
</tr>
</tbody>
</table>

PTS: 2 REF: 061118a2 STA: A2.N.10 TOP: Sigma Notation KEY: basic

193 ANS: 3

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 + 2^n)</td>
<td>(0^2 + 2^0 = 1)</td>
<td>(1^2 + 2^2 = 3)</td>
<td>(2^2 + 2^2 = 8)</td>
<td>(12)</td>
</tr>
</tbody>
</table>

\[2 \times 12 = 24\]

PTS: 2 REF: fall0911a2 STA: A2.N.10 TOP: Sigma Notation KEY: basic
\[\frac{\sum_{n=1}^{15} 7n}{194} = -104. \]

- 104.

PTS: 2 REF: 011230a2 STA: A2.N.10 TOP: Sigma Notation KEY: basic

195 ANS:

\[230. \ 10 + (1^3 - 1) + (2^3 - 1) + (3^3 - 1) + (4^3 - 1) + (5^3 - 1) = 10 + 0 + 7 + 26 + 63 + 124 = 230 \]

PTS: 2 REF: 011131a2 STA: A2.N.10 TOP: Sigma Notation KEY: basic

196 ANS: 1 PTS: 2 REF: 061025a2 STA: A2.A.34 TOP: Sigma Notation

197 ANS: 2 PTS: 2 REF: 061205a2 STA: A2.A.34 TOP: Sigma Notation

198 ANS:

\[\sum_{n=1}^{15} 7n \]

PTS: 2 REF: 081029a2 STA: A2.A.34 TOP: Sigma Notation

199 ANS: 4

\[S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{21}{2} [2(18) + (21 - 1)2] = 798 \]

PTS: 2 REF: 061103a2 STA: A2.A.35 TOP: Series KEY: arithmetic

200 ANS: 3

\[S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{19}{2} [2(3) + (19 - 1)7] = 1254 \]

PTS: 2 REF: 011202a2 STA: A2.A.35 TOP: Summations KEY: arithmetic
\[\cos K = \frac{5}{6} \]

\[K = \cos^{-1} \frac{5}{6} \]

\[K \approx 33^\circ 33' \]

201 ANS: 1

PTS: 2
REF: 061023a2
STA: A2.A.55
TOP: Trigonometric Ratios

\[\cos^{-1}(\frac{5}{6}) \approx 33^\circ 33' \]

202 ANS: 2
PTS: 2
REF: 081010a2
STA: A2.A.55
TOP: Trigonometric Ratios

\[\sqrt{12^2 - 6^2} = \sqrt{108} = \sqrt{36 \cdot 3} = 6\sqrt{3} \]
\[\cot J = \frac{A}{O} = \frac{6}{6\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3} \]

PTS: 2
REF: 011120a2
STA: A2.A.55
TOP: Trigonometric Ratios

204 ANS: 3

\[2\pi \cdot \frac{5}{12} = \frac{10\pi}{12} = \frac{5\pi}{6} \]

PTS: 2
REF: 061125a2
STA: A2.M.1
TOP: Radian Measure

205 ANS: 1

\[-420 \left(\frac{\pi}{180} \right) = -\frac{7\pi}{3} \]

PTS: 2
KEY: radians
REF: 081002a2
STA: A2.M.2
TOP: Radian Measure

206 ANS: 1

\[2 \cdot \frac{180}{\pi} = \frac{360}{\pi} \]

PTS: 2
KEY: degrees
REF: 011220a2
STA: A2.M.2
TOP: Radian Measure

207 ANS: 2

\[\frac{11\pi}{12} \cdot \frac{180}{\pi} = 165 \]

PTS: 2
KEY: degrees
REF: 061002a2
STA: A2.M.2
TOP: Radian Measure
208 ANS:

\[197°40' \cdot 3.45 \times \frac{180}{\pi} \approx 197°40'. \]

PTS: 2 REF: fall0931a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

209 ANS:

\[2.5 \cdot \frac{180}{\pi} \approx 143.2° \]

PTS: 2 REF: 011129a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

210 ANS:

\[216 \left(\frac{\pi}{180} \right) \approx 3.8 \]

PTS: 2 REF: 061232a2 STA: A2.M.2 TOP: Radian Measure

KEY: radians

211 ANS: 4 PTS: 2 REF: 081005a2 STA: A2.A.60 TOP: Unit Circle

212 ANS: 4 PTS: 2 REF: 061206a2 STA: A2.A.60 TOP: Unit Circle

213 ANS:

\[
\frac{\sqrt{3}}{2}
\]

PTS: 2 REF: 061033a2 STA: A2.A.60 TOP: Unit Circle
\[\frac{\sqrt{13}}{2}, \quad \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(-3)^2 + 2^2}} = \frac{2}{\sqrt{13}}, \quad \csc \theta = \frac{\sqrt{13}}{2}. \]

