Dear Sir

I have to acknowledge the receipt of your favor of May 14. in which you mention that you have finished the
6. first books of Euclid, plane trigonometry, surveying & algebra and ask whether I think a further
pursuit of that branch of science would be useful to you. there are some propositions in the latter books of
Euclid, & some of Archimedes, which are useful. & I have no doubt you have been made acquainted with
them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he will not
resort to it for some of the purposes of common life. the science of calculation also is indispensable as far as
the extraction of the square & cube roots; Algebra as far as the quadratic equation & the use of logarithms
are often of value in ordinary cases: but all beyond those is but a luxury; a delicious luxury indeed; but
not to be indulged in by one who is to have a profession to follow for his subsistence. in this light I view the
conic sections, curves of the higher orders, perhaps even spherical trigonometry, Algebraical operations
beyond the 2d dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.
1 The expression \((3 - 7i)^2\) is equivalent to
1) \(-40 + 0i\)
2) \(-40 - 42i\)
3) \(58 + 0i\)
4) \(58 - 42i\)

2 If \(f(x) = \frac{1}{2} x - 3\) and \(g(x) = 2x + 5\), what is the value of \((g \circ f)(4)\)?
1) \(-13\)
2) \(3.5\)
3) \(3\)
4) \(6\)

3 What are the values of \(\theta\) in the interval \(0^\circ \leq \theta < 360^\circ\) that satisfy the equation \(\tan \theta - \sqrt{3} = 0\)?
1) \(60^\circ, 240^\circ\)
2) \(72^\circ, 252^\circ\)
3) \(72^\circ, 108^\circ, 252^\circ, 288^\circ\)
4) \(60^\circ, 120^\circ, 240^\circ, 300^\circ\)

4 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?
1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

5 Which graph represents the solution set of \(|6x - 7| \leq 5\)?

6 Which function is not one-to-one?
1) \{\((0,1),(1,2),(2,3),(3,4)\}\}
2) \{\((0,0),(1,1),(2,2),(3,3)\}\}
3) \{\((0,1),(1,0),(2,3),(3,2)\}\}
4) \{\((0,1),(1,0),(2,0),(3,2)\}\}

7 In \(\triangle ABC\), \(m\angle A = 120^\circ\), \(b = 10\), and \(c = 18\). What is the area of \(\triangle ABC\) to the nearest square inch?
1) 52
2) 78
3) 90
4) 156
8. Which graph does *not* represent a function?

1)

2)

3)

4)

9. The expression \(\log_2 64 \) is equivalent to
 1) 8
 2) 2
 3) \(\frac{1}{2} \)
 4) \(\frac{1}{8} \)

10. The expression \(\cos 4x \cos 3x + \sin 4x \sin 3x \) is equivalent to
 1) \(\sin x \)
 2) \(\sin 7x \)
 3) \(\cos x \)
 4) \(\cos 7x \)

11. The value of the expression \(2 \sum_{n=0}^{2} (n^2 + 2^n) \) is
 1) 12
 2) 22
 3) 24
 4) 26

12. For which equation does the sum of the roots equal \(\frac{3}{4} \) and the product of the roots equal –2?
 1) \(4x^2 - 8x + 3 = 0 \)
 2) \(4x^2 + 8x + 3 = 0 \)
 3) \(4x^2 - 3x - 8 = 0 \)
 4) \(4x^2 + 3x - 2 = 0 \)

13. Which graph represents the equation \(y = \cos^{-1}x \)?

1)

2)

3)

4)
14 The expression \(\frac{a^2 b^{-3}}{a^{-4} b^2} \) is equivalent to

1) \(\frac{a^6}{b^5} \)
2) \(\frac{b^5}{a^6} \)
3) \(\frac{a^2}{b} \)
4) \(a^{-2} b^{-1} \)

15 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies

1) below the 16th percentile
2) between the 50th and 84th percentiles
3) between the 16th and 50th percentiles
4) above the 84th percentile

16 If a function is defined by the equation \(f(x) = 4^x \), which graph represents the inverse of this function?

1)

2)

3)

4)

17 Factored completely, the expression \(6x - x^3 - x^2 \) is equivalent to

1) \(x(x + 3)(x - 2) \)
2) \(x(x - 3)(x + 2) \)
3) \(-x(x - 3)(x + 2) \)
4) \(-x(x + 3)(x - 2) \)
18 The expression $4ab\sqrt{2b} - 3a\sqrt{18b^3} + 7ab\sqrt{6b}$ is equivalent to
 1) $2ab\sqrt{6b}$
 2) $16ab\sqrt{2b}$
 3) $-5ab + 7ab\sqrt{6b}$
 4) $-5ab\sqrt{2b} + 7ab\sqrt{6b}$

19 What is the fourth term in the expansion of $(3x - 2)^5$?
 1) $-720x^2$
 2) $-240x$
 3) $720x^2$
 4) $1,080x^3$

20 Written in simplest form, the expression $\frac{x}{4} - \frac{1}{x}$ is equivalent to
 1) $x - 1$
 2) $x - 2$
 3) $\frac{x - 2}{2}$
 4) $\frac{x^2 - 4}{x + 2}$

21 What is the solution of the equation $2\log_4(5x) = 3$?
 1) 6.4
 2) 2.56
 3) $\frac{9}{5}$
 4) $\frac{8}{5}$

22 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?
 1) 2π
 2) 2
 3) 8π
 4) 8

23 What is the domain of the function $f(x) = \sqrt{x - 2} + 3$?
 1) $(-\infty, \infty)$
 2) $(2, \infty)$
 3) $[2, \infty)$
 4) $[3, \infty)$

24 The table below shows the first-quarter averages for Mr. Harper’s statistics class.

<table>
<thead>
<tr>
<th>Statistics Class Averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Averages</td>
</tr>
<tr>
<td>99</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>87</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>65</td>
</tr>
</tbody>
</table>

What is the population variance for this set of data?
 1) 8.2
 2) 8.3
 3) 67.3
 4) 69.3

25 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?
 1) $8!$
 2) $\frac{8!}{4!}$
 3) $\frac{8!}{2! + 2!}$
 4) $\frac{8!}{2! \cdot 2!}$
26. The graph below shows the function \(f(x) \).

![Graph of function \(f(x) \)](image)

Which graph represents the function \(f(x + 2) \)?

1)
2)
3)
4)

27. The equation \(y - 2 \sin \theta = 3 \) may be rewritten as
 1) \(f(y) = 2 \sin x + 3 \)
 2) \(f(y) = 2 \sin \theta + 3 \)
 3) \(f(x) = 2 \sin \theta + 3 \)
 4) \(f(\theta) = 2 \sin \theta + 3 \)

28. Express \(\frac{5}{3 - \sqrt{2}} \) with a rational denominator, in simplest radical form.

29. Write an equation of the circle shown in the graph below.

![Circle with center at (-3, 4) and radius 5](image)

30. Solve for \(x \):
 \[\frac{4x}{x - 3} = 2 + \frac{12}{x - 3} \]

31. Find, to the nearest minute, the angle whose measure is 3.45 radians.

32. Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula \(V = Pe^{rt} \), where \(V \) is the value of the account in \(t \) years, \(P \) is the principal initially invested, \(e \) is the base of a natural logarithm, and \(r \) is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.
33 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

34 Find the first four terms of the recursive sequence defined below.

\begin{align*}
a_1 &= -3 \\
a_n &= a_{(n-1)} - n
\end{align*}

35 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

36 Solve $2x^2 - 12x + 4 = 0$ by completing the square, expressing the result in simplest radical form.

37 Solve the equation $8x^3 + 4x^2 - 18x - 9 = 0$ algebraically for all values of x.

38 The table below shows the results of an experiment involving the growth of bacteria.

<table>
<thead>
<tr>
<th>Time (x) (in minutes)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bacteria (y)</td>
<td>2</td>
<td>25</td>
<td>81</td>
<td>175</td>
<td>310</td>
<td>497</td>
</tr>
</tbody>
</table>

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria’s growth, to the nearest integer, after 15 minutes.

39 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.
1. What is the common difference of the arithmetic sequence 5, 8, 11, 14?
 1) \(\frac{8}{5} \)
 2) \(-3\)
 3) 3
 4) 9

2. What is the number of degrees in an angle whose radian measure is \(\frac{11\pi}{12} \)?
 1) 150
 2) 165
 3) 330
 4) 518

3. If \(a = 3 \) and \(b = -2 \), what is the value of the expression \(\frac{a^2}{b^3} \)?
 1) \(\frac{9}{8} \)
 2) \(-1\)
 3) \(\frac{8}{9} \)
 4) \(\frac{8}{9} \)

4. Four points on the graph of the function \(f(x) \) are shown below:
 \((0,1), (1,2), (2,4), (3,8)\)
 Which equation represents \(f(x) \)?
 1) \(f(x) = 2^x \)
 2) \(f(x) = 2x \)
 3) \(f(x) = x + 1 \)
 4) \(f(x) = \log_2 x \)

5. The graph of \(y = f(x) \) is shown below.

Which set lists all the real solutions of \(f(x) = 0 \)?
 1) \{ -3, 2 \}
 2) \{ -2, 3 \}
 3) \{ -3, 0, 2 \}
 4) \{ -2, 0, 3 \}

6. In simplest form, \(\sqrt{-300} \) is equivalent to
 1) \(3i\sqrt{10} \)
 2) \(5i\sqrt{12} \)
 3) \(10i\sqrt{3} \)
 4) \(12i\sqrt{5} \)

7. Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A. Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?
 1) \(20! \)
 2) \(\frac{20!}{3!} \)
 3) \(\binom{20}{3} \)
 4) \(20^3 \)
8 Factored completely, the expression \(12x^4 + 10x^3 - 12x^2\) is equivalent to

1) \(x^2(4x + 6)(3x - 2)\)
2) \(2(2x^2 + 3x)(3x^2 - 2x)\)
3) \(2x^2(2x - 3)(3x + 2)\)
4) \(2x^2(2x + 3)(3x - 2)\)

9 The solutions of the equation \(y^2 - 3y = 9\) are

1) \(\frac{3 \pm 3\sqrt{3}}{2}\)
2) \(\frac{3 \pm 3\sqrt{5}}{2}\)
3) \(-\frac{3 \pm 3\sqrt{5}}{2}\)
4) \(\frac{3 \pm 3\sqrt{5}}{2}\)

10 The expression \(2 \log x - (3 \log y + \log z)\) is equivalent to

1) \(\log \frac{x^2}{y^3z}\)
2) \(\log \frac{x^2z}{y^3}\)
3) \(\log \frac{2x}{3yz}\)
4) \(\log \frac{2xz}{3y}\)

11 The expression \((x^2 - 1)^{-\frac{2}{3}}\) is equivalent to

1) \(\frac{1}{\sqrt[3]{(x^2 - 1)^2}}\)
2) \(\frac{1}{\sqrt[3]{(x^2 - 1)^2}}\)
3) \(\sqrt[3]{(x^2 - 1)^3}\)
4) \(\frac{1}{\sqrt[3]{(x^2 - 1)^3}}\)

12 Which expression is equivalent to \(\sqrt[3]{3 + 5}\)?

1) \(\frac{14 + 5\sqrt{3}}{11}\)
2) \(\frac{17 + 5\sqrt{3}}{14}\)
3) \(\frac{14 + 5\sqrt{3}}{14}\)
4) \(\frac{17 + 5\sqrt{3}}{14}\)

13 Which relation is not a function?

1) \((x - 2)^2 + y^2 = 4\)
2) \(x^2 + 4x + y = 4\)
3) \(x + y = 4\)
4) \(xy = 4\)

14 If \(\angle A\) is acute and \(\tan A = \frac{2}{3}\), then

1) \(\cot A = \frac{2}{3}\)
2) \(\cot A = \frac{1}{3}\)
3) \(\cot(90^\circ - A) = \frac{2}{3}\)
4) \(\cot(90^\circ - A) = \frac{1}{3}\)

15 The solution set of \(4x^2 + 4x = 2^-6\) is

1) \(\{1, 3\}\)
2) \(\{-1, 3\}\)
3) \(\{-1, -3\}\)
4) \(\{1, -3\}\)

16 The equation \(x^2 + y^2 - 2x + 6y + 3 = 0\) is equivalent to

1) \((x - 1)^2 + (y + 3)^2 = -3\)
2) \((x - 1)^2 + (y + 3)^2 = 7\)
3) \((x + 1)^2 + (y + 3)^2 = 7\)
4) \((x + 1)^2 + (y + 3)^2 = 10\)
17 Which graph best represents the inequality \(y + 6 \geq x^2 - x \)?

18 The solution set of the equation \(\sqrt{x + 3} = 3 - x \) is
1) \{1\}
2) \{0\}
3) \{1, 6\}
4) \{2, 3\}

19 The product of \(i^7 \) and \(i^5 \) is equivalent to
1) 1
2) -1
3) \(i \)
4) \(-i\)

20 Which equation is represented by the graph below?

1) \(y = \cot x \)
2) \(y = \csc x \)
3) \(y = \sec x \)
4) \(y = \tan x \)

21 Which value of \(r \) represents data with a strong negative linear correlation between two variables?
1) -1.07
2) -0.89
3) -0.14
4) 0.92
22 The function \(f(x) = \tan x \) is defined in such a way that \(f^{-1}(x) \) is a function. What can be the domain of \(f(x) \)?
1) \(\{x | 0 \leq x \leq \pi\} \)
2) \(\{x | 0 \leq x \leq 2\pi\} \)
3) \(\{x | -\frac{\pi}{2} < x < \frac{\pi}{2}\} \)
4) \(\{x | -\frac{\pi}{2} < x < \frac{3\pi}{2}\} \)

23 In the diagram below of right triangle \(KTW \), \(KW = 6 \), \(KT = 5 \), and \(m\angle KTW = 90^\circ \).

What is the measure of \(\angle K \), to the nearest minute?
1) 33°33'
2) 33°34'
3) 33°55'
4) 33°56'

24 The expression \(\cos^2 \theta - \cos 2\theta \) is equivalent to
1) \(\sin^2 \theta \)
2) \(-\sin^2 \theta \)
3) \(\cos^2 \theta + 1 \)
4) \(-\cos^2 \theta - 1 \)

25 Mrs. Hill asked her students to express the sum \(1 + 3 + 5 + 7 + 9 + \ldots + 39 \) using sigma notation. Four different student answers were given. Which student answer is correct?
1) \(\sum_{k=1}^{20} (2k - 1) \)
2) \(\sum_{k=2}^{40} (k - 1) \)
3) \(\sum_{k=-1}^{37} (k + 2) \)
4) \(\sum_{k=1}^{39} (2k - 1) \)

26 What is the formula for the \(n \)th term of the sequence 54, 18, 6, \ldots?
1) \(a_n = 6 \left(\frac{1}{3} \right)^n \)
2) \(a_n = 6 \left(\frac{1}{3} \right)^{n-1} \)
3) \(a_n = 54 \left(\frac{1}{3} \right)^n \)
4) \(a_n = 54 \left(\frac{1}{3} \right)^{n-1} \)

27 What is the period of the function \(y = \frac{1}{2} \sin \left(\frac{x}{3} - \pi \right) \)?
1) \(\frac{1}{2} \)
2) \(\frac{1}{3} \)
3) \(\frac{2}{3} \pi \)
4) \(6\pi \)

28 Use the discriminant to determine all values of \(k \) that would result in the equation \(x^2 - kx + 4 = 0 \) having equal roots.
29. The scores of one class on the Unit 2 mathematics test are shown in the table below.

