Dear Sir

I have to acknowledge the receipt of your favor of May 14. in which you mention that you have finished the 6. first books of Euclid, plane trigonometry, surveying & algebra and ask whether I think a further pursuit of that branch of science would be useful to you. there are some propositions in the latter books of Euclid, & some of Archimedes, which are useful. & I have no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he will not resort to it for some of the purposes of common life. the science of calculation also is indispensable as far as the extraction of the square & cube roots; Algebra as far as the quadratic equation & the use of logarithms are often of value in ordinary cases: but all beyond these is but a luxury: a delicious luxury indeed; but not to be indulged in by one who is to have a profession to follow for his subsistence. in this light I view the conic sections, curves of the higher orders, perhaps even spherical trigonometry, Algebraical operations beyond the 2d dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>P.I.: SUBTOPIC</th>
<th>QUESTION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR EQUATIONS</td>
<td>G.G.62-65: Parallel and Perpendicular Lines</td>
<td>1-29</td>
</tr>
<tr>
<td></td>
<td>G.G.68: Perpendicular Bisector</td>
<td>30-32</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>G.G.70: Quadratic-Linear Systems</td>
<td>33-40</td>
</tr>
<tr>
<td>TOOLS OF GEOMETRY</td>
<td>G.G.66: Midpoint</td>
<td>41-48</td>
</tr>
<tr>
<td></td>
<td>G.G.67: Distance</td>
<td>49-57</td>
</tr>
<tr>
<td></td>
<td>G.G.1-9: Planes</td>
<td>58-75</td>
</tr>
<tr>
<td></td>
<td>G.G.10, 13: Solids</td>
<td>76-80</td>
</tr>
<tr>
<td></td>
<td>G.G.17-20: Constructions</td>
<td>81-102</td>
</tr>
<tr>
<td></td>
<td>G.G.22-23: Locus</td>
<td>103-115</td>
</tr>
<tr>
<td>ANGLES</td>
<td>G.G.35: Parallel Lines and Transversals</td>
<td>116-121</td>
</tr>
<tr>
<td>TRIANGLES</td>
<td>G.G.48: Pythagorean Theorem</td>
<td>122-125</td>
</tr>
<tr>
<td></td>
<td>G.G.30: Interior and Exterior Angles of Triangles</td>
<td>126-133</td>
</tr>
<tr>
<td></td>
<td>G.G.31: Isosceles Triangle Theorem</td>
<td>134-140</td>
</tr>
<tr>
<td></td>
<td>G.G.32: Exterior Angle Theorem</td>
<td>141-147</td>
</tr>
<tr>
<td></td>
<td>G.G.33: Triangle Inequality Theorem</td>
<td>148-150</td>
</tr>
<tr>
<td></td>
<td>G.G.34: Angle Side Relationship</td>
<td>151-156</td>
</tr>
<tr>
<td></td>
<td>G.G.46: Side Splitter Theorem</td>
<td>157-162</td>
</tr>
<tr>
<td></td>
<td>G.G.42: Midsegments</td>
<td>163-169</td>
</tr>
<tr>
<td></td>
<td>G.G.21, 43: Centroid, Orthocenter, Incenter and Circumcenter</td>
<td>170-181</td>
</tr>
<tr>
<td></td>
<td>G.G.69: Triangles in the Coordinate Plane</td>
<td>182-184</td>
</tr>
<tr>
<td>POLYGONS</td>
<td>G.G.36-37: Interior and Exterior Angles of Polygons</td>
<td>185-191</td>
</tr>
<tr>
<td></td>
<td>G.G.38-39: Parallelograms</td>
<td>192-202</td>
</tr>
<tr>
<td></td>
<td>G.G.40: Trapezoids</td>
<td>203-209</td>
</tr>
<tr>
<td></td>
<td>G.G.41: Special Quadrilaterals</td>
<td>210-212</td>
</tr>
<tr>
<td></td>
<td>G.G.69: Quadrilaterals in the Coordinate Plane</td>
<td>213-216</td>
</tr>
<tr>
<td>CONICS</td>
<td>G.G.49, 52: Chords</td>
<td>217-227</td>
</tr>
<tr>
<td></td>
<td>G.G.50: Tangents</td>
<td>228-233</td>
</tr>
<tr>
<td></td>
<td>G.G.51: Arcs Intercepted by Angles</td>
<td>234-241</td>
</tr>
<tr>
<td></td>
<td>G.G.53: Segments Intercepted by Circle</td>
<td>242-251</td>
</tr>
<tr>
<td></td>
<td>G.G.71-73: Equations of Circles</td>
<td>252-270</td>
</tr>
<tr>
<td></td>
<td>G.G.74: Graphing Circles</td>
<td>271-273</td>
</tr>
<tr>
<td>MEASURING IN THE</td>
<td>G.G.11-16: Volume, Surface Area and Lateral Area</td>
<td>274-292</td>
</tr>
<tr>
<td>PLANE AND SPACE</td>
<td>G.G.45, 47: Similarity</td>
<td>293-306</td>
</tr>
<tr>
<td>TRANSFORMATIONS</td>
<td>G.G.54: Rotations</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>G.G.54: Reflections</td>
<td>308-312</td>
</tr>
<tr>
<td></td>
<td>G.G.54: Translations</td>
<td>313-314</td>
</tr>
<tr>
<td></td>
<td>G.G.54, 58: Compositions of Transformations</td>
<td>315-320</td>
</tr>
<tr>
<td></td>
<td>G.G.56, 60: Identifying Transformations</td>
<td>334-343</td>
</tr>
<tr>
<td></td>
<td>G.G.61: Analytical Representations of Transformations</td>
<td>344</td>
</tr>
<tr>
<td>LOGIC</td>
<td>G.G.24: Statements and Negations</td>
<td>345-350</td>
</tr>
<tr>
<td></td>
<td>G.G.25: Compound Statements</td>
<td>351-353</td>
</tr>
<tr>
<td></td>
<td>G.G.26: Conditional Statements</td>
<td>354-358</td>
</tr>
<tr>
<td></td>
<td>G.G.28-29: Triangle Congruency</td>
<td>359-368</td>
</tr>
<tr>
<td></td>
<td>G.G.27: Angle Proofs</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>G.G.27: Triangle Proofs</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>G.G.27: Quadrilateral Proofs</td>
<td>371-372</td>
</tr>
<tr>
<td></td>
<td>G.G.27: Circle Proofs</td>
<td>373-374</td>
</tr>
<tr>
<td></td>
<td>G.G.44: Similarity Proofs</td>
<td>375-380</td>
</tr>
</tbody>
</table>
LINEAR EQUATIONS