PTS: 2 REF: fall0933a2 STA: A2.A.62 TOP: Determining Trigonometric Functions

\[\text{ANS:} 2 \]

\[\tan(126.43^\circ) \]
\[\approx -1.540788784 \]

PTS: 2 REF: 061115a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

\[\text{ANS:} 4 \]

\[\sin(128.02^\circ) \]
\[\approx 1.505690217 \]

PTS: 2 REF: 061217a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

\[\text{ANS:} 1 \]

\[\cos(\frac{\pi}{2}) \]
\[\approx -1.154700538 \]

PTS: 2 REF: 011203a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

\[\text{ANS:} 3 \]

\[\text{PTS:} 2 \]
\[\text{REF:} 081007a2 \]
\[\text{STA:} A2.A.64 \]
\[\text{TOP:} \text{Using Inverse Trigonometric Functions} \]
\[\text{KEY:} \text{basic} \]

\[\text{ANS:} 3 \]

\[\text{PTS:} 2 \]
\[\text{REF:} 011104a2 \]
\[\text{STA:} A2.A.64 \]
\[\text{TOP:} \text{Using Inverse Trigonometric Functions} \]
\[\text{KEY:} \text{unit circle} \]

\[\text{ANS:} 1 \]

\[\text{PTS:} 2 \]
\[\text{REF:} 011112a2 \]
\[\text{STA:} A2.A.64 \]
\[\text{TOP:} \text{Using Inverse Trigonometric Functions} \]
\[\text{KEY:} \text{advanced} \]

\[\text{ANS:} 2 \]

\[\cos(-305^\circ + 360^\circ) = \cos(55^\circ) \]

PTS: 2 REF: 061104a2 STA: A2.A.57 TOP: Reference Angles

\[\text{ANS:} 4 \]

\[s = \theta r = 2 \cdot 4 = 8 \]

PTS: 2 REF: fall0922a2 STA: A2.A.61 TOP: Arc Length
\[\text{KEY:} \text{arc length} \]
223 ANS: 3
\[s = \theta r = \frac{2\pi}{8} \cdot 6 = \frac{3\pi}{2} \]

PTS: 2 REF: 061212a2 STA: A2.A.61 TOP: Arc Length

224 ANS: 3
Cofunctions tangent and cotangent are complementary

PTS: 2 REF: 061014a2 STA: A2.A.58 TOP: Cofunction Trigonometric Relationships

225 ANS: 3
\[\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta \]

PTS: 2 REF: 061123a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

226 ANS:
\[\cos \theta \cdot \frac{1}{\cos \theta} - \cos^2 \theta = 1 - \cos^2 \theta = \sin^2 \theta \]

PTS: 2 REF: 061206a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

227 ANS:
\[\frac{2\sqrt{3}}{3}. \text{ If } \sin 60 = \frac{\sqrt{3}}{2}, \text{ then } \csc 60 = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3} \]

PTS: 2 REF: 011235a2 STA: A2.A.59 TOP: Reciprocal Trigonometric Relationships

228 ANS: 2 PTS: 2 REF: 011208a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

229 ANS:
\[\sin^2 A + \cos^2 A = \frac{1}{\cos^2 A} \]
\[\tan^2 A + 1 = \sec^2 A \]

PTS: 2 REF: 011135a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

230 ANS: 3 PTS: 2 REF: fall0910a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities

231 ANS: 1
\[\cos(A - B) = \left(\frac{5}{13} \right) \left(-\frac{3}{5} \right) + \left(\frac{12}{13} \right) \left(\frac{4}{5} \right) = \frac{-15}{65} + \frac{48}{65} = \frac{33}{65} \]

PTS: 2 REF: 011214a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
232 ANS:
\[
\frac{23}{2} \cos^2 B + \sin^2 B = 1
\]
\[
\tan B = \frac{\sin B}{\cos B} = \frac{5}{\sqrt{41}} \quad \cos B = \frac{4}{\sqrt{41}}
\]
\[
\tan(A + B) = \frac{\frac{2}{3} + \frac{5}{4}}{1 - \left(\frac{2}{3}\right)\left(\frac{5}{4}\right)} = \frac{8 + 15}{12 - 10} = \frac{23}{2}
\]
\[
\cos^2 B + \left(\frac{5}{\sqrt{41}}\right)^2 = 1
\]
\[
\cos^2 B + \frac{25}{41} = \frac{41}{41}
\]
\[
\cos^2 B = \frac{16}{41}
\]
\[
\cos B = \frac{4}{\sqrt{41}}
\]
PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities KEY: evaluating

233 ANS:
\[
\sin(45 + 30) = \sin 45 \cos 30 + \cos 45 \sin 30
\]
\[
= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}
\]
PTS: 4 REF: 061136a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities KEY: evaluating