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>68</td>
<td>2</td>
</tr>
</tbody>
</table>

Find the population standard deviation of these scores, to the nearest tenth.

30. Find the sum and product of the roots of the equation $5x^2 + 11x - 3 = 0$.

31. The graph of the equation $y = \left(\frac{1}{2}\right)^x$ has an asymptote. On the grid below, sketch the graph of $y = \left(\frac{1}{2}\right)^x$ and write the equation of this asymptote.

32. Express $5\sqrt{3x^3} - 2\sqrt{27x^3}$ in simplest radical form.

33. On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^\circ$.

34. Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

35. Express in simplest form: $\frac{1}{2} - \frac{4}{d}$

36. The members of a men’s club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

37. Find all values of θ in the interval $0^\circ \leq \theta < 360^\circ$ that satisfy the equation $\sin 2\theta = \sin \theta$.
38 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word “TENNESSEE” is greater than the number of different 7-letter arrangements of the word “VERMONT.” Is she correct? Justify your answer.

39 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.
1 The product of \((3 + \sqrt{5})\) and \((3 - \sqrt{5})\) is
 1) \(4 - 6\sqrt{5}\)
 2) \(14 - 6\sqrt{5}\)
 3) 14
 4) 4

2 What is the radian measure of an angle whose measure is \(-420^\circ\)?
 1) \(\frac{7\pi}{3}\)
 2) \(\frac{7\pi}{6}\)
 3) \(\frac{7\pi}{6}\)
 4) \(\frac{7\pi}{3}\)

3 What are the domain and the range of the function shown in the graph below?
 1) \(\{x \mid x > -4\}; \{y \mid y > 2\}\)
 2) \(\{x \mid x \geq -4\}; \{y \mid y \geq 2\}\)
 3) \(\{x \mid x > 2\}; \{y \mid y > -4\}\)
 4) \(\{x \mid x \geq 2\}; \{y \mid y \geq -4\}\)

4 The expression \(2i^2 + 3i^3\) is equivalent to
 1) \(-2 - 3i\)
 2) \(2 - 3i\)
 3) \(-2 + 3i\)
 4) \(2 + 3i\)

5 In which graph is \(\theta\) coterminal with an angle of \(-70^\circ\)?

6 In \(\triangle ABC\), \(m\angle A = 74\), \(a = 59.2\), and \(c = 60.3\). What are the two possible values for \(m\angle C\), to the nearest tenth?
 1) 73.7 and 106.3
 2) 73.7 and 163.7
 3) 78.3 and 101.7
 4) 78.3 and 168.3
7 What is the principal value of \(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \)?

1) \(-30^\circ\)
2) \(60^\circ\)
3) \(150^\circ\)
4) \(240^\circ\)

8 What is the value of \(x \) in the equation \(9^{3x+1} = 27^{x+2} \)?

1) 1
2) \(\frac{1}{3}\)
3) \(\frac{1}{2}\)
4) \(\frac{4}{3}\)

9 The roots of the equation \(2x^2 + 7x - 3 = 0 \) are

1) \(-\frac{1}{2} \) and \(-3\)
2) \(\frac{1}{2} \) and \(3\)
3) \(\frac{-7 \pm \sqrt{73}}{4}\)
4) \(\frac{7 \pm \sqrt{73}}{4}\)

10 Which ratio represents \(\csc A \) in the diagram below?

1) \(\frac{25}{24}\)
2) \(\frac{25}{7}\)
3) \(\frac{24}{7}\)
4) \(\frac{7}{24}\)

11 When simplified, the expression \(\left(\frac{w^{-5}}{w^{-3}}\right)^{\frac{1}{2}} \) is equivalent to

1) \(w^{-7}\)
2) \(w^2\)
3) \(w^7\)
4) \(w^{14}\)

12 The principal would like to assemble a committee of 8 students from the 15-member student council. How many different committees can be chosen?

1) 120
2) 6,435
3) 32,432,400
4) 259,459,200

13 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

14 What is a formula for the \(n \)th term of sequence \(B \) shown below?

\[B = 10, 12, 14, 16, \ldots \]

1) \(b_n = 8 + 2n \)
2) \(b_n = 10 + 2n \)
3) \(b_n = 10(2)^n \)
4) \(b_n = 10(2)^{n-1} \)

15 Which values of \(x \) are in the solution set of the following system of equations?

\[y = 3x - 6 \]
\[y = x^2 - x - 6 \]

1) 0, \(-4\)
2) 0, 4
3) 6, \(-2\)
4) \(-6, 2\)
16 The roots of the equation $9x^2 + 3x - 4 = 0$ are
1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

17 In $\triangle ABC$, $a = 3$, $b = 5$, and $c = 7$. What is $\angle C$?
1) 22
2) 38
3) 60
4) 120

18 When $x^{-1} - 1$ is divided by $x - 1$, the quotient is
1) -1
2) $\frac{1}{x}$
3) $\frac{1}{x^2}$
4) $\frac{1}{(x - 1)^2}$

19 The fraction $\frac{3}{\sqrt{3a^2b}}$ is equivalent to
1) $\frac{1}{a\sqrt{b}}$
2) $\frac{\sqrt{b}}{ab}$
3) $\frac{\sqrt{3b}}{ab}$
4) $\frac{\sqrt{3}}{a}$

20 Which graph represents a one-to-one function?
1)

21 The sides of a parallelogram measure 10 cm and 18 cm. One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?
1) 65
2) 125
3) 129
4) 162

22 The minimum point on the graph of the equation $y = f(x)$ is $(-1, -3)$. What is the minimum point on the graph of the equation $y = f(x) + 5$?
1) $(-1, 2)$
2) $(-1, -8)$
3) $(4, -3)$
4) $(-6, -3)$
23 The graph of \(y = x^3 - 4x^2 + x + 6 \) is shown below.

What is the product of the roots of the equation \(x^3 - 4x^2 + x + 6 = 0 \)?
1) \(-36\)
2) \(-6\)
3) \(6\)
4) \(4\)

24 What is the conjugate of \(-2 + 3i\)?
1) \(-3 + 2i\)
2) \(-2 - 3i\)
3) \(2 - 3i\)
4) \(3 + 2i\)

25 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64?
1) \(\frac{3}{4}\)
2) \(\frac{64}{81}\)
3) \(\frac{4}{3}\)
4) \(\frac{37}{3}\)

26 Which graph represents one complete cycle of the equation \(y = \sin 3\pi x \)?

27 Which two functions are inverse functions of each other?
1) \(f(x) = \sin x\) and \(g(x) = \cos x\)
2) \(f(x) = 3 + 8x\) and \(g(x) = 3 - 8x\)
3) \(f(x) = e^x\) and \(g(x) = \ln x\)
4) \(f(x) = 2x - 4\) and \(g(x) = \frac{1}{2} x + 4\)

28 Factor completely: \(10ax^2 - 23ax - 5a\)

29 Express the sum \(7 + 14 + 21 + 28 + \ldots + 105\) using sigma notation.
30 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard’s investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

31 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of New Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>14</td>
</tr>
<tr>
<td>1987</td>
<td>27</td>
</tr>
<tr>
<td>1988</td>
<td>48</td>
</tr>
<tr>
<td>1989</td>
<td>80</td>
</tr>
<tr>
<td>1990</td>
<td>110</td>
</tr>
<tr>
<td>1991</td>
<td>153</td>
</tr>
<tr>
<td>1992</td>
<td>261</td>
</tr>
<tr>
<td>1993</td>
<td>403</td>
</tr>
<tr>
<td>1994</td>
<td>681</td>
</tr>
</tbody>
</table>

Using \(x = 1 \) to represent the year 1986 and \(y \) to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

32 Solve the equation \(2 \tan C - 3 = 3 \tan C - 4 \) algebraically for all values of \(C \) in the interval \(0^\circ \leq C < 360^\circ \).

33 A circle shown in the diagram below has a center of \((-5,3)\) and passes through point \((-1,7)\).

![Circle Diagram]

Write an equation that represents the circle.

34 Express \(\left(\frac{2}{3}x - 1\right)^2 \) as a trinomial.

35 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word *PENNSYLVANIA*.

36 Solve algebraically for \(x \):

\[
\frac{1}{x + 3} - \frac{2}{3 - x} = \frac{4}{x^2 - 9}
\]

37 If \(\tan A = \frac{2}{3} \) and \(\sin B = \frac{5}{\sqrt{41}} \) and angles \(A \) and \(B \) are in Quadrant I, find the value of \(\tan(A + B) \).

38 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

39 Solve algebraically for \(x \):

\[
\log_{x+3} \frac{x^3 + x - 2}{x} = 2
\]
1 Which graph does not represent a function?

1)

2)

3)

4)

2 The roots of the equation $x^2 - 10x + 25 = 0$ are
1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

3 Which values of x are solutions of the equation $x^3 + x^2 - 2x = 0$?
1) 0, 1, 2
2) 0, 1, -2
3) 0, -1, 2
4) 0, -1, -2

4 In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $m\angle \theta$?
1) 45
2) 135
3) 225
4) 240

5 What is the fifteenth term of the sequence 5, -10, 20, -40, 80, . . .?
1) -163,840
2) -81,920
3) 81,920
4) 327,680
6 What is the solution set of the equation $|4a + 6| - 4a = -10$?
1) \emptyset
2) $\{0\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{0, \frac{1}{2}\right\}$

7 If $\sin A = \frac{2}{3}$ where $0^\circ < A < 90^\circ$, what is the value of $\sin 2A$?
1) $\frac{2\sqrt{5}}{3}$
2) $\frac{2\sqrt{5}}{9}$
3) $\frac{4\sqrt{5}}{9}$
4) $-\frac{4\sqrt{5}}{9}$

8 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2\pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3?
1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

9 If $f(x) = x^2 - 5$ and $g(x) = 6x$, then $g(f(x))$ is equal to
1) $6x^3 - 30x$
2) $6x^2 - 30$
3) $36x^2 - 5$
4) $x^2 + 6x - 5$

10 Which arithmetic sequence has a common difference of 4?
1) $\{0, 4n, 8n, 12n, \ldots \}$
2) $\{n, 4n, 16n, 64n, \ldots \}$
3) $\{n + 1, n + 5, n + 9, n + 13, \ldots \}$
4) $\{n + 4, n + 16, n + 64, n + 256, \ldots \}$
11 The conjugate of $7 - 5i$ is
1) $-7 - 5i$
2) $-7 + 5i$
3) $7 - 5i$
4) $7 + 5i$

12 If $\sin^{-1}\left(\frac{5}{8}\right) = A$, then
1) $\sin A = \frac{5}{8}$
2) $\sin A = \frac{8}{5}$
3) $\cos A = \frac{5}{8}$
4) $\cos A = \frac{8}{5}$

13 How many distinct triangles can be formed if $m\angle A = 35$, $a = 10$, and $b = 13$?
1) 1
2) 2
3) 3
4) 0

14 When $\frac{3}{2}x^2 - \frac{1}{4}x - 4$ is subtracted from $\frac{5}{2}x^2 - \frac{3}{4}x + 1$, the difference is
1) $-x^2 + \frac{1}{2}x - 5$
2) $x^2 - \frac{1}{2}x + 5$
3) $-x^2 - x - 3$
4) $x^2 - x - 3$

15 The solution set of the inequality $x^2 - 3x > 10$ is
1) $\{x \mid -2 < x < 5\}$
2) $\{x \mid 0 < x < 3\}$
3) $\{x \mid x < -2 \text{ or } x > 5\}$
4) $\{x \mid x < -5 \text{ or } x > 2\}$

16 If $x^2 + 2 = 6x$ is solved by completing the square, an intermediate step would be
1) $(x + 3)^2 = 7$
2) $(x - 3)^2 = 7$
3) $(x - 3)^2 = 11$
4) $(x - 6)^2 = 34$

17 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?
1) $\frac{15 C_2 \cdot 5 C_1}{30 C_3}$
2) $\frac{15 P_2 \cdot 5 P_1}{30 C_3}$
3) $\frac{15 C_2 \cdot 5 C_1}{30 P_3}$
4) $\frac{15 P_2 \cdot 5 P_1}{30 P_3}$

18 The expression $x^{-\frac{2}{5}}$ is equivalent to
1) $\frac{2}{x^5}$
2) $\frac{3}{x^2}$
3) $\frac{1}{\sqrt[3]{x^5}}$
4) $\frac{1}{\sqrt[5]{x^2}}$
19 On January 1, a share of a certain stock cost $180. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?

20 In the diagram below of right triangle JTM, $JT = 12$, $JM = 6$, and $m\angle JMT = 90°$.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $2\sqrt{3}$

21 For which equation does the sum of the roots equal -3 and the product of the roots equal 2?

1) $x^2 + 2x - 3 = 0$
2) $x^2 - 3x + 2 = 0$
3) $2x^2 + 6x + 4 = 0$
4) $2x^2 - 6x + 4 = 0$

22 The expression $\frac{2x + 4}{\sqrt{x + 2}}$ is equivalent to

1) $\frac{(2x + 4)\sqrt{x - 2}}{x - 2}$
2) $\frac{(2x + 4)\sqrt{x - 2}}{x - 4}$
3) $2\sqrt{x - 2}$
4) $2\sqrt{x + 2}$
23. Which equation is sketched in the diagram below?

![Diagram with a hyperbola]

1) \(y = \csc x \)
2) \(y = \sec x \)
3) \(y = \cot x \)
4) \(y = \tan x \)

24. The expression \(\log_{25} \left(\frac{1}{25} \right) \) is equivalent to

1) \(\frac{1}{2} \)
2) \(2 \)
3) \(-\frac{1}{2} \)
4) \(-2 \)

25. A four-digit serial number is to be created from the digits 0 through 9. How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5?

1) 448
2) 504
3) 2,240
4) 2,520

26. Which equation represents the circle shown in the graph below that passes through the point \((0, -1)\)?

![Circle centered at \((3, 4)\) and passing through \((0, -1)\)]

1) \((x - 3)^2 + (y + 4)^2 = 16 \)
2) \((x - 3)^2 + (y + 4)^2 = 18 \)
3) \((x + 3)^2 + (y - 4)^2 = 16 \)
4) \((x + 3)^2 + (y - 4)^2 = 18 \)

27. Which task is not a component of an observational study?

1) The researcher decides who will make up the sample.
2) The researcher analyzes the data received from the sample.
3) The researcher gathers data from the sample, using surveys or taking measurements.
4) The researcher divides the sample into two groups, with one group acting as a control group.

28. Solve algebraically for \(x \):

\[16^{2x + 3} = 64^{x + 2} \]

29. Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.
30 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6. For this set of rectangles, calculate the width of a rectangle whose length is 9.

31 Evaluate: $10 + \sum_{n=1}^{5} (n^3 - 1)$

32 The graph below represents the function $y = f(x)$.

![Graph of the function $y = f(x)$](image)

State the domain and range of this function.