G.G.62: PARALLEL AND PERPENDICULAR LINES

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
<th>Correct Answer</th>
</tr>
</thead>
</table>
| 1 What is the slope of a line perpendicular to the line whose equation is $y = 3x + 4$? | 1 $\frac{1}{3}$
2 $\frac{1}{3}$
3 3
4 -3 | **4 -3** |
| 2 What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x - 5$? | 1 $\frac{3}{2}$
2 $-\frac{2}{3}$
3 $\frac{2}{3}$
4 $\frac{3}{2}$ | **4 $\frac{3}{2}$** |
| 3 What is the slope of a line perpendicular to the line whose equation is $5x + 3y = 8$? | 1 $\frac{5}{3}$
2 $\frac{3}{5}$
3 $-\frac{3}{5}$
4 $-\frac{5}{3}$ | **1 $\frac{5}{3}$** |
| 4 What is the slope of a line that is perpendicular to the line whose equation is $3x + 4y = 12$? | 1 $\frac{3}{4}$
2 $-\frac{3}{4}$
3 $\frac{4}{3}$
4 $-\frac{4}{3}$ | **2 $-\frac{3}{4}$** |
| 5 What is the slope of a line that is perpendicular to the line whose equation is $3x + 5y = 4$? | 1 $-\frac{3}{5}$
2 $\frac{3}{5}$
3 $\frac{5}{3}$
4 $\frac{5}{3}$ | **4 $\frac{5}{3}$** |
| 6 What is the slope of a line that is perpendicular to the line represented by the equation $x + 2y = 3$? | 1 -2
2 2
3 $-\frac{1}{2}$
4 $\frac{1}{2}$ | **3 $-\frac{1}{2}$** |
| 7 What is the slope of a line perpendicular to the line whose equation is $2y = -6x + 8$? | 1 -3
2 $\frac{1}{6}$
3 $\frac{1}{3}$
4 -6 | **3 $\frac{1}{3}$** |
8 Find the slope of a line perpendicular to the line whose equation is \(2y - 6x = 4\).