234 ANS: 1
\[
\cos^2 \theta - \cos 2\theta = \cos^2 \theta - (\cos^2 \theta - \sin^2 \theta) = \sin^2 \theta
\]
PTS: 2 REF: 061024a2 STA: A2.A.77 TOP: Double Angle Identities KEY: simplifying

235 ANS: 3
\[
\left(\frac{2}{3}\right)^2 + \cos^2 A = 1
\]
\[
\sin 2A = 2 \sin A \cos A
\]
\[
\cos^2 A = \frac{5}{9}
\]
\[
= 2 \left(\frac{2}{3}\right) \left(\frac{\sqrt{5}}{3}\right)
\]
\[
\cos A = +\frac{\sqrt{5}}{3}, \text{sin A is acute.} \quad = \frac{4\sqrt{5}}{9}
\]
PTS: 2 REF: 011107a2 STA: A2.A.77 TOP: Double Angle Identities KEY: evaluating
If \(\sin x = 0.8 \), then \(\cos x = 0.6 \). \[
\tan \frac{1}{2}x = \frac{1 - 0.6}{1 + 0.6} = \frac{0.4}{1.6} = 0.5.
\]

\[2 \cos \theta = 1\]
\[
\cos \theta = \frac{1}{2}
\]
\[
\theta = \cos^{-1} \frac{1}{2} = 60, 300
\]

\[\tan \theta - \sqrt{3} = 0\]
\[
\tan \theta = \sqrt{3}
\]
\[
\theta = \tan^{-1} \sqrt{3}
\]
\[
\theta = 60, 240
\]

\[2 \tan C - 3 = 3 \tan C - 4\]
\[
1 = \tan C
\]
\[
\tan^{-1} 1 = C
\]
\[
C = 45, 225
\]
ANS:
0, 60, 180, 300.

\[\sin 2\theta = \sin \theta \]

\[\sin 2\theta - \sin \theta = 0 \]

\[2 \sin \theta \cos \theta - \sin \theta = 0 \]

\[\sin \theta (2 \cos \theta - 1) = 0 \]

\[\sin \theta = 0 \quad 2 \cos \theta - 1 = 0 \]

\[\theta = 0, 180 \quad \cos \theta = \frac{1}{2} \]

\[\theta = 60, 300 \]

PTS: 4 REF: 061037a2 STA: A2.A.68 TOP: Trigonometric Equations KEY: double angle identities
Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic
Answer Section

241 ANS: 2
\[
\frac{2\pi}{b} = \frac{2\pi}{3}
\]

PTS: 2 REF: 061111a2 STA: A2.A.69
TOP: Properties of Graphs of Trigonometric Functions KEY: period

242 ANS: 4
\[
\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{3}} = 6\pi
\]

PTS: 2 REF: 061027a2 STA: A2.A.69
TOP: Properties of Graphs of Trigonometric Functions KEY: period

243 ANS: 4
\[
\frac{2\pi}{b} = 30
\]

\[
b = \frac{\pi}{15}
\]

PTS: 2 REF: 011227a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph

244 ANS:
\[y = -3\sin 2x.\] The period of the function is \(\pi\), the amplitude is 3 and it is reflected over the \(x\)-axis.

PTS: 2 REF: 061235a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph

245 ANS: 3 PTS: 2 REF: fall0913a2 STA: A2.A.65
TOP: Graphing Trigonometric Functions

246 ANS: 3 PTS: 2 REF: 061119a2 STA: A2.A.65
TOP: Graphing Trigonometric Functions

247 ANS: 3
\[
\text{period} = \frac{2\pi}{b} = \frac{2\pi}{3\pi} = \frac{2}{3}
\]

PTS: 2 REF: 081026a2 STA: A2.A.70 TOP: Graphing Trigonometric Functions
KEY: recognize
248 ANS: 3

PTS: 2 REF: 061020a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

249 ANS: 1

PTS: 2 REF: 011123a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

250 ANS: 3

PTS: 2 REF: 011207a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

251 ANS: 3 PTS: 2 REF: 061022a2 STA: A2.A.63 TOP: Domain and Range

252 ANS: 3 PTS: 2 REF: 061224a2 STA: A2.A.63 TOP: Domain and Range

253 ANS: 2

\[K = \frac{1}{2} \cdot 10 \cdot (18) \sin 120 = 45 \sqrt{3} \approx 78 \]

PTS: 2 REF: fall0907a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic

254 ANS: 3

\[K = (10) \cdot (18) \sin 46 \approx 129 \]

PTS: 2 REF: 081021a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

255 ANS: 1

\[\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4 \]

PTS: 2 REF: 011218a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic
ANS:
\[K = \text{absin}C = 24 \cdot 30 \sin 57 \approx 604 \]