33 Express $\sqrt[6]{108x^5y^8}$ in simplest radical form.

34 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

35 Starting with $\sin^2 A + \cos^2 A = 1$, derive the formula $\tan^2 A + 1 = \sec^2 A$.

36 Write the binomial expansion of $(2x - 1)^5$ as a polynomial in simplest form.

37 In $\triangle ABC$, $m\angle A = 32$, $a = 12$, and $b = 10$. Find the measures of the missing angles and side of $\triangle ABC$. Round each measure to the nearest tenth.

38 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

39 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_0 is the temperature of the room and k is a constant.

$$\ln(T - T_0) = -kt + 4.718$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]
1. A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?
 1) census
 2) survey
 3) observation
 4) controlled experiment

2. If \(f(x) = \frac{x}{x^2 - 16} \), what is the value of \(f(-10) \)?
 1) \(\frac{5}{2} \)
 2) \(\frac{5}{42} \)
 3) \(\frac{5}{58} \)
 4) \(\frac{5}{18} \)

3. An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?
 1) 540
 2) 567
 3) 760
 4) 798

4. Expressed as a function of a positive acute angle, \(\cos(-305^\circ) \) is equal to
 1) \(-\cos 55^\circ \)
 2) \(\cos 55^\circ \)
 3) \(-\sin 55^\circ \)
 4) \(\sin 55^\circ \)

5. The value of \(x \) in the equation \(4^{2x + 5} = 8^{3x} \) is
 1) 1
 2) 2
 3) 5
 4) -10

6. What is the value of \(x \) in the equation \(\log_{3}x = 4 \)?
 1) 1.16
 2) 20
 3) 625
 4) 1,024

7. The expression \(\sqrt[4]{16x^2y^7} \) is equivalent to
 1) \(2x^\frac{1}{2}y^{\frac{7}{4}} \)
 2) \(2x^8y^{28} \)
 3) \(4x^2y^{4} \)
 4) \(4x^8y^{28} \)

8. Which equation is represented by the graph below?

9. What is the fifteenth term of the geometric sequence \(-\sqrt{5}, \sqrt{10}, -2\sqrt{5}, \ldots \)?
 1) \(-128\sqrt{5} \)
 2) \(128\sqrt{10} \)
 3) \(-16384\sqrt{5} \)
 4) \(16384\sqrt{10} \)
10. In \(\triangle ABC \), \(a = 15 \), \(b = 14 \), and \(c = 13 \), as shown in the diagram below. What is the \(m \angle C \), to the nearest degree?

1) 53
2) 59
3) 67
4) 127

11. What is the period of the function \(f(\theta) = -2\cos 3\theta \)?
1) \(\pi \)
2) \(\frac{2\pi}{3} \)
3) \(\frac{3\pi}{2} \)
4) \(2\pi \)

12. What is the range of \(f(x) = (x + 4)^2 + 7 \)?
1) \(y \geq -4 \)
2) \(y \geq 4 \)
3) \(y = 7 \)
4) \(y \geq 7 \)

13. Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?
1) 210
2) 3,876
3) 5,040
4) 93,024

14. Which graph represents a relation that is \textit{not} a function?

1)
2)
3)
4)

15. The value of \(\tan 126^\circ 43' \) to the nearest ten-thousandth is
1) \(-1.3407\)
2) \(-1.3408\)
3) \(-1.3548\)
4) \(-1.3549\)
16 The expression $\frac{4}{5 - \sqrt{13}}$ is equivalent to

1) $\frac{4\sqrt{13}}{5\sqrt{13} - 13}$
2) $\frac{4(5 - \sqrt{13})}{38}$
3) $\frac{5 + \sqrt{13}}{3}$
4) $\frac{4(5 + \sqrt{13})}{38}$

17 Akeem invests $25,000 in an account that pays 4.75% annual interest compounded continuously. Using the formula $A = Pe^{rt}$, where A is the amount in the account after t years, P is principal invested, and r is the annual interest rate, how many years, to the nearest tenth, will it take for Akeem’s investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

18 The value of the expression $\sum_{r=3}^{5} (-r^2 + r)$ is

1) −38
2) −12
3) 26
4) 62

19 Which graph shows $y = \cos^{-1} x$?

1)
2)
3)
4)
20 If \(r = \sqrt[3]{\frac{A^2 B}{C}} \), then \(\log r \) can be represented by

1) \(\frac{1}{6} \log A + \frac{1}{3} \log B - \log C \)
2) \(3(\log A^2 + \log B - \log C) \)
3) \(\frac{1}{3} \log(A^2 + B) - C \)
4) \(\frac{2}{3} \log A + \frac{1}{3} \log B - \frac{1}{3} \log C \)

21 The solution set of \(\sqrt{3x + 16} = x + 2 \) is

1) \(\{-3, 4\} \)
2) \(\{-4, 3\} \)
3) \(\{3\} \)
4) \(\{-4\} \)

22 Brian correctly used a method of completing the square to solve the equation \(x^2 + 7x - 11 = 0 \). Brian’s first step was to rewrite the equation as \(x^2 + 7x = 11 \). He then added a number to both sides of the equation. Which number did he add?

1) \(\frac{7}{2} \)
2) \(\frac{49}{4} \)
3) \(\frac{49}{2} \)
4) 49

23 The expression \(\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta} \) is equivalent to

1) \(\cos^2 \theta \)
2) \(\sin^2 \theta \)
3) \(\sec^2 \theta \)
4) \(\csc^2 \theta \)

24 The number of minutes students took to complete a quiz is summarized in the table below.

<table>
<thead>
<tr>
<th>Minutes</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>5</td>
<td>3</td>
<td>x</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

If the mean number of minutes was 17, which equation could be used to calculate the value of \(x \)?

1) \(17 = \frac{119 + x}{x} \)
2) \(17 = \frac{119 + 16x}{x} \)
3) \(17 = \frac{446 + x}{26 + x} \)
4) \(17 = \frac{446 + 16x}{26 + x} \)

25 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o’clock?

1) \(\frac{\pi}{2} \)
2) \(\frac{2\pi}{3} \)
3) \(\frac{5\pi}{6} \)
4) \(\frac{7\pi}{6} \)

26 What is the coefficient of the fourth term in the expansion of \((a - 4b)^9\)?

1) \(-5,376 \)
2) \(-336 \)
3) \(336 \)
4) \(5,376 \)
27 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?
1) exponential
2) linear
3) logarithmic
4) power

28 Express the product of \(\frac{1}{2}y^2 - \frac{1}{3}y\) and \(12y + \frac{3}{5}\) as a trinomial.

29 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20. Justify your answer.

30 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is \(-27\).

31 Evaluate \(e^{\ln y}\) when \(x = 3\) and \(y = 2\).

32 If \(f(x) = x^2 - 6\), find \(f^{-1}(x)\).

33 Factor the expression \(12t^8 - 75t^4\) completely.

34 Simplify the expression \(\frac{3x^{-4}y^5}{(2x^3y^{-7})^{-2}}\) and write the answer using only positive exponents.

35 If \(f(x) = x^2 - 6\) and \(g(x) = 2^x - 1\), determine the value of \((g \circ f)(-3)\).

36 Express as a single fraction the exact value of \(\sin 75^\circ\).

37 Graph the inequality \(-3|6 - x| < -15\) for \(x\). Graph the solution on the line below.

38 The probability that a professional baseball player will get a hit is \(\frac{1}{3}\). Calculate the exact probability that he will get at least 3 hits in 5 attempts.

39 Solve the following systems of equations algebraically:
\[
5 = y - x \\
4x^2 = -17x + y + 4
\]
1. The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey:
 1) every third student sent to the office
 2) every third student to enter the library
 3) every third student to enter the gym for the basketball game
 4) every third student arriving at school in the morning

2. What is the sum of the first 19 terms of the sequence 3, 10, 17, 24, 31, ...?
 1) 1188
 2) 1197
 3) 1254
 4) 1292

3. Which expression, when rounded to three decimal places, is equal to −1.155?
 1) $\sec\left(\frac{5\pi}{6}\right)$
 2) $\tan(49^\circ 20')$
 3) $\sin\left(-\frac{3\pi}{5}\right)$
 4) $\csc(-118^\circ)$

4. If $f(x) = 4x - x^2$ and $g(x) = \frac{1}{x}$, then $(f \circ g)\left(\frac{1}{2}\right)$ is equal to:
 1) $\frac{4}{7}$
 2) -2
 3) $\frac{7}{2}$
 4) 4

5. A population of rabbits doubles every 60 days according to the formula $P = 10(2)\frac{t}{60}$, where P is the population of rabbits on day t. What is the value of t when the population is 320?
 1) 240
 2) 300
 3) 660
 4) 960

6. What is the product of $\left(\frac{x}{4} - \frac{1}{3}\right)$ and $\left(\frac{x}{4} + \frac{1}{3}\right)$?
 1) $\frac{x^2}{8} - \frac{1}{9}$
 2) $\frac{x^2}{16} - \frac{1}{9}$
 3) $\frac{x^2}{8} - x - \frac{1}{9}$
 4) $\frac{x^2}{16} - x - \frac{1}{9}$
7 Which is a graph of \(y = \cot x \)?

1)

2)

3)

4)

9 What are the sum and product of the roots of the equation \(6x^2 - 4x - 12 = 0 \)?

1) sum = \(-\frac{2}{3} \); product = \(-2 \)

2) sum = \(\frac{2}{3} \); product = \(-2 \)

3) sum = \(-2 \); product = \(\frac{2}{3} \)

4) sum = \(-2 \); product = \(-\frac{2}{3} \)

10 Given \(\Delta ABC \) with \(a = 9 \), \(b = 10 \), and \(\angle B = 70 \), what type of triangle can be drawn?

1) an acute triangle, only

2) an obtuse triangle, only

3) both an acute triangle and an obtuse triangle

4) neither an acute triangle nor an obtuse triangle

11 When \(x^{-1} + 1 \) is divided by \(x + 1 \), the quotient equals

1) 1

2) \(\frac{1}{x} \)

3) \(x \)

4) \(-\frac{1}{x} \)

12 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1) 34.1%

2) 38.2%

3) 53.2%

4) 68.2%
13 What is the conjugate of $\frac{1}{2} + \frac{3}{2}i$?

1) $\frac{1}{2} + \frac{3}{2}i$
2) $\frac{1}{2} - \frac{3}{2}i$
3) $\frac{3}{2} + \frac{1}{2}i$
4) $\frac{-1}{2} - \frac{3}{2}i$

14 Given angle A in Quadrant I with $\sin A = \frac{12}{13}$ and angle B in Quadrant II with $\cos B = -\frac{3}{5}$, what is the value of $\cos(A - B)$?

1) $\frac{33}{65}$
2) $\frac{33}{65}$
3) $\frac{63}{65}$
4) $\frac{-63}{65}$

15 Which expression represents the third term in the expansion of $(2x^4 - y)^3$?

1) $-y^3$
2) $-6x^4y^2$
3) $6x^4y^2$
4) $2x^4y^2$

16 What is the solution set of the equation $3x^5 - 48x = 0$?

1) $\{0, \pm 2\}$
2) $\{0, \pm 2, 3\}$
3) $\{0, \pm 2, \pm 2i\}$
4) $\{\pm 2, \pm 2i\}$

17 A sequence has the following terms: $a_1 = 4$, $a_2 = 10$, $a_3 = 25$, $a_4 = 62.5$. Which formula represents the nth term in the sequence?

1) $a_n = 4 + 2.5n$
2) $a_n = 4 + 2.5(n - 1)$
3) $a_n = 4(2.5)^n$
4) $a_n = 4(2.5)^{n-1}$

18 In parallelogram $BFLO$, $OL = 3.8$, $LF = 7.4$, and $\angle O = 126$. If diagonal BL is drawn, what is the area of $\triangle BLF$?

1) 11.4
2) 14.1
3) 22.7
4) 28.1

19 Which statement about the graph of the equation $y = e^x$ is not true?

1) It is asymptotic to the x-axis.
2) The domain is the set of all real numbers.
3) It lies in Quadrants I and II.
4) It passes through the point $(e, 1)$.

20 What is the number of degrees in an angle whose measure is 2 radians?
1) \(\frac{360}{\pi} \)
2) \(\frac{\pi}{360} \)
3) 360
4) 90

21 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?
1) \(\frac{25}{64} \)
2) \(\frac{45}{512} \)
3) \(\frac{75}{512} \)
4) \(\frac{225}{512} \)

22 What is the range of \(f(x) = |x - 3| + 2 \)?
1) \(\{x | x \geq 3\} \)
2) \(\{y | y \geq 2\} \)
3) \(\{x | x \in \text{real numbers}\} \)
4) \(\{y | y \in \text{real numbers}\} \)

23 Which calculator output shows the strongest linear relationship between \(x \) and \(y \)?

1) \(r = .8643 \)
2) \(r = .8361 \)
3) \(r = .6022 \)
4) \(r = -.8924 \)

24 If \(\log x^2 - \log 2a = \log 3a \), then \(\log x \) expressed in terms of \(\log a \) is equivalent to
1) \(\frac{1}{2} \log 5a \)
2) \(\frac{1}{2} \log 6 + \log a \)
3) \(\log 6 + \log a \)
4) \(\log 6 + 2 \log a \)

25 Which function is one-to-one?
1) \(f(x) = |x| \)
2) \(f(x) = 2^x \)
3) \(f(x) = x^2 \)
4) \(f(x) = \sin x \)
26 If p varies inversely as q, and $p = 10$ when $q = \frac{3}{2}$, what is the value of p when $q = \frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

27 Which equation is graphed in the diagram below?

![Graph](image)

1) $y = 3 \cos \left(\frac{\pi}{30} x \right) + 8$
2) $y = 3 \cos \left(\frac{\pi}{15} x \right) + 5$
3) $y = -3 \cos \left(\frac{\pi}{30} x \right) + 8$
4) $y = -3 \cos \left(\frac{\pi}{15} x \right) + 5$

28 Find the solution of the inequality $x^2 - 4x > 5$, algebraically.

29 Solve algebraically for x: $4 - \sqrt{2x - 5} = 1$

30 Evaluate: $\sum_{n=1}^{3} (-n^4 - n)$

31 Express in simplest form: $\sqrt[3]{\frac{a^6 b^9}{-64}}$

32 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

33 On the axes below, for $-2 \leq x \leq 2$, graph $y = 2^{x+1} - 3$.

[Graph Image]
34 Write an equation of the circle shown in the diagram below.

35 Express the exact value of \(\csc 60^\circ \), with a rational denominator.

36 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

37 If \(\log_4 x = 2.5 \) and \(\log_5 125 = \frac{3}{2} \), find the numerical value of \(\frac{x}{y} \), in simplest form.