G.G.63: PARALLEL AND PERPENDICULAR LINES

9 The equation of line \(k\) is \(y = \frac{1}{3}x - 2\). The equation of line \(m\) is \(-2x + 6y = 18\). Lines \(k\) and \(m\) are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

10 The lines represented by the equations \(y + \frac{1}{2}x = 4\) and \(3x + 6y = 12\) are
1 the same line
2 parallel
3 perpendicular
4 neither parallel nor perpendicular

11 The lines \(3y + 1 = 6x + 4\) and \(2y + 1 = x - 9\) are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

12 The two lines represented by the equations below are graphed on a coordinate plane.

\[x + 6y = 12\]
\[3(x - 2) = -y - 4\]

Which statement best describes the two lines?
1 The lines are parallel.
2 The lines are the same line.
3 The lines are perpendicular.
4 The lines intersect at an angle other than 90°.

13 Determine whether the two lines represented by the equations \(y = 2x + 3\) and \(2y + x = 6\) are parallel, perpendicular, or neither. Justify your response.

14 What is the equation of a line that is parallel to the line whose equation is \(y = x + 2\)?
1 \(x + y = 5\)
2 \(2x + y = -2\)
3 \(y - x = -1\)
4 \(y - 2x = 3\)

15 Which equation represents a line parallel to the line whose equation is \(2y - 5x = 10\)?
1 \(5y - 2x = 25\)
2 \(5y + 2x = 10\)
3 \(4y - 10x = 12\)
4 \(2y + 10x = 8\)

16 Two lines are represented by the equations
\[\frac{1}{2}y = 6x + 10\] and \(y = mx\). For which value of \(m\) will the lines be parallel?
1 \(-12\)
2 \(-3\)
3 \(3\)
4 \(12\)

17 Which equation represents a line perpendicular to the line whose equation is \(2x + 3y = 12\)?
1 \(6y = -4x + 12\)
2 \(2y = 3x + 6\)
3 \(2y = -3x + 6\)
4 \(3y = -2x + 12\)

G.G.64: PARALLEL AND PERPENDICULAR LINES

18 What is an equation of the line that passes through the point \((-2, 5)\) and is perpendicular to the line whose equation is \(y = \frac{1}{2}x + 5\)?
1 \(y = 2x + 1\)
2 \(y = -2x + 1\)
3 \(y = 2x + 9\)
4 \(y = -2x - 9\)
19 What is an equation of the line that contains the point \((3, -1)\) and is perpendicular to the line whose equation is \(y = -3x + 2\)?

1. \(y = -3x + 8\)
2. \(y = -3x\)
3. \(y = \frac{1}{3}x\)
4. \(y = \frac{1}{3}x - 2\)

20 What is an equation of the line that is perpendicular to the line whose equation is \(y = \frac{3}{5}x - 2\) and that passes through the point \((3, -6)\)?

1. \(y = \frac{5}{3}x - 11\)
2. \(y = -\frac{5}{3}x + 11\)
3. \(y = \frac{5}{3}x - 1\)
4. \(y = \frac{5}{3}x + 1\)

21 Find an equation of the line passing through the point \((6, 5)\) and perpendicular to the line whose equation is \(2y + 3x = 6\).

G.G.65: PARALLEL AND PERPENDICULAR LINES

22 What is an equation of the line that passes through the point \((-2, 3)\) and is parallel to the line whose equation is \(y = \frac{3}{2}x - 4\)?

1. \(y = \frac{-2}{3}x\)
2. \(y = \frac{-2}{3}x + \frac{5}{3}\)
3. \(y = \frac{3}{2}x\)
4. \(y = \frac{3}{2}x + 6\)

23 What is the equation of a line passing through \((2, -1)\) and parallel to the line represented by the equation \(y = 2x + 1\)?

1. \(y = -\frac{1}{2}x\)
2. \(y = -\frac{1}{2}x + 1\)
3. \(y = 2x - 5\)
4. \(y = 2x - 1\)

24 What is the equation of a line that passes through the point \((-3, -11)\) and is parallel to the line whose equation is \(2x - y = 4\)?

1. \(y = 2x + 5\)
2. \(y = 2x - 5\)
3. \(y = \frac{1}{2}x + \frac{25}{2}\)
4. \(y = -\frac{1}{2}x - \frac{25}{2}\)

25 What is an equation of the line that passes through the point \((7, 3)\) and is parallel to the line \(4x + 2y = 10\)?