PTS: 2 REF: 061034a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

ANS:
\[K = \text{absin}C = 18 \cdot 22 \sin 60 = 396 \frac{\sqrt{3}}{2} = 198\sqrt{3} \]

PTS: 2 REF: 061234a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms

ANS:
\[88. \frac{100}{\sin 33} = \frac{x}{\sin 32}. \quad \sin 66 \approx \frac{T}{97.3} \]
\[x \approx 97.3 \quad t \approx 88 \]

KEY: advanced

ANS:
\[\frac{12}{\sin 32} = \frac{10}{\sin B}. \quad C \approx 180 - (32 + 26.2) \approx 121.8. \quad \frac{12}{\sin 32} = \frac{c}{\sin 121.8} \]
\[B = \sin^{-1} \frac{10 \sin 32}{12} \approx 26.2 \quad c = \frac{12 \sin 121.8}{\sin 32} \approx 19.2 \]

PTS: 4 REF: 011137a2 STA: A2.A.73 TOP: Law of Sines
KEY: basic

ANS:
\[\frac{10}{\sin 35} = \frac{13}{\sin B}. \quad 35 + 48 < 180 \]
\[B \approx 48,132 \quad 35 + 132 < 180 \]

PTS: 2 REF: 01113a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

ANS:
\[\frac{9}{\sin A} = \frac{10}{\sin 70} \quad 58^\circ + 70^\circ \text{ is possible.} \quad 122^\circ + 70^\circ \text{ is not possible.} \]
\[A = 58 \]

PTS: 2 REF: 011210a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

ANS:
\[\frac{59.2}{\sin 74} = \frac{60.3}{\sin C} \quad 180 - 78.3 = 101.7 \]
\[C \approx 78.3 \]

PTS: 2 REF: 081006a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case
\[
\frac{6}{\sin 35} = \frac{10}{\sin N}
\]
\[
N \approx 73
\]
\[
73 + 35 < 180
\]
\[
(180 - 73) + 35 < 180
\]

PTS: 2 REF: 061226a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

ANS: 1

\[
13^2 = 15^2 + 14^2 - 2(15)(14)\cos C
\]
\[
169 = 421 - 420\cos C
\]
\[
-252 = -420\cos C
\]
\[
\frac{252}{420} = \cos C
\]
\[
53 \approx C
\]

KEY: find angle

ANS: 4

\[
s = 3^2 + 5^2 - 2(3)(5)\cos A
\]
\[
49 = 34 - 30\cos A
\]
\[
15 = -30\cos A
\]
\[
\frac{1}{2} = \cos A
\]
\[
120 = \cos A
\]

PTS: 2 REF: 081017a2 STA: A2.A.73 TOP: Law of Cosines

KEY: angle, without calculator

ANS:

33. \[a = \sqrt{10^2 + 6^2 - 2(10)(6)\cos 80} \approx 10.7. \angle C \text{ is opposite the shortest side.} \]

\[
\frac{6}{\sin C} = \frac{10.7}{\sin 80}
\]
\[
C \approx 33
\]

KEY: advanced
\[r^2 = 25^2 + 85^2 - 2(25)(85) \cos 125. \]
\[r^2 \approx 10287.7 \]
\[r \approx 101.43 \]

\[\frac{2.5}{\sin x} = \frac{101.43}{\sin 125} \]
\[x \approx 12 \]

PTS: 6 REF: fall0939a2 STA: A2.A.73 TOP: Vectors

\[\frac{27}{\sin 75} = \frac{F_1}{\sin 60} \quad \frac{27}{\sin 75} = \frac{F_2}{\sin 45}. \]
\[F_1 \approx 24 \quad F_1 \approx 20 \]

PTS: 4 REF: 061238a2 STA: A2.A.73 TOP: Vectors

TOP: Equations of Circles

\[(x + 5)^2 + (y - 3)^2 = 32 \]

PTS: 2 REF: 081033a2 STA: A2.A.49 TOP: Writing Equations of Circles

\[r = \sqrt{2^2 + 3^2} = \sqrt{13}. \quad (x + 5)^2 + (y - 2)^2 = 13 \]

PTS: 2 REF: 011234a2 STA: A2.A.49 TOP: Writing Equations of Circles

\[(x + 3)^2 + (y - 4)^2 = 25 \]

PTS: 2 REF: fall0929a2 STA: A2.A.49 TOP: Writing Equations of Circles
273 ANS: 2

\[x^2 - 2x + y^2 + 6y = -3 \]

\[x^2 - 2x + 1 + y^2 + 6y + 9 = -3 + 1 + 9 \]

\[(x - 1)^2 + (y + 3)^2 = 7 \]

PTS: 2 REF: 061016a2 STA: A2.A.47 TOP: Equations of Circles