38 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

<table>
<thead>
<tr>
<th>Time, hrs ((x))</th>
<th>Number of Organisms ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>142</td>
</tr>
<tr>
<td>16</td>
<td>260</td>
</tr>
</tbody>
</table>

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

39 Perform the indicated operations and simplify completely:

\[
\frac{x^3 - 3x^2 + 6x - 18}{x^2 - 4x} \cdot \frac{2x - 4}{x^4 - 3x^3 + x^2 + 2x - 8} \div \frac{16 - x^2}{x^2 + 4x - 8}
\]
1. What is the product of \(\left(\frac{2}{5} x - \frac{3}{4} y^2 \right) \) and \(\left(\frac{2}{5} x + \frac{3}{4} y^2 \right) \)?
 1) \(\frac{4}{25} x^2 - \frac{9}{16} y^4 \)
 2) \(\frac{4}{25} x - \frac{9}{16} y^2 \)
 3) \(\frac{2}{5} x^2 - \frac{3}{4} y^4 \)
 4) \(\frac{4}{5} x \)

2. What is the domain of the function shown below?

 ![Graph](image)

 1) \(-1 \leq x \leq 6\)
 2) \(-1 \leq y \leq 6\)
 3) \(-2 \leq x \leq 5\)
 4) \(-2 \leq y \leq 5\)

3. What is the solution set for \(2 \cos \theta - 1 = 0 \) in the interval \(0^\circ \leq \theta < 360^\circ \)?
 1) \{30°, 150°\}
 2) \{60°, 120°\}
 3) \{30°, 330°\}
 4) \{60°, 300°\}

4. The expression \(3 \sqrt[3]{64a^{16}} \) is equivalent to
 1) \(8a^4 \)
 2) \(8a^8 \)
 3) \(4a^5 \sqrt[3]{a} \)
 4) \(4a^3 \sqrt[3]{a^5} \)

5. Which summation represents \(5 + 7 + 9 + 11 + \ldots + 43 \)?
 1) \(\sum_{n=5}^{43} n \)
 2) \(\sum_{n=1}^{20} (2n + 3) \)
 3) \(\sum_{n=4}^{24} (2n - 3) \)
 4) \(\sum_{n=3}^{23} (3n - 4) \)
6 If $m \angle \theta = -50$, which diagram represents θ drawn in standard position?

1)

2)

3)

4)

7 If $\log_b x = 3 \log_b p - \left(2 \log_b t + \frac{1}{2} \log_b r\right)$, then the value of x is

1) $\frac{p^3}{\sqrt{t^2 r}}$

2) $p^3 t^2 r^{\frac{1}{2}}$

3) $p^3 t^2$

4) $\frac{p^3}{t^2 \sqrt{r}}$

8 Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?

1) $4x^2 + 9x + 3 = 0$

2) $4x^2 + 9x - 3 = 0$

3) $4x^2 - 9x + 3 = 0$

4) $4x^2 - 9x - 3 = 0$

9 Which graph represents the solution set of $\left|\frac{4x - 5}{3}\right| > 1$?

1)

2)

3)

4)

10 Which expression is equivalent to $\frac{x^{-1}y^4}{3x^{-5}y^{-1}}$?

1) $\frac{x^4y^5}{3}$

2) $\frac{x^5y^4}{3}$

3) $3x^4y^5$

4) $\frac{y^4}{3x^5}$
11 Which graph represents the function \(\log_2 x = y \)?

12 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?

1) \(\frac{3\pi}{4} \)
2) \(\pi \)
3) \(\frac{3\pi}{2} \)
4) \(3\pi \)

13 What is the solution set for the equation \(\sqrt{5x + 29} = x + 3 \)?

1) \(\{4\} \)
2) \(\{-5\} \)
3) \(\{4, 5\} \)
4) \(\{-5, 4\} \)

14 When factored completely, \(x^3 + 3x^2 - 4x - 12 \) equals

1) \((x + 2)(x - 2)(x - 3) \)
2) \((x + 2)(x - 2)(x + 3) \)
3) \((x^2 - 4)(x + 3) \)
4) \((x^2 - 4)(x - 3) \)

15 What is the middle term in the expansion of \(\left(\frac{x}{2} - 2y \right)^6 \)?

1) \(20x^3 y^3 \)
2) \(\frac{15}{4} x^4 y^2 \)
3) \(-20x^3 y^3 \)
4) \(\frac{15}{4} x^4 y^2 \)

16 Which expression is equivalent to \((n \circ m \circ p)(x) \), given \(m(x) = \sin x \), \(n(x) = 3x \), and \(p(x) = x^2 \)?

1) \(\sin(3x)^2 \)
2) \(3\sin x^2 \)
3) \(\sin^2(3x) \)
4) \(3\sin^2 x \)
17 The value of \(\csc 138°23′ \) rounded to four decimal places is
1) \(-1.3376\)
2) \(-1.3408\)
3) \(1.5012\)
4) \(1.5057\)

18 Which function is one-to-one?
1) \(k(x) = x^2 + 2\)
2) \(g(x) = x^3 + 2\)
3) \(f(x) = \lvert x \rvert + 2\)
4) \(j(x) = x^4 + 2\)

19 The conjugate of the complex expression \(-5x + 4i\) is
1) \(5x - 4i\)
2) \(5x + 4i\)
3) \(-5x - 4i\)
4) \(-5x + 4i\)

20 What is a positive value of \(\tan \frac{1}{2}x\), when \(\sin x = 0.8\)?
1) \(0.5\)
2) \(0.4\)
3) \(0.33\)
4) \(0.25\)

21 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

<table>
<thead>
<tr>
<th>Number of Pets</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>k</td>
<td>2</td>
<td>22</td>
</tr>
</tbody>
</table>

What is the value of \(k\) for this table?
1) \(9\)
2) \(2\)
3) \(8\)
4) \(4\)

22 How many negative solutions to the equation \(2x^3 - 4x^2 + 3x - 1 = 0\) exist?
1) \(1\)
2) \(2\)
3) \(3\)
4) \(0\)

23 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?
1) \(\binom{10}{6} \left(\frac{4}{5}\right)^6 \left(\frac{1}{5}\right)^4\)
2) \(\binom{10}{7} \left(\frac{4}{5}\right)^7 \left(\frac{1}{5}\right)^3\)
3) \(\binom{10}{8} \left(\frac{7}{10}\right)^8 \left(\frac{3}{10}\right)^2\)
4) \(\binom{10}{9} \left(\frac{7}{10}\right)^9 \left(\frac{3}{10}\right)^1\)

24 In which interval of \(f(x) = \cos(x)\) is the inverse also a function?
1) \(\frac{\pi}{2} < x < \frac{\pi}{2}\)
2) \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)
3) \(0 \leq x \leq \pi\)
4) \(\frac{\pi}{2} \leq x \leq \frac{3\pi}{2}\)
25 As shown in the table below, a person’s target heart rate during exercise changes as the person gets older.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Target Heart Rate (beats per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>135</td>
</tr>
<tr>
<td>25</td>
<td>132</td>
</tr>
<tr>
<td>30</td>
<td>129</td>
</tr>
<tr>
<td>35</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>122</td>
</tr>
<tr>
<td>45</td>
<td>119</td>
</tr>
<tr>
<td>50</td>
<td>115</td>
</tr>
</tbody>
</table>

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person’s age, in years, and that person’s target heart rate, in beats per minute?

1) \(-0.999\)
2) \(-0.664\)
3) 0.998
4) 1.503

26 In \(\triangle MNP\), \(m = 6\) and \(n = 10\). Two distinct triangles can be constructed if the measure of angle \(M\) is

1) 35
2) 40
3) 45
4) 50

27 If order does not matter, which selection of students would produce the most possible committees?

1) 5 out of 15
2) 5 out of 25
3) 20 out of 25
4) 15 out of 25

28 Determine the value of \(n\) in simplest form:

\[i^{13} + i^{18} + i^{31} + n = 0\]

29 The formula for continuously compounded interest is \(A = Pe^{rt}\), where \(A\) is the amount of money in the account, \(P\) is the initial investment, \(r\) is the interest rate, and \(t\) is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $750 is invested at an annual rate of 3%.

30 Express \(\cos \theta (\sec \theta - \cos \theta)\), in terms of \(\sin \theta\).

31 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10-minute period.

<table>
<thead>
<tr>
<th>Time in Minutes</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature in °F</td>
<td>180.2</td>
<td>165.8</td>
<td>146.3</td>
<td>135.4</td>
<td>127.7</td>
<td>110.5</td>
</tr>
</tbody>
</table>

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

32 Find, to the nearest tenth, the radian measure of 216°.

33 Find the third term in the recursive sequence

\[a_{k+1} = 2a_k - 1\], where \(a_1 = 3\).

34 The two sides and included angle of a parallelogram are 18, 22, and 60°. Find its exact area in simplest form.
35 Write an equation for the graph of the trigonometric function shown below.

\[y = \sin(x) \]

36 Express in simplest form:

\[\frac{4 - x^2}{x^2 + 7x + 12} \]

\[\frac{2x - 4}{x + 3} \]

37 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

25 55 40 65 29
45 59 35 25 37
52 30 8 40 55

Determine the number of employees whose travel time is within one standard deviation of the mean.

38 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

39 Solve algebraically for all values of \(x \):

\[81x^3 + 2x^2 = \frac{5x^3}{3} \]

\[27 \]
fall09a2

Answer Section

1. **ANS: 2**
 \[(3 - 7i)(3 - 7i) = 9 - 21i - 21i + 49i^2 = 9 - 42i - 49 = -40 - 42i\]

 PTS: 2 **REF: fall0901a2** **STA: A2.N.9** **TOP: Multiplication and Division of Complex Numbers**

2. **ANS: 3**
 \[f(4) = \frac{1}{2}(4) - 3 = -1. \ g(-1) = 2(-1) + 5 = 3\]

 PTS: 2 **REF: fall0902a2** **STA: A2.A.42** **TOP: Compositions of Functions**
 KEY: numbers

3. **ANS: 1**
 \[\tan \theta - \sqrt{3} = 0\]
 \[\tan \theta = \sqrt{3}\]
 \[\theta = \tan^{-1}\sqrt{3}\]
 \[\theta = 60, 240\]

 PTS: 2 **REF: fall0903a2** **STA: A2.A.68** **TOP: Trigonometric Equations**
 KEY: basic

4. **ANS: 4**
 Students entering the library are more likely to spend more time studying, creating bias.

 PTS: 2 **REF: fall0904a2** **STA: A2.S.2** **TOP: Analysis of Data**

5. **ANS: 1**
 \[6x - 7 \leq 5\]
 \[6x \leq 12\]
 \[x \leq 2\]
 \[x \geq \frac{1}{3}\]

 PTS: 2 **REF: fall0905a2** **STA: A2.A.1** **TOP: Absolute Value Inequalities**
 KEY: graph

6. **ANS: 4**
 (4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

 PTS: 2 **REF: fall0906a2** **STA: A2.A.43** **TOP: Defining Functions**
7 ANS: 2
\[K = \frac{1}{2} (10)(18) \sin 120 = 45 \sqrt{3} \approx 78 \]

PTS: 2 REF: fall0907a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area KEY: basic

8 ANS: 4 PTS: 2 REF: fall0908a2 STA: A2.A.38
TOP: Defining Functions KEY: graphs

9 ANS: 2
\[8^2 = 64 \]

PTS: 2 REF: fall0909a2 STA: A2.A.18 TOP: Evaluating Logarithmic Expressions

10 ANS: 3 PTS: 2 REF: fall0910a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities KEY: simplifying

11 ANS: 3
\[
\begin{array}{c|ccc|c}
 n & 0 & 1 & 2 & \Sigma \\
\hline
 n^2 + 2^n & 0^2 + 2^0 = 1 & 1^2 + 2^1 = 3 & 2^2 + 2^2 = 8 & 12 \\
\end{array}
\]
\[2 \times 12 = 24 \]

PTS: 2 REF: fall0911a2 STA: A2.N.10 TOP: Sigma Notation KEY: basic

12 ANS: 3
\[S = \frac{-b}{a} = \frac{-(-3)}{4} = \frac{3}{4} \quad P = \frac{c}{a} = \frac{-8}{4} = -2 \]

PTS: 2 REF: fall0912a2 STA: A2.A.21 TOP: Roots of Quadratics KEY: basic

13 ANS: 3 PTS: 2 REF: fall0913a2 STA: A2.A.65
TOP: Graphing Trigonometric Functions

14 ANS: 1 PTS: 2 REF: fall0914a2 STA: A2.A.9
TOP: Negative and Fractional Exponents

15 ANS: 1

PTS: 2 REF: fall0915a2 STA: A2.S.5 TOP: Normal Distributions KEY: interval
16 ANS: 2
\[f^{-1}(x) = \log_4 x \]

PTS: 2 REF: fall0916a2 STA: A2.A.54 TOP: Graphing Logarithmic Functions

17 ANS: 4
\[6x - x^3 - x^2 = -x(x^2 + x - 6) = -x(x + 3)(x - 2) \]

PTS: 2 REF: fall0917a2 STA: A2.A.7 TOP: Factoring Polynomials
KEY: single variable

18 ANS: 4
\[4ab \sqrt{2b} - 3a \sqrt{9b^2} \sqrt{2b} + 7ab \sqrt{6b} = 4ab \sqrt{2b} - 9ab \sqrt{2b} + 7ab \sqrt{6b} = -5ab \sqrt{2b} + 7ab \sqrt{6b} \]

PTS: 2 REF: fall0918a2 STA: A2.A.14 TOP: Operations with Radicals
KEY: with variables | index = 2

19 ANS: 1
\[5 \cdot C_3(3x)^2(-2)^3 = 10 \cdot 9x^2 \cdot -8 = -720x^2 \]

PTS: 2 REF: fall0919a2 STA: A2.A.36 TOP: Binomial Expansions

20 ANS: 2
\[\frac{x}{4} \cdot \frac{1}{x} = \frac{x^2 - 4}{4x} = \frac{(x + 2)(x - 2)}{4x} \times \frac{8x}{2(x + 2)} = x - 2 \]

PTS: 2 REF: fall0920a2 STA: A2.A.17 TOP: Complex Fractions

21 ANS: 4
\[2 \log_4 (5x) = 3 \]
\[\log_4 (5x) = \frac{3}{2} \]
\[5x = 4^{\frac{3}{2}} \]
\[5x = 8 \]
\[x = \frac{8}{5} \]

PTS: 2 REF: fall0921a2 STA: A2.A.28 TOP: Logarithmic Equations
KEY: advanced

22 ANS: 4
\[s = \theta r = 2 \cdot 4 = 8 \]

PTS: 2 REF: fall0922a2 STA: A2.A.61 TOP: Arc Length
KEY: arc length

23 ANS: 3
TOP: Domain and Range
KEY: real domain
24 ANS: 3

\begin{align*}
\text{I-Var Stats L1, L2} & \\
\sigma^2 & = 67.31102041
\end{align*}

PTS: 2 REF: fall0924a2 STA: A2.S.4 TOP: Dispersion
KEY: variance

26 ANS: 2 PTS: 2 REF: fall0926a2 STA: A2.A.46 TOP: Transformations with Functions and Relations

27 ANS: 4

\begin{align*}
y - 2 \sin \theta &= 3 \\
y &= 2 \sin \theta + 3 \\
f(\theta) &= 2 \sin \theta + 3
\end{align*}

PTS: 2 REF: fall0927a2 STA: A2.A.40 TOP: Functional Notation

28 ANS:

\begin{align*}
\frac{5(3 + \sqrt{2})}{7} \cdot \frac{5}{3 - \sqrt{2}} \times \frac{3 + \sqrt{2}}{3 + \sqrt{2}} &= \frac{5(3 + \sqrt{2})}{9 - 2} = \frac{5(3 + \sqrt{2})}{7}
\end{align*}

PTS: 2 REF: fall0928a2 STA: A2.N.5 TOP: Rationalizing Denominators

29 ANS:

\begin{align*}
(x + 3)^2 + (y - 4)^2 &= 25
\end{align*}

PTS: 2 REF: fall0929a2 STA: A2.A.49 TOP: Writing Equations of Circles

30 ANS:

\text{no solution.}

\begin{align*}
\frac{4x}{x - 3} &= 2 + \frac{12}{x - 3} \\
\frac{4x - 12}{x - 3} &= 2 \\
\frac{4(x - 3)}{x - 3} &= 2 \\
4 \neq 2
\end{align*}

PTS: 2 REF: fall0930a2 STA: A2.A.23 TOP: Solving Rationals
KEY: rational solutions
31 ANS: \[3.45 \times \frac{180}{\pi} \approx 197^\circ 40'. \]

PTS: 2 REF: fall0931a2 STA: A2.M.2 TOP: Radian Measure

KEY: degrees

32 ANS: \[1200^{\circ} (0.65^{\circ} \times 10) \]

2,298.65.