1. \(y = \frac{1}{2}x - \frac{1}{2}\)
2. \(y = -\frac{1}{2}x + \frac{13}{2}\)
3. \(y = 2x - 11\)
4. \(y = -2x + 17\)

26 Which line is parallel to the line whose equation is \(4x + 3y = 7\) and also passes through the point \((-5, 2)\)?

1. \(4x + 3y = -26\)
2. \(4x + 3y = -14\)
3. \(3x + 4y = -7\)
4. \(3x + 4y = 14\)
27 Which equation represents the line parallel to the line whose equation is \(4x + 2y = 14\) and passing through the point \((2, 2)\)?

1. \(y = -2x\)
2. \(y = -2x + 6\)
3. \(y = \frac{1}{2}x\)
4. \(y = \frac{1}{2}x + 1\)

28 Find an equation of the line passing through the point \((5, 4)\) and parallel to the line whose equation is \(2x + y = 3\).

29 Write an equation of the line that passes through the point \((6, -5)\) and is parallel to the line whose equation is \(2x - 3y = 11\).

G.G.68: PERPENDICULAR BISECTOR

30 The coordinates of the endpoints of \(\overline{AB}\) are \(A(0, 0)\) and \(B(0, 6)\). The equation of the perpendicular bisector of \(\overline{AB}\) is

1. \(x = 0\)
2. \(x = 3\)
3. \(y = 0\)
4. \(y = 3\)

31 Which equation represents the perpendicular bisector of \(\overline{AB}\) whose endpoints are \(A(8, 2)\) and \(B(0, 6)\)?

1. \(y = 2x - 4\)
2. \(y = -\frac{1}{2}x + 2\)
3. \(y = -\frac{1}{2}x + 6\)
4. \(y = 2x - 12\)

32 Write an equation of the perpendicular bisector of the line segment whose endpoints are \((-1, 1)\) and \((7, -5)\). [The use of the grid below is optional]
SYSTEMS
G.G.70: QUADRATIC-LINEAR SYSTEMS

33 Which graph could be used to find the solution to the following system of equations?
\[y = -x + 2 \]
\[y = x^2 \]

34 Given the system of equations: \[y = x^2 - 4x \]
\[x = 4 \]
The number of points of intersection is
1 1
2 2
3 3
4 0

35 Given: \[y = \frac{1}{4}x - 3 \]
\[y = x^2 + 8x + 12 \]
In which quadrant will the graphs of the given equations intersect?
1 I
2 II
3 III
4 IV

36 Given the equations: \[y = x^2 - 6x + 10 \]
\[y + x = 4 \]
What is the solution to the given system of equations?
1 (2,3)
2 (3,2)
3 (2,2) and (1,3)
4 (2,2) and (3,1)

37 When solved graphically, what is the solution to the following system of equations?
\[y = x^2 - 4x + 6 \]
\[y = x + 2 \]
1 (1,4)
2 (4,6)
3 (1,3) and (4,6)
4 (3,1) and (6,4)
38 What is the solution of the following system of equations?

\[
\begin{align*}
y &= (x + 3)^2 - 4 \\
y &= 2x + 5
\end{align*}
\]

1. \((0, -4)\)
2. \((-4, 0)\)
3. \((-4, -3)\) and \((0, 5)\)
4. \((-3, -4)\) and \((5, 0)\)

39 Solve the following system of equations graphically.

\[
\begin{align*}
2x^2 - 4x &= y + 1 \\
x + y &= 1
\end{align*}
\]

40 On the set of axes below, solve the following system of equations graphically for all values of \(x\) and \(y\).

\[
\begin{align*}
y &= (x - 2)^2 + 4 \\
4x + 2y &= 14
\end{align*}
\]

41 The endpoints of \(\overline{CD}\) are \(C(-2, -4)\) and \(D(6, 2)\).
What are the coordinates of the midpoint of \(\overline{CD}\)?

1. \((2, 3)\)
2. \((2, -1)\)
3. \((4, -2)\)
4. \((4, 3)\)

42 A line segment has endpoints \(A(7, -1)\) and \(B(-3, 3)\).
What are the coordinates of the midpoint of \(\overline{AB}\)?

1. \((1, 2)\)
2. \((2, 1)\)
3. \((-5, 2)\)
4. \((5, -2)\)
43 Square $LMNO$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal LN?