PTS: 2 REF: fall0932a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

33 ANS: \[\frac{\sqrt{13}}{2} \cdot \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(-3)^2 + 2^2}} = \frac{2}{\sqrt{13}}, \quad \csc \theta = \frac{\sqrt{13}}{2}. \]

PTS: 2 REF: fall0933a2 STA: A2.A.62 TOP: Determining Trigonometric Functions

34 ANS: \[-3, -5, -8, -12 \]

PTS: 2 REF: fall0934a2 STA: A2.A.33 TOP: Recursive Sequences

35 ANS: \[9 \text{nCr} 2 \times 20 \text{nCr} 3 \]

41,040.

PTS: 2 REF: fall0935a2 STA: A2.S.12 TOP: Sample Space
36 ANS:

$3 \pm \sqrt{7}$. $2x^2 - 12x + 4 = 0$

$x^2 - 6x + 2 = 0$

$x^2 - 6x = -2$

$x^2 - 6x + 9 = -2 + 9$

$(x - 3)^2 = 7$

$x - 3 = \pm \sqrt{7}$

$x = 3 \pm \sqrt{7}$

37 ANS:

$\pm \frac{3}{2}, -\frac{1}{2}$. $8x^3 + 4x^2 - 18x - 9 = 0$

$4x^2(2x + 1) - 9(2x + 1) = 0$

$(4x^2 - 9)(2x + 1) = 0$

$4x^2 - 9 = 0$ or $2x + 1 = 0$

$(2x + 3)(2x - 3) = 0$ $x = -\frac{1}{2}$

$x = \pm \frac{3}{2}$

38 ANS:

$y = 2.001x^{2.298}$, 1,009. $y = 2.001(15)^{2.298} \approx 1009$
ANS:

\[r^2 = 25^2 + 85^2 - 2(25)(85)\cos 125. \]

\[r^2 \approx 10287.7 \]

\[r \approx 101.43 \]

\[\frac{2.5}{\sin x} = \frac{101.43}{\sin 125} \]

\[x \approx 12 \]

PTS: 6

REF: fall0939a2

STA: A2.A.73

TOP: Vectors
0610a2
Answer Section

1 ANS: 3 PTS: 2 REF: 061001a2 STA: A2.A.30
TOP: Sequences

2 ANS: \[\frac{11\pi}{12} \cdot \frac{180}{\pi} = 165\]

PTS: 2 REF: 061002a2 STA: A2.M.2 TOP: Radian Measure
KEY: degrees

3 ANS: \[\frac{3^{-2}}{(-2)^{-3}} = \frac{\frac{1}{9}}{\frac{1}{8}} = -\frac{8}{9}\]

4 ANS: 1 PTS: 2 REF: 061004a2 STA: A2.A.52
TOP: Identifying the Equation of a Graph

5 ANS: 4 PTS: 2 REF: 061005a2 STA: A2.A.50
TOP: Solving Polynomial Equations

6 ANS: \[\sqrt{-300} = \sqrt{100} \sqrt{-1} \sqrt{3}\]

7 ANS: 3 PTS: 2 REF: 061006a2 STA: A2.N.6 TOP: Square Roots of Negative Numbers
TOP: Differentiating Permutations and Combinations

8 ANS: 4
\[12x^4 + 10x^3 - 12x^2 = 2x^2 (6x^2 + 5x - 6) = 2x^2 (2x + 3)(3x - 2)\]

PTS: 2 REF: 061008a2 STA: A2.A.7 TOP: Factoring Polynomials
KEY: single variable

9 ANS: \[\frac{3 \pm \sqrt{(-3)^2 - 4(1)(-9)}}{2(1)} = \frac{3 \pm \sqrt{45}}{2} = \frac{3 \pm 3\sqrt{5}}{2}\]

PTS: 2 REF: 061009a2 STA: A2.A.25 TOP: Quadratic Formula

10 ANS: 1
\[2 \log x - (3 \log y + \log z) = \log x^2 - \log y^3 - \log z = \log \frac{x^2}{y^3z}\]

PTS: 2 REF: 061010a2 STA: A2.A.19 TOP: Properties of Logarithms

11 ANS: 2 PTS: 2 REF: 061011a2 STA: A2.A.10 TOP: Fractional Exponents as Radicals
12 ANS: 1
\[
\frac{\sqrt{3} + 5}{\sqrt{3} - 5} \cdot \frac{\sqrt{3} + 5}{\sqrt{3} + 5} = \frac{3 + 5\sqrt{3} + 5\sqrt{3} + 25}{3 - 25} = \frac{28 + 10\sqrt{3}}{-22} = \frac{14 + 5\sqrt{3}}{11}
\]

PTS: 2 REF: 061012a2 STA: A2.N.5 TOP: Rationalizing Denominators

13 ANS: 1 PTS: 2 REF: 061013a2 STA: A2.A.38

TOP: Defining Functions

14 ANS: 3
Cofunctions tangent and cotangent are complementary

PTS: 2 REF: 061014a2 STA: A2.A.58 TOP: Cofunction Trigonometric Relationships

15 ANS: 3
\(4^{x^2 + 4x} = 2^{-6}\). \(2x^2 + 8x = -6\)

\((2^2)^{x^2 + 4x} = 2^{-6}\) \(2x^2 + 8x + 6 = 0\)

\(2^{2x^2 + 8x} = 2^{-6}\) \(x^2 + 4x + 3 = 0\)

\((x + 3)(x + 1) = 0\)

\(x = -3\) \(x = -1\)

PTS: 2 REF: 061015a2 STA: A2.A.27 TOP: Exponential Equations

KEY: common base shown

16 ANS: 2
\(x^2 - 2x + y^2 + 6y = -3\)

\(x^2 - 2x + 1 + y^2 + 9 = -3 + 1 + 9\)

\((x - 1)^2 + (y + 3)^2 = 7\)

PTS: 2 REF: 061016a2 STA: A2.A.47 TOP: Equations of Circles

17 ANS: 1
\(y \geq x^2 - x - 6\)

\(y \geq (x - 3)(x + 2)\)

PTS: 2 REF: 061017a2 STA: A2.A.4 TOP: Quadratic Inequalities

KEY: two variables

18 ANS: 1 PTS: 2 REF: 061018a2 STA: A2.A.22

TOP: Solving Radicals KEY: extraneous solutions

19 ANS: 1 PTS: 2 REF: 061019a2 STA: A2.N.7

TOP: Imaginary Numbers
20 ANS: 3

PTS: 2 REF: 061020a2 STA: A2.A.71 TOP: Graphing Trigonometric Functions

21 ANS: 2 PTS: 2 REF: 061021a2 STA: A2.S.8 TOP: Correlation Coefficient

22 ANS: 3 PTS: 2 REF: 061022a2 STA: A2.A.63 TOP: Domain and Range

23 ANS: 1

\[\cos K = \frac{5}{6} \]

\[K = \cos^{-1} \left(\frac{5}{6} \right) \]

\[K \approx 33^\circ 33' \]

PTS: 2 REF: 061023a2 STA: A2.A.55 TOP: Trigonometric Ratios

24 ANS: 1

\[\cos^2 \theta - \cos 2\theta = \cos^2 \theta - (\cos^2 \theta - \sin^2 \theta) = \sin^2 \theta \]

PTS: 2 REF: 061024a2 STA: A2.A.77 TOP: Double Angle Identities KEY: simplifying

25 ANS: 1 PTS: 2 REF: 061025a2 STA: A2.A.34 TOP: Sigma Notation

26 ANS: 4 PTS: 2 REF: 061026a2 STA: A2.A.29 TOP: Sequences

27 ANS: 4

\[\frac{2\pi}{b} = \frac{2\pi}{1} = 6\pi \]

28 ANS:
\[b^2 - 4ac = 0 \]
\[k^2 - 4(1)(4) = 0 \]
\[k^2 - 16 = 0 \]
\[(k + 4)(k - 4) = 0 \]
\[k = \pm 4 \]

PTS: 2 REF: 061028a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine equation given nature of roots

29 ANS:
7.4

PTS: 2 REF: 061029a2 STA: A2.S.4 TOP: Dispersion
KEY: basic, group frequency distributions

30 ANS:
\[\text{Sum } \frac{-b}{a} = -\frac{11}{5}, \text{ Product } \frac{c}{a} = -\frac{3}{5} \]

PTS: 2 REF: 061030a2 STA: A2.A.20 TOP: Roots of Quadratics

31 ANS:

![Graph of exponential function]

PTS: 2 REF: 061031a2 STA: A2.A.53 TOP: Graphing Exponential Functions

32 ANS:
\[5\sqrt{3x^3} - 2\sqrt{27x^3} = 5\sqrt{x^2 \cdot 3x} - 2\sqrt{9x^2 \cdot 3x} = 5x\sqrt{3x} - 6x\sqrt{3x} = -x\sqrt{3x} \]

PTS: 2 REF: 061032a2 STA: A2.N.2 TOP: Operations with Radicals
33 ANS:

\[\frac{\sqrt{3}}{2} \]

PTS: 2 REF: 061033a2 STA: A2.A.60 TOP: Unit Circle

34 ANS:

\[K = a \sin C = 24 \cdot 30 \sin 57 \approx 604 \]

PTS: 2 REF: 061034a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

KEY: parallelograms

35 ANS:

\[
\frac{1}{d} + \frac{3}{2d} = \frac{d - 8}{2d} = \frac{d - 8}{2d} \times \frac{2d^2}{5d} = \frac{d - 8}{5}
\]

PTS: 2 REF: 061035a2 STA: A2.A.17 TOP: Complex Fractions

36 ANS:

\[
0.167. \quad _{10}C_8 \cdot 0.6^8 \cdot 0.4^2 + _{10}C_9 \cdot 0.6^9 \cdot 0.4 + _{10}C_{10} \cdot 0.6^{10} \cdot 0.4^0 \approx 0.167
\]

KEY: at least or at most
37 ANS:
0, 60, 180, 300.
\[
\begin{align*}
\sin 2\theta &= \sin \theta \\
\sin 2\theta - \sin \theta &= 0 \\
2 \sin \theta \cos \theta - \sin \theta &= 0 \\
\sin \theta (2 \cos \theta - 1) &= 0 \\
\sin \theta &= 0 \quad \text{or} \quad 2 \cos \theta - 1 = 0 \\
\theta &= 0, 180 \\
\cos \theta &= \frac{1}{2} \\
\theta &= 60, 300
\end{align*}
\]

KEY: double angle identities

38 ANS:
No. TENNESSEE: \[
\frac{9!}{4! \cdot 2! \cdot 2!} = \frac{362,880}{96} = 3,780 \]
VERMONT: \(\gamma \) \(7 \) = 5,040

39 ANS:
33. \[
a = \sqrt{10^2 + 6^2 - 2(10)(6) \cos 80} \approx 10.7. \quad \angle C \text{ is opposite the shortest side.}
\]
\[
\frac{6}{\sin C} = \frac{10.7}{\sin 80}
\]
\[
C \approx 33
\]

KEY: advanced
0810a2

Answer Section

1 ANS: 4

\[(3 + \sqrt{5})(3 - \sqrt{5}) = 9 - \sqrt{25} = 4\]

PTS: 2 REF: 081001a2 STA: A2.N.2 TOP: Operations with Radicals

2 ANS: 1

\[-420 \left(\frac{\pi}{180}\right) = \frac{7\pi}{3}\]

PTS: 2 REF: 081002a2 STA: A2.M.2 TOP: Radian Measure KEY: radians

3 ANS: 2 PTS: 2 REF: 081003a2 STA: A2.A.51 TOP: Domain and Range

4 ANS: 1

\[2i^2 + 3i^3 = 2(-1) + 3(-i) = -2 - 3i\]

PTS: 2 REF: 081004a2 STA: A2.N.7 TOP: Imaginary Numbers

5 ANS: 4 PTS: 2 REF: 081005a2 STA: A2.A.60

TOP: Unit Circle

6 ANS: 3

\[\frac{59.2}{\sin74} = \frac{60.3}{\sin C} \quad 180 - 78.3 = 101.7\]

\[C \approx 78.3\]

PTS: 2 REF: 081006a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

7 ANS: 3 PTS: 2 REF: 081007a2 STA: A2.A.64

TOP: Using Inverse Trigonometric Functions KEY: basic

8 ANS: 4

\[9^{3x+1} = 27^{x+2}\]

\[(3^2)^{3x+1} = (3^3)^{x+2}\]

\[3^{6x+2} = 3^{3x+6}\]

\[6x + 2 = 3x + 6\]

\[3x = 4\]

\[x = \frac{4}{3}\]

PTS: 2 REF: 081008a2 STA: A2.A.27 TOP: Exponential Equations KEY: common base not shown
9 ANS: 3
\[
\frac{-7 \pm \sqrt{7^2 - 4(2)(-3)}}{2(2)} = \frac{-7 \pm \sqrt{73}}{4}
\]

PTS: 2 REF: 081009a2 STA: A2.A.25 TOP: Quadratic Formula

10 ANS: 2
TOP: Trigonometric Ratios

11 ANS: 2
\[
\left(\frac{w^5}{w^3} \right)^{\frac{1}{2}} = (w^4)^{\frac{1}{2}} = w^2
\]

PTS: 2 REF: 081011a2 STA: A2.A.8 TOP: Negative and Fractional Exponents

12 ANS: 2
\[_{15}C_8 = 6,435\]

PTS: 2 REF: 081012a2 STA: A2.S.11 TOP: Combinations

13 ANS: 3
\[68\% \times 50 = 34\]

PTS: 2 REF: 081013a2 STA: A2.S.5 TOP: Normal Distributions

14 ANS: 1
common difference is 2. \(b_n = x + 2n \)

\[
10 = x + 2(1) \\
8 = x
\]

PTS: 2 REF: 081014a2 STA: A2.A.29 TOP: Sequences

15 ANS: 2
\[
x^2 - x - 6 = 3x - 6 \\
x^2 - 4x = 0 \\
x(x - 4) = 0 \\
x = 0, 4
\]

PTS: 2 REF: 081015a2 STA: A2.A.3 TOP: Quadratic-Linear Systems

16 ANS: 4
\[
b^2 - 4ac = 3^2 - 4(9)(-4) = 9 + 144 = 153
\]

PTS: 2 REF: 081016a2 STA: A2.A.2 TOP: Using the Discriminant

KEY: determine nature of roots given equation
17 ANS: 4

\[7^2 = 3^2 + 5^2 - 2(3)(5)\cos A\]

\[49 = 34 - 30\cos A\]

\[15 = -30\cos A\]

\[-\frac{1}{2} = \cos A\]

\[120 = \cos A\]

PTS: 2 REF: 081017a2 STA: A2.A.73 TOP: Law of Cosines
KEY: angle, without calculator

18 ANS: 2

\[\frac{x^{-1} - 1}{x - 1} = \frac{\frac{1}{x} - 1}{x - 1} = \frac{1 - x}{x} \cdot \frac{x}{x - 1} = \frac{-x}{x - 1} = \frac{1}{x}\]

PTS: 2 REF: 081018a2 STA: A2.A.9 TOP: Negative Exponents

19 ANS: 3

\[\frac{3}{\sqrt[3]{3a^2b}} = \frac{3}{a\sqrt[3]{3b}} \cdot \frac{\sqrt[3]{3b}}{\sqrt[3]{3b}} = \frac{3\sqrt[3]{3b}}{3ab} = \frac{\sqrt[3]{3b}}{ab}\]

PTS: 2 REF: 081019a2 STA: A2.A.15 TOP: Rationalizing Denominators
KEY: index = 2

20 ANS: 3

(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A.43 TOP: Defining Functions

21 ANS: 3

\[K = (10)(18)\sin46 \approx 129\]

PTS: 2 REF: 081021a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms

22 ANS: 1 PTS: 2 REF: 081022a2 STA: A2.A.46 TOP: Transformations with Functions and Relations

23 ANS: 2

The roots are \(-1, 2, 3\).