1 $\left(\frac{4}{2}, -\frac{1}{2}\right)$
2 $\left(-\frac{3}{2}, \frac{3}{2}\right)$
3 $\left(-\frac{1}{2}, \frac{3}{2}\right)$
4 $\left(-\frac{1}{2}, \frac{4}{2}\right)$

44 Line segment AB has endpoints $A(2, -3)$ and $B(-4, 6)$. What are the coordinates of the midpoint of AB?

1 $(2, 3)$
2 $(-1, \frac{1}{2})$
3 $(-1, 3)$
4 $(3, 4 \frac{1}{2})$

45 If a line segment has endpoints $A(3x + 5, 3y)$ and $B(x - 1, -y)$, what are the coordinates of the midpoint of AB?

1 $(x + 3, 2y)$
2 $(2x + 2, y)$
3 $(2x + 3, y)$
4 $(4x + 4, 2y)$

46 In circle O, diameter RS has endpoints $R(3a, 2b - 1)$ and $S(a - 6, 4b + 5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

47 Segment AB is the diameter of circle M. The coordinates of A are $(-4, 3)$. The coordinates of M are $(1, 5)$. What are the coordinates of B?

1 $(6, 7)$
2 $(5, 8)$
3 $(-3, 8)$
4 $(-5, 2)$

48 In the diagram below of circle C, QR is a diameter, and $Q(1, 8)$ and $C(3.5, 2)$ are points on a coordinate plane. Find and state the coordinates of point R.
G.G.67: DISTANCE

49 A line segment has endpoints (4, 7) and (1, 11).
What is the length of the segment?
1 5
2 7
3 16
4 25

50 What is the length, to the nearest tenth, of the line segment joining the points (−4, 2) and (146, 52)?
1 141.4
2 150.5
3 151.9
4 158.1

51 What is the length of the line segment whose endpoints are (1, −4) and (9, 2)?
1 5
2 2√17
3 10
4 2√26

52 What is the length of the line segment with endpoints (−6, 4) and (2, −5)?
1 √13
2 √17
3 √72
4 √145

53 What is the length of the line segment whose endpoints are A(−1, 9) and B(7, 4)?
1 √81
2 √89
3 √205
4 √233

54 What is the distance between the points (−3, 2) and (1, 0)?
1 2√5
2 2√3
3 5√2
4 2√5

55 In circle O, a diameter has endpoints (−5, 4) and (3, −6). What is the length of the diameter?
1 √2
2 2√2
3 √10
4 2√41

56 If the endpoints of AB are A(−4, 5) and B(2, −5), what is the length of AB?
1 2√34
2 2
3 √61
4 8

57 The endpoints of PQ are P(−3, 1) and Q(4, 25). Find the length of PQ.
G.G.1: PLANES

58 Lines \(k_1 \) and \(k_2 \) intersect at point \(E \). Line \(m \) is perpendicular to lines \(k_1 \) and \(k_2 \) at point \(E \).

Which statement is always true?
1 Lines \(k_1 \) and \(k_2 \) are perpendicular.
2 Line \(m \) is parallel to the plane determined by lines \(k_1 \) and \(k_2 \).
3 Line \(m \) is perpendicular to the plane determined by lines \(k_1 \) and \(k_2 \).
4 Line \(m \) is coplanar with lines \(k_1 \) and \(k_2 \).

59 Lines \(j \) and \(k \) intersect at point \(P \). Line \(m \) is drawn so that it is perpendicular to lines \(j \) and \(k \) at point \(P \). Which statement is correct?
1 Lines \(j \) and \(k \) are in perpendicular planes.
2 Line \(m \) is in the same plane as lines \(j \) and \(k \).
3 Line \(m \) is parallel to the plane containing lines \(j \) and \(k \).
4 Line \(m \) is perpendicular to the plane containing lines \(j \) and \(k \).

60 In plane \(P \), lines \(m \) and \(n \) intersect at point \(A \). If line \(k \) is perpendicular to line \(m \) and line \(n \) at point \(A \), then line \(k \) is
1 contained in plane \(P \)
2 parallel to plane \(P \)
3 perpendicular to plane \(P \)
4 skew to plane \(P \)

61 Lines \(m \) and \(n \) intersect at point \(A \). Line \(k \) is perpendicular to both lines \(m \) and \(n \) at point \(A \). Which statement must be true?
1 Lines \(m \), \(n \), and \(k \) are in the same plane.
2 Lines \(m \) and \(n \) are in two different planes.
3 Lines \(m \) and \(n \) are perpendicular to each other.
4 Line \(k \) is perpendicular to the plane containing lines \(m \) and \(n \).