PTS: 2 REF: 081023a2 STA: A2.A.50 TOP: Solving Polynomial Equations

24 ANS: 2 PTS: 2 REF: 081024a2 STA: A2.N.8 TOP: Conjugates of Complex Numbers
25 ANS: 3
\[27r^{4-1} = 64\]
\[r^3 = \frac{64}{27}\]
\[r = \frac{4}{3}\]

PTS: 2 REF: 081025a2 STA: A2.A.31 TOP: Sequences

26 ANS: 3
\[\text{period} = \frac{2\pi}{b} = \frac{2\pi}{3\pi} = \frac{2}{3}\]

PTS: 2 REF: 081026a2 STA: A2.A.70 TOP: Graphing Trigonometric Functions
KEY: recognize

27 ANS: 3 PTS: 2 REF: 081027a2 STA: A2.A.44 TOP: Inverse of Functions
KEY: equations

28 ANS:
\[10ax^2 - 23ax - 5a = a(10x^2 - 23x - 5) = a(5x + 1)(2x - 5)\]

PTS: 2 REF: 081028a2 STA: A2.A.7 TOP: Factoring Polynomials
KEY: multiple variables

29 ANS:
\[\sum_{n=1}^{15} 7n\]

PTS: 2 REF: 081029a2 STA: A2.A.34 TOP: Sigma Notation

30 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S.1 TOP: Analysis of Data

31 ANS:
\[y = 10.596(1.586)^x\]

PTS: 2 REF: 081031a2 STA: A2.S.7 TOP: Exponential Regression

32 ANS:
\[45, 225\]
\[2\tan C - 3 = 3\tan C - 4\]
\[1 = \tan C\]
\[\tan^{-1} 1 = C\]
\[C = 45, 225\]

PTS: 2 REF: 081032a2 STA: A2.A.68 TOP: Trigonometric Equations
KEY: basic
33 ANS:

\[(x + 5)^2 + (y - 3)^2 = 32\]

PTS: 2
REF: 081033a2
STA: A2.A.49
TOP: Writing Equations of Circles

34 ANS:

\[
\frac{4}{9}x^2 - \frac{4}{3}x - 1 \left(\frac{2}{3}x - 1\right)^2 = \left(\frac{2}{3}x - 1\right)^2 \left(\frac{2}{3}x - 1\right) = \frac{4}{9}x^2 - \frac{2}{3}x - \frac{2}{3}x + 1 = \frac{4}{9}x^2 - \frac{4}{3}x + 1
\]

PTS: 2
REF: 081034a2
STA: A2.N.3
TOP: Operations with Polynomials

35 ANS:

\[
39,916,800. \quad \frac{12!
\frac{12}{3!}!}{2 \times 2!} = \frac{479,001,600}{12} = 39,916,800
\]

PTS: 2
REF: 081035a2
STA: A2.S.10
TOP: Permutations

36 ANS:

\[
\frac{1}{3} \left(\frac{1}{x + 3} - \frac{2}{3-x}\right) = \frac{4}{x^2 - 9}
\]

\[
\frac{1}{x + 3} + \frac{2}{x - 3} = \frac{4}{x^2 - 9}
\]

\[
\frac{x - 3 + 2(x + 3)}{(x + 3)(x - 3)} = \frac{4}{(x + 3)(x - 3)}
\]

\[
x - 3 + 2x + 6 = 4
\]

\[
x = 1
\]

\[
x = \frac{1}{3}
\]

PTS: 4
REF: 081036a2
STA: A2.A.23
TOP: Solving Rationals
KEY: rational solutions
37 ANS:

\[
\frac{23}{2} \cos^2 B + \sin^2 B = 1 \\
\cos^2 B + \left(\frac{5}{\sqrt{41}}\right)^2 = 1 \\
\cos^2 B + \frac{25}{41} = \frac{41}{41} \\
\cos^2 B = \frac{16}{41} \\
\cos B = \frac{4}{\sqrt{41}}
\]

\[
\tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{\sqrt{41}}}{\frac{4}{4}} = \frac{5}{4} \\
\tan(A + B) = \frac{\frac{2}{3} + \frac{5}{4}}{1 - \frac{\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}{12 - 10}} = \frac{\frac{8 + 15}{12}}{\frac{2}{12}} = \frac{\frac{23}{12}}{\frac{2}{12}} = \frac{23}{2}
\]

PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: evaluating

38 ANS:

\[10 C_8 \cdot 0.65^8 \cdot 0.35^2 + 10 C_9 \cdot 0.65^9 \cdot 0.35^1 + 10 C_{10} \cdot 0.65^{10} \cdot 0.35^0 \approx 0.262\]

KEY: at least or at most

39 ANS:

\[x = -\frac{1}{3}, -1\]

\[\log_{x+3} \frac{x^3 + x - 2}{x} = 2\]

\[\frac{x^3 + x - 2}{x} = (x + 3)^2\]

\[\frac{x^3 + x - 2}{x} = x^2 + 6x + 9\]

\[x^3 + x - 2 = x^3 + 6x^2 + 9x\]

\[0 = 6x^2 + 8x + 2\]

\[0 = 3x^2 + 4x + 1\]

\[0 = (3x + 1)(x + 1)\]

\[x = -\frac{1}{3}, -1\]

KEY: basic
0111a2

Answer Section

1 ANS: 4 PTS: 2 REF: 011101a2 STA: A2.A.38
TOP: Defining Functions KEY: graphs

2 ANS: 3
\[b^2 - 4ac = (-10)^2 - 4(1)(25) = 100 - 100 = 0 \]

PTS: 2 REF: 011102a2 STA: A2.A.2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

3 ANS: 2
\[x^3 + x^2 - 2x = 0 \]
\[x(x^2 + x - 2) = 0 \]
\[x(x + 2)(x - 1) = 0 \]
\[x = 0, -2, 1 \]

PTS: 2 REF: 011103a2 STA: A2.A.26 TOP: Solving Polynomial Equations

4 ANS: 3 PTS: 2 REF: 011104a2 STA: A2.A.64
TOP: Using Inverse Trigonometric Functions
KEY: unit circle

5 ANS: 3
\[a_n = 5(-2)^{n-1} \]
\[a_{15} = 5(-2)^{15-1} = 81,920 \]

PTS: 2 REF: 011105a2 STA: A2.A.32 TOP: Sequences

6 ANS: 1
\[4a + 6 = 4a - 10 \]
\[6 \neq -10 \]
\[4a + 6 = -4a + 10 \]
\[8a = 4 \]
\[a = \frac{4}{8} = \frac{1}{2} \]

PTS: 2 REF: 011106a2 STA: A2.A.1 TOP: Absolute Value Equations
7 ANS: 3
\[
\left(\frac{2}{3} \right)^2 + \cos^2 A = 1 \quad \sin 2A = 2 \sin A \cos A
\]
\[
\cos^2 A = \frac{5}{9} = 2 \left(\frac{2}{3} \right) \left(\frac{\sqrt{5}}{3} \right)
\]
\[
\cos A = +\frac{\sqrt{5}}{3}, \text{ sin } A \text{ is acute.} \quad = \frac{4\sqrt{5}}{9}
\]

PTS: 2 REF: 011107a2 STA: A2.A.77 TOP: Double Angle Identities
KEY: evaluating

8 ANS: 2
\[
\frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3} \frac{2\pi}{2\pi} = \frac{1}{3}
\]

PTS: 2 REF: 011108a2 STA: A2.S.13 TOP: Geometric Probability

9 ANS: 2
\[
6(x^2 - 5) = 6x^2 - 30
\]

PTS: 2 REF: 011109a2 STA: A2.A.42 TOP: Compositions of Functions
KEY: variables

10 ANS: 3 PTS: 2 REF: 011110a2 STA: A2.A.30 TOP: Sequences

11 ANS: 4 PTS: 2 REF: 011111a2 STA: A2.N.8 TOP: Conjugates of Complex Numbers

12 ANS: 1 PTS: 2 REF: 011112a2 STA: A2.A.64 TOP: Using Inverse Trigonometric Functions KEY: advanced

13 ANS: 2
\[
\frac{10}{\sin 35} = \frac{13}{\sin B} \quad 35 + 48 < 180
\]
\[
B \approx 48, 132 \quad 35 + 132 < 180
\]

PTS: 2 REF: 011113a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

15 ANS: 3
\[x^2 - 3x - 10 > 0 \]
or\[(x - 5)(x + 2) > 0 \quad x - 5 < 0 \text{ and } x + 2 < 0 \]
\[x - 5 > 0 \text{ and } x + 2 > 0 \quad x < 5 \text{ and } x < -2 \]
\[x > 5 \text{ and } x > -2 \quad x < -2 \]
\[x > 5 \]

PTS: 2 REF: 011115a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable

16 ANS: 2
\[x^2 + 2 = 6x \]
\[x^2 - 6x = -2 \]
\[x^2 - 6x + 9 = -2 + 9 \]
\[(x - 3)^2 = 7 \]

PTS: 2 REF: 011116a2 STA: A2.A.24 TOP: Completing the Square

17 ANS: 1 PTS: 2 REF: 011117a2 STA: A2.S.9 TOP: Differentiating Permutations and Combinations

18 ANS: 4
\[x = \frac{\frac{1}{3^2}}{\frac{1}{5}} = \frac{1}{\sqrt[3]{x^2}} \]

PTS: 2 REF: 011118a2 STA: A2.A.10 TOP: Fractional Exponents as Radicals

19 ANS: 3 PTS: 2 REF: 011119a2 STA: A2.A.52 TOP: Families of Functions

20 ANS: 1
\[\sqrt{12^2 - 6^2} = \sqrt{108} = \sqrt{36 \cdot \sqrt{3}} = 6\sqrt{3} \cdot \cot J = \frac{A}{O} = \frac{6}{6\sqrt{3} \cdot \sqrt{3} = \frac{\sqrt{3}}{3}} \]

PTS: 2 REF: 011120a2 STA: A2.A.55 TOP: Trigonometric Ratios

21 ANS: 3
\[\frac{-b}{a} = \frac{-6}{2} = -3, \quad \frac{c}{a} = \frac{4}{2} = 2 \]

PTS: 2 REF: 011121a2 STA: A2.A.21 TOP: Roots of Quadratics
KEY: basic
22 ANS: 4
\[
\frac{2x + 4}{\sqrt{x + 2}} \cdot \frac{\sqrt{x + 2}}{\sqrt{x + 2}} = \frac{2(x + 2)\sqrt{x + 2}}{x + 2} = 2\sqrt{x + 2}
\]

PTS: 2 \quad REF: 011122a2 \quad STA: A2.A.15 \quad TOP: Rationalizing Denominators
KEY: index = 2

23 ANS: 1

PTS: 2 \quad REF: 011123a2 \quad STA: A2.A.71 \quad TOP: Graphing Trigonometric Functions

24 ANS: 4 \quad PTS: 2 \quad REF: 011124a2 \quad STA: A2.A.18
TOP: Evaluating Logarithmic Expressions

25 ANS: 1
8 \times 8 \times 7 \times 1 = 448. The first digit cannot be 0 or 5. The second digit cannot be 5 or the same as the first digit.
The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 \quad REF: 011125a2 \quad STA: A2.S.10 \quad TOP: Permutations

26 ANS: 2 \quad PTS: 2 \quad REF: 011126a2 \quad STA: A2.A.49
TOP: Equations of Circles

27 ANS: 4 \quad PTS: 2 \quad REF: 011127a2 \quad STA: A2.S.1
TOP: Analysis of Data

28 ANS:
\[16^{2x+3} = 64^{x+2}\]
\[(4^2)^{2x+3} = (4^3)^{x+2}\]
\[4x + 6 = 3x + 6\]
\[x = 0\]

PTS: 2 \quad REF: 011128a2 \quad STA: A2.A.27 \quad TOP: Exponential Equations
KEY: common base not shown

29 ANS:
\[2.5 \cdot \frac{180}{\pi} \approx 143.2°\]

PTS: 2 \quad REF: 011129a2 \quad STA: A2.M.2 \quad TOP: Radian Measure
KEY: degrees

30 ANS:
\[12 \cdot 6 = 9w\]
\[8 = w\]

PTS: 2 \quad REF: 011130a2 \quad STA: A2.A.5 \quad TOP: Inverse Variation
31 ANS:

\[230. \quad 10 + (1^3 - 1) + (2^3 - 1) + (3^3 - 1) + (4^3 - 1) + (5^3 - 1) = 10 + 0 + 7 + 26 + 63 + 124 = 230 \]

PTS: 2 REF: 011131a2 STA: A2.N.10 TOP: Sigma Notation
KEY: basic

32 ANS:

D: \(-5 \leq x \leq 8\). \quad R: \(-3 \leq y \leq 2\)

PTS: 2 REF: 011132a2 STA: A2.A.51 TOP: Domain and Range

33 ANS:

\[\frac{\sqrt{108x^5y^8}}{\sqrt{6xy^5}} = \sqrt{18x^4y^3} = 3x^2y\sqrt{2y} \]

KEY: with variables | index = 2

34 ANS:

68\% of the students are within one standard deviation of the mean. 16\% of the students are more than one standard deviation above the mean.