G.G.2: PLANES

62 Point \(P \) is on line \(m \). What is the total number of planes that are perpendicular to line \(m \) and pass through point \(P \)?
1 1
2 2
3 0
4 infinite

63 Point \(P \) lies on line \(m \). Point \(P \) is also included in distinct planes \(Q \), \(R \), \(S \), and \(T \). At most, how many of these planes could be perpendicular to line \(m \)?
1 1
2 2
3 3
4 4
G.G.3: PLANES

64 Through a given point, \(P \), on a plane, how many lines can be drawn that are perpendicular to that plane?
1 1
2 2
3 more than 2
4 none

65 Point \(A \) is not contained in plane \(B \). How many lines can be drawn through point \(A \) that will be perpendicular to plane \(B \)?
1 one
2 two
3 zero
4 infinite

66 Point \(A \) lies in plane \(B \). How many lines can be drawn perpendicular to plane \(B \) through point \(A \)?
1 one
2 two
3 zero
4 infinite

G.G.4: PLANES

67 If two different lines are perpendicular to the same plane, they are
1 collinear
2 coplanar
3 congruent
4 consecutive

G.G.7: PLANES

68 In the diagram below, line \(k \) is perpendicular to plane \(P \) at point \(T \).

Which statement is true?
1 Any point in plane \(P \) also will be on line \(k \).
2 Only one line in plane \(P \) will intersect line \(k \).
3 All planes that intersect plane \(P \) will pass through \(T \).
4 Any plane containing line \(k \) is perpendicular to plane \(P \).
69 In the diagram below, AB is perpendicular to plane $AEFG$.

[Diagram of a cube with AB perpendicular to plane $AEFG$]

Which plane must be perpendicular to plane $AEFG$?
1. $ABCE$
2. $BCDH$
3. $CDFE$
4. $HDFG$

G.G.8: PLANES

70 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
1. plane
2. point
3. pair of parallel lines
4. pair of intersecting lines

71 Plane A is parallel to plane B. Plane C intersects plane A in line m and intersects plane B in line n. Lines m and n are
1. intersecting
2. parallel
3. perpendicular
4. skew

G.G.9: PLANES

72 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R?
1. Planes P and R are skew.
2. Planes P and R are parallel.
3. Planes P and R are perpendicular.
4. Plane P intersects plane R but is not perpendicular to plane R.

73 Plane R is perpendicular to line k and plane D is perpendicular to line k. Which statement is correct?
1. Plane R is perpendicular to plane D.
2. Plane R is parallel to plane D.
3. Plane R intersects plane D.
4. Plane R bisects plane D.

74 If two distinct planes, A and B, are perpendicular to line c, then which statement is true?
1. Planes A and B are parallel to each other.
2. Planes A and B are perpendicular to each other.
3. The intersection of planes A and B is a line parallel to line c.
4. The intersection of planes A and B is a line perpendicular to line c.

75 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
1. 45°
2. 60°
3. 90°
4. 180°
G.G.10: SOLIDS

76 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?
1. AB and DH
2. AE and DC
3. BC and EH
4. CG and EF

77 The diagram below represents a rectangular solid.

Which statement must be true?
1. EH and BC are coplanar
2. FG and AB are coplanar
3. EH and AD are skew
4. FG and CG are skew

78 The figure in the diagram below is a triangular prism.

Which statement is always true?
1. $BC \parallel ED$
2. $FG \parallel CD$
3. $FJ \parallel IH$
4. $GB \parallel HC$
G.G.13: SOLIDS

80 The lateral faces of a regular pyramid are composed of
1 squares
2 rectangles
3 congruent right triangles
4 congruent isosceles triangles

G.G.17: CONSTRUCTIONS

81 Using a compass and straightedge, construct the angle bisector of \(\angle ABC \) shown below. [Leave all construction marks.]

82 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

83 On the diagram below, use a compass and straightedge to construct the bisector of \(\angle ABC \). [Leave all construction marks.]

84 On the diagram below, use a compass and straightedge to construct the bisector of \(\angle XYZ \). [Leave all construction marks.]
85 Which illustration shows the correct construction of an angle bisector?