PTS: 2 REF: 011134a2 STA: A2.S.5 TOP: Normal Distributions
KEY: percent

35 ANS:

\[\frac{\sin^2 A}{\cos^2 A} + \frac{\cos^2 A}{\sin^2 A} = \frac{1}{\cos^2 A} \cdot \tan^2 A + 1 = \sec^2 A \]

PTS: 2 REF: 011135a2 STA: A2.A.67 TOP: Proving Trigonometric Identities

36 ANS:

\[32x^5 - 80x^4 + 80x^3 - 40x^2 + 10x - 1. \quad \frac{C_0(2x)^5}{(-1)^0} = 32x^5. \quad \frac{C_1(2x)^4}{(-1)^1} = -80x^4. \quad \frac{C_2(2x)^3}{(-1)^2} = 80x^3. \quad \frac{C_3(2x)^2}{(-1)^3} = -40x^2. \quad \frac{C_4(2x)^1}{(-1)^4} = 10x. \quad \frac{C_5(2x)^0}{(-1)^5} = -1 \]

PTS: 4 REF: 011136a2 STA: A2.A.36 TOP: Binomial Expansions

37 ANS:

\[\frac{12}{\sin 32} = \frac{10}{\sin B} \quad \Rightarrow \quad C \approx 180 - (32 + 26.2) \approx 121.8. \quad \frac{12}{\sin 32} = \frac{c}{\sin 121.8} \]

\[B = \sin^{-1} \left(\frac{10 \sin 32}{12} \right) \approx 26.2 \quad c = \frac{12 \sin 121.8}{\sin 32} \approx 19.2 \]

PTS: 4 REF: 011137a2 STA: A2.A.73 TOP: Law of Sines
KEY: basic
38 ANS:
\[0.468 \cdot \binom{2}{3} \left(\frac{1}{3}\right)^2 \approx 0.27313. \]
\[0.15607 \cdot \binom{2}{3} \left(\frac{1}{3}\right)^1 \approx 0.03902. \]

PTS: 4 REF: 011138a2 STA: A2.S.15 TOP: Binomial Probability KEY: at least or at most

39 ANS:
\[\ln(T - T_0) = -kt + 4.718 \quad \ln(T - 68) = -0.104(10) + 4.718. \]
\[\ln(150 - 68) = -k(3) + 4.718 \quad \ln(T - 68) = 3.678 \]
\[4.407 \approx -3k + 4.718 \quad T - 68 \approx 39.6 \]
\[k \approx 0.104 \quad T \approx 108 \]

0611a2
Answer Section

1 ANS: 4 PTS: 2 REF: 061101a2 STA: A2.S.1 TOP: Analysis of Data

2 ANS: 2
\[f(10) = \frac{-10}{(-10)^2 - 16} = \frac{-10}{84} = -\frac{5}{42} \]

PTS: 2 REF: 061102a2 STA: A2.A.41 TOP: Functional Notation

3 ANS: 4
\[S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{21}{2} [2(18) + (21 - 1)2] = 798 \]

PTS: 2 REF: 061103a2 STA: A2.A.35 TOP: Series KEY: arithmetic

4 ANS: 2
\[\cos(-305^\circ + 360^\circ) = \cos(55^\circ) \]

PTS: 2 REF: 061104a2 STA: A2.A.57 TOP: Reference Angles

5 ANS: 2
\[4^{2x+5} = 8^{3x} \]

\[\left(2^2\right)^{2x+5} = \left(2^3\right)^{3x} \]

\[2^{4x+10} = 2^{9x} \]

\[4x + 10 = 9x \]

\[10 = 5x \]

\[2 = x \]

PTS: 2 REF: 061105a2 STA: A2.A.27 TOP: Exponential Equations KEY: common base not shown

6 ANS: 3
\[x = 5^4 = 625 \]

PTS: 2 REF: 061106a2 STA: A2.A.28 TOP: Logarithmic Equations KEY: basic

7 ANS: 1
\[\sqrt[4]{16x^2y^7} = \sqrt[4]{16 \cdot x^4 \cdot y^7} = x^\frac{1}{2} y^\frac{7}{4} \]

PTS: 2 REF: 061107a2 STA: A2.A.11 TOP: Radicals as Fractional Exponents

8 ANS: 2 PTS: 2 REF: 061108a2 STA: A2.A.52 TOP: Identifying the Equation of a Graph
9 ANS: 1
\[a_n = -\sqrt{5}(-\sqrt{2})^{n-1} \]
\[a_{15} = -\sqrt{5}(-\sqrt{2})^{15-1} = -\sqrt{5}(-\sqrt{2})^{14} = -\sqrt{5} \cdot 2^7 = -128\sqrt{5} \]

PTS: 2 REF: 061109a2 STA: A2.A.32 TOP: Sequences

10 ANS: 1
\[13^2 = 15^2 + 14^2 - 2(15)(14)\cos C \]
\[169 = 421 - 420\cos C \]
\[-252 = -420\cos C \]
\[\frac{252}{420} = \cos C \]
\[53 \approx C \]

11 ANS: 2
\[\frac{2\pi}{b} = \frac{2\pi}{3} \]

13 ANS: 1
\[\binom{10}{4} = 210 \]

PTS: 2 REF: 061113a2 STA: A2.S.11 TOP: Combinations

14 ANS: 3 PTS: 2 REF: 061114a2 STA: A2.A.38 TOP: Defining Functions KEY: graphs

15 ANS: 2
\[\tan(125^\circ) \approx 1.340786784 \]

PTS: 2 REF: 061115a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

16 ANS: 3
\[\frac{4}{5 - \sqrt{13}} = \frac{5 + \sqrt{13}}{5 + \sqrt{13}} \]
\[= \frac{4(5 + \sqrt{13})}{25 - 13} = \frac{5 + \sqrt{13}}{3} \]

PTS: 2 REF: 061116a2 STA: A2.N.5 TOP: Rationalizing Denominators

2
17 ANS: 3

\[75000 = 25000e^{0.0475t} \]

\[3 = e^{0.0475t} \]

\[\ln 3 = \ln e^{0.0475t} \]

\[\ln 3 = 0.0475 \cdot \ln e \]

\[\frac{\ln 3}{0.0475} = \frac{0.0475 \cdot \ln e}{0.0475} \]

\[23.1 \approx t \]

PTS: 2 REF: 061117a2 STA: A2.A.6 TOP: Exponential Growth

18 ANS: 1

<table>
<thead>
<tr>
<th>(n)</th>
<th>(-r + r)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-r^2 + r)</td>
<td>(-3^2 + 3 = -6)</td>
<td>(-4^2 + 4 = -12)</td>
<td>(-5^2 + 5 = -20)</td>
<td>(-38)</td>
<td></td>
</tr>
</tbody>
</table>

PTS: 2 REF: 061118a2 STA: A2.N.10 TOP: Sigma Notation

KEY: basic

19 ANS: 3 PTS: 2 REF: 061119a2 STA: A2.A.65

TOP: Graphing Trigonometric Functions

20 ANS: 4 PTS: 2 REF: 061120a2 STA: A2.A.19

TOP: Properties of Logarithms KEY: splitting logs

21 ANS: 3

\[3x + 16 = (x + 2)^2 \]

\(-4 \) is an extraneous solution.

\[3x + 16 = x^2 + 4x + 4 \]

\[0 = x^2 + x - 12 \]

\[0 = (x + 4)(x - 3) \]

\[x = -4 \quad x = 3 \]

PTS: 2 REF: 061121a2 STA: A2.A.22 TOP: Solving Radicals

KEY: extraneous solutions

22 ANS: 2 PTS: 2 REF: 061122a2 STA: A2.A.24

TOP: Completing the Square

23 ANS: 3

\[\frac{\sin^2 \theta + \cos^2 \theta}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta \]

PTS: 2 REF: 061123a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

24 ANS: 4 PTS: 2 REF: 061124a2 STA: A2.S.3

TOP: Average Known with Missing Data
25 ANS: 3
\[2\pi \cdot \frac{5}{12} = \frac{10\pi}{12} = \frac{5\pi}{6} \]

PTS: 2 REF: 061125a2 STA: A2.M.1 TOP: Radian Measure

26 ANS: 1
\[_9C_3 a^6 (-4b)^3 = -5376a^6b^3 \]

PTS: 2 REF: 061126a2 STA: A2.A.36 TOP: Binomial Expansions

27 ANS: 3

PTS: 2 REF: 061127a2 STA: A2.S.6 TOP: Regression

28 ANS:
\[6y^3 - \frac{37}{10}y^2 - \frac{1}{5}y \cdot \left(\frac{1}{2}y^2 - \frac{1}{3}y \right) \left(12y + \frac{3}{5} \right) = 6y^3 + \frac{3}{10}y^2 - 4y^2 - \frac{1}{5}y = 6y^3 - \frac{37}{10}y^2 - \frac{1}{5}y \]

PTS: 2 REF: 061128a2 STA: A2.N.3 TOP: Operations with Polynomials

29 ANS:
no. over 20 is more than 1 standard deviation above the mean. \(0.159 \cdot 82 \approx 13.038 \)

PTS: 2 REF: 061129a2 STA: A2.S.5 TOP: Normal Distributions

KEY: predict

30 ANS:
\[x^2 - 6x - 27 = 0, \quad \frac{-b}{a} = 6. \quad \frac{c}{a} = -27. \quad \text{If } a = 1 \text{ then } b = -6 \text{ and } c = -27 \]

PTS: 4 REF: 061130a2 STA: A2.A.21 TOP: Roots of Quadratics

KEY: basic

31 ANS:
\[e^{3\ln2} = e^{\ln2^3} = e^{\ln8} = 8 \]

PTS: 2 REF: 061131a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

32 ANS:
\[y = x^2 - 6. \quad f^{-1}(x) \text{ is not a function.} \]
\[x = y^2 - 6 \]
\[x + 6 = y^2 \]
\[\pm \sqrt{x + 6} = y \]

PTS: 2 REF: 061132a2 STA: A2.A.44 TOP: Inverse of Functions

KEY: equations

33 ANS:
\[12^3 - 75t^4 = 3t^4(4t^4 - 25) = 3t^4(2t^2 + 5)(2t^2 - 5) \]

PTS: 2 REF: 061133a2 STA: A2.A.7 TOP: Factoring the Difference of Perfect Squares

KEY: binomial
34 ANS:
\[
\frac{12x^2}{y^9} \cdot \frac{3x^{-4}y^5}{(2x^3y^7)^{-2}} = \frac{3y^5(2x^3y^{-7})^2}{x^4} = \frac{3y^5(4x^6y^{-14})}{x^4} = \frac{12x^6y^{-9}}{x^4} = \frac{12x^2}{y^9}
\]

PTS: 2 REF: 061134a2 STA: A2.A.9 TOP: Negative Exponents

35 ANS:
7. \(f(-3) = (-3)^2 - 6 = 3 \). \(g(x) = 2^3 - 1 = 7 \).

PTS: 2 REF: 061135a2 STA: A2.A.42 TOP: Compositions of Functions

36 ANS:
\[
\sin(45+30) = \sin 45 \cos 30 + \cos 45 \sin 30
\]
\[
= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}
\]

PTS: 4 REF: 061136a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities

37 ANS:
\[
-3|6-x| < -15
\]
\[
|6-x| > 5
\]
\[
6-x > 5 \text{ or } 6-x < -5
\]
\[
1 > x \text{ or } 11 < x
\]

PTS: 2 REF: 061137a2 STA: A2.A.1 TOP: Absolute Value Inequalities

38 ANS:
\[
\frac{51}{243} \cdot \binom{1}{3} \left(\frac{2}{3} \right)^2 = \frac{40}{243}
\]
\[
\binom{1}{3} \left(\frac{2}{3} \right)^1 = \frac{10}{243}
\]
\[
\binom{1}{3} \left(\frac{2}{3} \right)^0 = \frac{1}{243}
\]

KEY: at least or at most
39 ANS: \[
\left(\frac{-9}{2}, \frac{1}{2}\right) \text{ and } \left(\frac{1}{2}, \frac{11}{2}\right).
\]
\[y = x + 5\quad \quad 4x^2 + 17x - 4 = x + 5\]
\[y = 4x^2 + 17x - 4\quad 4x^2 + 16x - 9 = 0\]
\[(2x + 9)(2x - 1) = 0\]
\[x = \frac{-9}{2} \text{ and } x = \frac{1}{2}\]
\[y = \frac{-9}{2} + 5 = \frac{1}{2} \text{ and } y = \frac{1}{2} + 5 = \frac{11}{2}\]

PTS: 6
REF: 061139a2
STA: A2.A.3
TOP: Quadratic-Linear Systems
KEY: equations
0112a2
Answer Section

1 ANS: 4 PTS: 2 REF: 011201a2 STA: A2.S.2 TOP: Analysis of Data

2 ANS: 3
\[S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{19}{2} [2(3) + (19 - 1)7] = 1254 \]

PTS: 2 REF: 011202a2 STA: A2.A.35 TOP: Summations KEY: arithmetic

3 ANS: 1
\[\cos\left(\frac{5\pi}{6}\right) = -1.54700538 \]

PTS: 2 REF: 011203a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

4 ANS: 4
\[g\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} = 2. \ f(2) = 4(2) - 2^2 = 4 \]

PTS: 2 REF: 011204a2 STA: A2.A.42 TOP: Compositions of Functions KEY: numbers

5 ANS: 2
\[320 = 10(2)^{\frac{t}{60}} \]
\[32 = (2)^{\frac{t}{60}} \]
\[\log 32 = \log(2)^{\frac{t}{60}} \]
\[\log 32 = \frac{t \log 2}{60} \]
\[60 \log 32 \]
\[\frac{\log 2}{\log 2} = t \]
\[300 = t \]

PTS: 2 REF: 011205a2 STA: A2.A.6 TOP: Exponential Growth

6 ANS: 2
The binomials are conjugates, so use FL.

PTS: 2 REF: 011206a2 STA: A2.N.3 TOP: Operations with Polynomials
7 ANS: 3

8 ANS: 2

9 ANS: 2

9 sum: \(\frac{b}{a} = \frac{4}{6} = \frac{2}{3} \) product: \(\frac{c}{a} = \frac{-12}{6} = -2 \)

10 ANS: 1

10 \[\frac{9}{\sin A} = \frac{10}{\sin 70°} \]

11 ANS: 2

11 \[\frac{x^{-1} + 1}{x + 1} = \frac{1 + x}{x} = \frac{1 + x}{x + 1} = \frac{1}{x} \]

12 ANS: 3

12 34.1% + 19.1% = 53.2%

13 ANS: 2

13 \[\cos(A - B) = \left(\frac{5}{13} \right) \left(\frac{3}{5} \right) + \left(\frac{12}{13} \right) \left(\frac{4}{5} \right) = \frac{15}{65} + \frac{48}{65} = \frac{33}{65} \]

14 ANS: 3

14 \[3C_2(2x^4)(-y)^2 = 6x^4y^2 \]

15 ANS: 3

15 \[3C_2(2x^4)(-y)^2 = 6x^4y^2 \]
16 ANS: 3

\[3x^5 - 48x = 0 \]
\[3x(x^4 - 16) = 0 \]
\[3x(x^2 + 4)(x^2 - 4) = 0 \]
\[3x(x^2 + 4)(x + 2)(x - 2) = 0 \]

PTS: 2 REF: 011216a2 STA: A2.A.26 TOP: Solving Polynomial Equations

17 ANS: 4

\[\frac{10}{4} = 2.5 \]

PTS: 2 REF: 011217a2 STA: A2.A.29 TOP: Sequences

18 ANS: 1

\[\frac{1}{2} (7.4)(3.8) \sin 126 \approx 11.4 \]

PTS: 2 REF: 011218a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

19 ANS: 4

PTS: 2 REF: 011219a2 STA: A2.A.52 TOP: Properties of Graphs of Functions and Relations

20 ANS: 1

\[2 \cdot \frac{180}{\pi} = \frac{360}{\pi} \]

PTS: 2 REF: 011220a2 STA: A2.M.2 TOP: Radian Measure

21 ANS: 4

\[3 \binom{2}{5} \left(\frac{3}{8} \right) \left(\frac{5}{8} \right)^1 = \frac{225}{512} \]

PTS: 2 REF: 011221a2 STA: A2.S.15 TOP: Binomial Probability

22 ANS: 2

PTS: 2 REF: 011222a2 STA: A2.A.39 TOP: Domain and Range

23 ANS: 1

(4) shows the strongest linear relationship, but if \(r < 0 \), \(b < 0 \).