1

2

3

4

86 The diagram below shows the construction of the bisector of \(\angle ABC \).

Which statement is not true?

1 \(\angle EBF = \frac{1}{2} \angle ABC \)

2 \(\angle DBF = \frac{1}{2} \angle ABC \)

3 \(\angle EBF = \angle ABC \)

4 \(\angle DBF = \angle EBF \)

87 Based on the construction below, which statement must be true?

1 \(\angle ABD = \frac{1}{2} \angle CBD \)

2 \(\angle ABD = \angle CBD \)

3 \(\angle ABD = \angle ABC \)

4 \(\angle CBD = \frac{1}{2} \angle ABD \)

88 A straightedge and compass were used to create the construction below. Arc \(EF \) was drawn from point \(B \), and arcs with equal radii were drawn from \(E \) and \(F \).

Which statement is false?

1 \(\angle ABD = \angle DBC \)

2 \(\frac{1}{2} (\angle ABC) = \angle ABD \)

3 \(2(\angle DBC) = \angle ABC \)

4 \(2(\angle ABC) = \angle CBD \)
G.G.18: CONSTRUCTIONS

89 On the diagram of \(\triangle ABC \) shown below, use a compass and straightedge to construct the perpendicular bisector of \(AC \). [Leave all construction marks.]

90 The diagram below shows the construction of the perpendicular bisector of \(AB \).

91 Line segment \(AB \) is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment \(AB \)?
1. I and II
2. I and III
3. II and III
4. II and IV

92 One step in a construction uses the endpoints of \(\overline{AB} \) to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of \(\overline{AB} \) and the line connecting the points of intersection of these arcs?
1. collinear
2. congruent
3. parallel
4. perpendicular

Which statement is not true?
1. \(AC = CB \)
2. \(CB = \frac{1}{2} AB \)
3. \(AC = 2AB \)
4. \(AC + CB = AB \)
93 Which diagram shows the construction of the perpendicular bisector of AB?

1

2

3

4

G.G.19: CONSTRUCTIONS

94 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]

95 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1 If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2 The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3 Two lines are perpendicular if they are equidistant from a given point.
4 Two lines are perpendicular if they intersect to form a vertical line.
96 The diagram below illustrates the construction of \overrightarrow{PS} parallel to \overrightarrow{RQ} through point P.

Which statement justifies this construction?

1. $\angle 1 = \angle 2$
2. $\angle 1 = \angle 3$
3. $\overrightarrow{PR} \cong \overrightarrow{RQ}$
4. $\overrightarrow{PS} \cong \overrightarrow{RQ}$

97 Which geometric principle is used to justify the construction below?

1. A line perpendicular to one of two parallel lines is perpendicular to the other.
2. Two lines are perpendicular if they intersect to form congruent adjacent angles.
3. When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4. When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

98 Using a compass and straightedge, and \overline{AB} below, construct an equilateral triangle with all sides congruent to \overline{AB}. [Leave all construction marks.]

99 On the line segment below, use a compass and straightedge to construct equilateral triangle ABC. [Leave all construction marks.]
100 Using a compass and straightedge, on the diagram below of RS, construct an equilateral triangle with RS as one side. [Leave all construction marks.]

101 Which diagram shows the construction of an equilateral triangle?
102 Which diagram represents a correct construction of equilateral $\triangle ABC$, given side AB?

![Diagram]

103 Two lines, AB and CRD, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from AB and CRD and 7 inches from point R. Label with an \times each point that satisfies both conditions.

![Diagram]

104 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \times all points that satisfy both conditions.

![Diagram]
105 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, \(f \), and also 10 feet from a light pole, \(P \). As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?
1 1
2 2
3 3
4 0

106 In the diagram below, point \(M \) is located on \(\overrightarrow{AB} \). Sketch the locus of points that are 1 unit from \(\overrightarrow{AB} \) and the locus of points 2 units from point \(M \). Label with an \(\times \) all points that satisfy both conditions.

107 The length of \(\overline{AB} \) is 3 inches. On the diagram below, sketch the points that are equidistant from \(A \) and \(B \) and sketch the points that are 2 inches from \(A \). Label with an \(\times \) all points that satisfy both conditions.
108 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B?
 1 1
 2 2
 3 3
 4 0

109 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an X all possible locations for the new park.