PTS: 2 REF: 011223a2 STA: A2.S.8 TOP: Correlation Coefficient
24 ANS: 2
\[\log x^2 = \log 3a + \log 2a \]
\[2 \log x = \log 6a^2 \]
\[\log x = \frac{\log 6 + \frac{1}{2} \log 2}{2} \]
\[\log x = \frac{1}{2} \log 6 + \frac{1}{2} \log a \]
\[\log x = \frac{1}{2} \log 6 + \log a \]

KEY: splitting logs

25 ANS: 2 PTS: 2 REF: 011225a2 STA: A2.A.43
TOP: Defining Functions

26 ANS: 1
\[10 \cdot \frac{3}{2} = \frac{3}{5} p \]
\[15 = \frac{3}{5} p \]
\[25 = p \]

PTS: 2 REF: 011226a2 STA: A2.A.5 TOP: Inverse Variation

27 ANS: 4
\[\frac{2\pi}{b} = 30 \]
\[b = \frac{\pi}{15} \]

PTS: 2 REF: 011227a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph

28 ANS:
\[x < -1 \text{ or } x > 5 . \quad x^2 - 4x - 5 > 0 \quad x - 5 > 0 \text{ and } x + 1 > 0 \text{ or } x - 5 < 0 \text{ and } x + 1 < 0 \]
\[(x - 5)(x + 1) > 0 \quad x > 5 \text{ and } x > -1 \quad x < 5 \text{ and } x < -1 \]
\[x > 5 \quad x < -1 \]

PTS: 2 REF: 011228a2 STA: A2.A.4 TOP: Quadratic Inequalities
KEY: one variable
29 ANS:
7. \(4 - \sqrt{2x - 5} = 1\)
\[-\sqrt{2x - 5} = -3\]
\[2x - 5 = 9\]
\[2x = 14\]
\[x = 7\]

PTS: 2 REF: 011229a2 STA: A2.A.22 TOP: Solving Radicals
KEY: basic

30 ANS:
\[-104.\]

PTS: 2 REF: 011230a2 STA: A2.N.10 TOP: Sigma Notation
KEY: basic

31 ANS:
\[-\frac{a^2 b^3}{4}\]

PTS: 2 REF: 011231a2 STA: A2.A.13 TOP: Simplifying Radicals
KEY: index > 2

32 ANS:
\[\binom{25}{20} = 53,130\]

PTS: 2 REF: 011232a2 STA: A2.S.11 TOP: Combinations

33 ANS:

PTS: 2 REF: 011234a2 STA: A2.A.53 TOP: Graphing Exponential Functions

34 ANS:
\[r = \sqrt{2^2 + 3^2} = \sqrt{13}\]
\[(x + 5)^2 + (y - 2)^2 = 13\]

PTS: 2 REF: 011234a2 STA: A2.A.49 TOP: Writing Equations of Circles
35 ANS:
\[
\frac{2\sqrt{3}}{3}. \text{ If } \sin 60 = \frac{\sqrt{3}}{2}, \text{ then } \csc 60 = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}
\]

PTS: 2 REF: 011235a2 STA: A2.A.59 TOP: Reciprocal Trigonometric Relationships

36 ANS:
\[
88. \frac{100}{\sin 33} = \frac{x}{\sin 32}. \sin 66 \approx \frac{T}{97.3} \\
\text{ } x \approx 97.3 \quad t \approx 88
\]

KEY: advanced

37 ANS:
\[
800. x = 4^{2.5} = 32. \quad \frac{x}{y} = \frac{32}{1} = 800 \\
\quad y = 125 \quad \frac{x}{y} = \frac{1}{25}
\]

PTS: 4 REF: 011237a2 STA: A2.A.28 TOP: Logarithmic Equations

KEY: advanced

38 ANS:
\[
y = 27.2025(1.1509)^x. \quad y = 27.2025(1.1509)^{18} \approx 341
\]

PTS: 4 REF: 011238a2 STA: A2.S.7 TOP: Exponential Regression

39 ANS:
\[
\frac{-2(x^2 + 6)}{x^4} \cdot \frac{x^2(x-3) + 6(x-3)}{x^2-4x} \cdot \frac{2x-4}{x^4-3x^3} \cdot \frac{x^2+2x-8}{16-x^2} \\
\quad \frac{(x^2+6)(x-3)}{x(x-4)} \cdot \frac{2(x-2)(4+x)(4-x)}{x^3(x-3)} \cdot \frac{(x+4)(x-2)}{(4+x)(4-x)} \\
\quad \frac{-2(x^2+6)}{x^4}
\]

PTS: 6 REF: 011239a2 STA: A2.A.16 TOP: Multiplication and Division of Rationals

KEY: division
0612a2
Answer Section

1 ANS: 1

The binomials are conjugates, so use FL.

PTS: 2 REF: 061201a2 STA: A2.N.3 TOP: Operations with Polynomials

2 ANS: 1 PTS: 2 REF: 061202a2 STA: A2.A.51 TOP: Domain and Range

3 ANS: 4

\[2 \cos \theta = 1 \]
\[\cos \theta = \frac{1}{2} \]
\[\theta = \cos^{-1} \frac{1}{2} = 60, 300 \]

PTS: 2 REF: 061203a2 STA: A2.A.68 TOP: Trigonometric Equations KEY: basic

4 ANS: 3

\[3\sqrt[4]{a^{15}a} = 4a^{\frac{5}{2}} \cdot \sqrt[4]{a} \]

5 ANS: 2 PTS: 2 REF: 061205a2 STA: A2.A.34 TOP: Sigma Notation

6 ANS: 4 PTS: 2 REF: 061206a2 STA: A2.A.60 TOP: Unit Circle

8 ANS: 3

sum of the roots, \(\frac{-b}{a} = \frac{-(-9)}{4} = \frac{9}{4} \)

product of the roots, \(\frac{c}{a} = \frac{3}{4} \)

PTS: 2 REF: 061208a2 STA: A2.A.21 TOP: Roots of Quadratics KEY: basic
9 ANS: 3
\[\frac{4x - 5}{3} > 1 \text{ or } \frac{4x - 5}{3} < -1 \]
\[4x - 5 > 3 \quad 4x - 5 < -3 \]
\[4x > 8 \quad 4x < 2 \]
\[x > 2 \quad x < \frac{1}{2} \]

PTS: 2 REF: 061209a2 STA: A2.A.1 TOP: Absolute Value Inequalities
KEY: graph

10 ANS: 1 PTS: 2 REF: 061210a2 STA: A2.A.9
TOP: Negative Exponents

11 ANS: 1 PTS: 2 REF: 061211a2 STA: A2.A.54
TOP: Graphing Logarithmic Functions

12 ANS: 3
\[s = \theta r = \frac{2\pi}{8} \cdot 6 = \frac{3\pi}{2} \]

PTS: 2 REF: 061212a2 STA: A2.A.61 TOP: Arc Length
KEY: arc length

13 ANS: 1
\[5x + 29 = (x + 3)^2 \]
\[(-5) + 3 \text{ shows an extraneous solution.} \]
\[5x + 29 = x^2 + 6x + 9 \]
\[0 = x^2 + x - 20 \]
\[0 = (x + 5)(x - 4) \]
\[x = -5, 4 \]

PTS: 2 REF: 061213a2 STA: A2.A.22 TOP: Solving Radicals
KEY: extraneous solutions

14 ANS: 2
\[x^3 + 3x^2 - 4x - 12 \]
\[x^2(x + 3) - 4(x + 3) \]
\[(x^2 - 4)(x + 3) \]
\[(x + 2)(x - 2)(x + 3) \]

PTS: 2 REF: 061214a2 STA: A2.A.7 TOP: Factoring by Grouping

15 ANS: 3
\[\binom{6}{3} \left(\frac{x}{2} \right)^3 (-2y)^3 = 20 \cdot \frac{x^3}{8} \cdot (-8y^3) = -20x^3y^3 \]

PTS: 2 REF: 061215a2 STA: A2.A.36 TOP: Binomial Expansions
16. ANS: 2 PTS: 2 REF: 061216a2 STA: A2.A.42
 TOP: Compositions of Functions KEY: variables

17. ANS: 4

PTS: 2 REF: 061217a2 STA: A2.A.66 TOP: Determining Trigonometric Functions

18. ANS: 2 PTS: 2 REF: 061218a2 STA: A2.A.43
 TOP: Defining Functions

19. ANS: 3 PTS: 2 REF: 061219a2 STA: A2.N.8
 TOP: Conjugates of Complex Numbers

20. ANS: 1

If \(\sin x = 0.8 \), then \(\cos x = 0.6 \).
\[
\tan \frac{1}{2}x = \frac{1 - 0.6}{1 + 0.6} = \sqrt{\frac{0.4}{1.6}} = 0.5.
\]

PTS: 2 REF: 061220a2 STA: A2.A.77 TOP: Half Angle Identities

21. ANS: 4

\[
\frac{4 \cdot 0 + 6 \cdot 1 + 10 \cdot 2 + 0 \cdot 3 + 4k + 2 \cdot 5}{4 + 6 + 10 + 0 + k + 2} = 2
\]

\[
\frac{4k + 36}{k + 22} = 2
\]

\[
4k + 36 = 2k + 44
\]

\[
2k = 8
\]

\[
k = 4
\]

PTS: 2 REF: 061221a2 STA: A2.S.3 TOP: Average Known with Missing Data

22. ANS: 4

PTS: 2 REF: 061222a2 STA: A2.A.50 TOP: Solving Polynomial Equations

23. ANS: 1 PTS: 2 REF: 061223a2 STA: A2.S.15
 TOP: Binomial Probability KEY: modeling

24. ANS: 3 PTS: 2 REF: 061224a2 STA: A2.A.63
 TOP: Domain and Range
25 ANS: 1

\[\sin 35 \approx \sin 73 \]

\[73 + 35 < 180 \]

\[(180 - 73) + 35 < 180 \]

PTS: 2 REF: 061225a2 STA: A2.S.8 TOP: Correlation Coefficient

26 ANS: 1

\[\frac{6}{\sin 35} = \frac{10}{\sin N} \]

\[N \approx 73 \]

\[73 + 35 < 180 \]

(180 - 73) + 35 < 180

PTS: 2 REF: 061226a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

27 ANS: 4

\[C_5 = 3,003. \quad C_5 = 53,130. \quad C_{15} = 3,268,760. \]

PTS: 2 REF: 061227a2 STA: A2.S.11 TOP: Combinations

28 ANS:

\[i^{13} + i^{18} + i^{31} + n = 0 \]

\[i + (-1) - i + n = 0 \]

\[-1 + n = 0 \]

\[n = 1 \]

PTS: 2 REF: 061228a2 STA: A2.N.7 TOP: Imaginary Numbers

29 ANS:

\[A = 750 e^{0.03(8)} \approx 953 \]

PTS: 2 REF: 061229a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions

30 ANS:

\[\cos \theta \cdot \frac{1}{\cos \theta} = 1 \quad \frac{1}{\cos^2 \theta} = 1 - \cos^2 \theta = \sin^2 \theta \]

PTS: 2 REF: 061230a2 STA: A2.A.58 TOP: Reciprocal Trigonometric Relationships

31 ANS:

\[y = 180.377(0.954)^t \]

PTS: 2 REF: 061231a2 STA: A2.S.7 TOP: Exponential Regression
32 ANS:
\[
216 \left(\frac{\pi}{180} \right) \approx 3.8
\]

PTS: 2 REF: 061232a2 STA: A2.M.2 TOP: Radian Measure
KEY: radians

33 ANS:
\[a_1 = 3, \ a_2 = 2(3) - 1 = 5, \ a_3 = 2(5) - 1 = 9. \]

PTS: 2 REF: 061233a2 STA: A2.A.33 TOP: Recursive Sequences

34 ANS:
\[
K = ab \sin C = 18 \cdot 22 \sin 60 = 396 \frac{\sqrt{3}}{2} = 198\sqrt{3}
\]

PTS: 2 REF: 061234a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms

35 ANS:
\[y = -3 \sin 2x. \] The period of the function is \(\pi \), the amplitude is 3 and it is reflected over the \(x \)-axis.

PTS: 2 REF: 061235a2 STA: A2.A.72 TOP: Identifying the Equation of a Trigonometric Graph

36 ANS:
\[
\frac{-(x^2 - 4)}{(x + 4)(x + 3)} \times \frac{x + 3}{2(x - 2)} = \frac{-(x + 2)(x - 2)}{x + 4} \times \frac{1}{2(x - 2)} = \frac{-(x + 2)}{2(x + 4)}
\]

PTS: 4 REF: 061236a2 STA: A2.A.16 TOP: Multiplication and Division of Rationals
KEY: division

37 ANS:
\[\sigma_x = 14.9, \quad x = 40. \] There are 8 scores between 25.1 and 54.9.

PTS: 4 REF: 061237a2 STA: A2.S.4 TOP: Dispersion
KEY: advanced

38 ANS:
\[
\frac{27}{\sin 75} = \frac{F_1}{\sin 60}, \quad \frac{27}{\sin 75} = \frac{F_2}{\sin 45}, \quad F_1 \approx 24, \quad F_1 \approx 20
\]

PTS: 4 REF: 061238a2 STA: A2.A.73 TOP: Vectors
39 ANS:

\[81^{x^3 + 2x^2} = 27^{\frac{5x}{3}} \]

\[\left(3^4\right)^{x^3 + 2x^2} = \left(3^3\right)^{\frac{5x}{3}} \]

\[3^{4x^3 + 8x^2} = 3^{5x} \]

\[4x^3 + 8x^2 - 5x = 0 \]

\[x(4x^2 + 8x - 5) = 0 \]

\[x(2x - 1)(2x + 5) = 0 \]

\[x = 0, \frac{1}{2}, -\frac{5}{2} \]

PTS: 6 REF: 061239a2 STA: A2.A.27 TOP: Exponential Equations
KEY: common base not shown