110 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y = 3$. Label with an X all points that satisfy both conditions.

111 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an X all points that satisfy both conditions.
112 On the set of axes below, graph the locus of points that are four units from the point \((2,1)\). On the same set of axes, graph the locus of points that are two units from the line \(x = 4\). State the coordinates of all points that satisfy both conditions.

113 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines \(y = 6\) and \(y = 2\) and also graph the locus of points that are 3 units from the \(y\)-axis. State the coordinates of all points that satisfy both conditions.

114 How many points are both 4 units from the origin and also 2 units from the line \(y = 4\)?

1 1
2 2
3 3
4 4

115 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the \(x\)-axis?

1 1
2 2
3 3
4 4
116 Based on the diagram below, which statement is true?

1. $a \parallel b$
2. $a \parallel c$
3. $b \parallel c$
4. $d \parallel e$

117 In the diagram below, line p intersects line m and line n.

If $m\angle 1 = 7x$ and $m\angle 2 = 5x + 30$, lines m and n are parallel when x equals
1. 12.5
2. 15
3. 87.5
4. 105

118 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \parallel m$?
1. 2.5
2. 4.5
3. 6.25
4. 8.75

119 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?
1. 110
2. 80
3. 70
4. 50

120 A transversal intersects two lines. Which condition would always make the two lines parallel?
1. Vertical angles are congruent.
2. Alternate interior angles are congruent.
3. Corresponding angles are supplementary.
4. Same-side interior angles are complementary.
121 In the diagram below of quadrilateral $ABCD$ with diagonal BD, $m\angle A = 93$, $m\angle ADB = 43$, $m\angle C = 3x + 5$, $m\angle BDC = x + 19$, and $m\angle DBC = 2x + 6$. Determine if AB is parallel to DC. Explain your reasoning.

TRIANGLES

G.G.48: PYTHAGOREAN THEOREM

122 Which set of numbers does not represent the sides of a right triangle?
1. $\{6, 8, 10\}$
2. $\{8, 15, 17\}$
3. $\{8, 24, 25\}$
4. $\{15, 36, 39\}$

123 In the diagram below of $\triangle ADB$, $m\angle BDA = 90$, $AD = 5\sqrt{2}$, and $AB = 2\sqrt{15}$.

![Diagram](image1)

What is the length of BD?
1. $\sqrt{10}$
2. $\sqrt{20}$
3. $\sqrt{50}$
4. $\sqrt{110}$

124 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is $x + 7$, and the base is $2x$.

![Diagram](image2)

What is the length of the base?
1. 5
2. 10
3. 12
4. 24
125 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are \(x\) inches, and the vertical support bar is \((x+1)\) inches.

What is the measure, in inches, of the vertical support bar?
1 23
2 24
3 25
4 26

G.G.30: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

126 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
1 180°
2 120°
3 90°
4 60°

127 Juliann plans on drawing \(\triangle ABC\), where the measure of \(\angle A\) can range from 50° to 60° and the measure of \(\angle B\) can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for \(\angle C\)?
1 20° to 40°
2 30° to 50°
3 80° to 90°
4 120° to 130°

128 In \(\triangle ABC\), \(m\angle A = x\), \(m\angle B = 2x + 2\), and \(m\angle C = 3x + 4\). What is the value of \(x\)?
1 29
2 31
3 59
4 61

129 In \(\triangle DEF\), \(m\angle D = 3x + 5\), \(m\angle E = 4x - 15\), and \(m\angle F = 2x + 10\). Which statement is true?
1 \(DF = FE\)
2 \(DE = FE\)
3 \(m\angle E = m\angle F\)
4 \(m\angle D = m\angle F\)

130 Triangle \(PQR\) has angles in the ratio of 2:3:5. Which type of triangle is \(\triangle PQR\)?
1 acute
2 isosceles
3 obtuse
4 right

131 The angles of triangle \(ABC\) are in the ratio of 8:3:4. What is the measure of the smallest angle?
1 12°
2 24°
3 36°
4 72°

132 In right \(\triangle DEF\), \(m\angle D = 90°\) and \(m\angle F\) is 12 degrees less than twice \(m\angle E\). Find \(m\angle E\).
133 The degree measures of the angles of $\triangle ABC$ are represented by x, $3x$, and $5x - 54$. Find the value of x.

G.G.31: ISOSCELES TRIANGLE THEOREM

134 In the diagram of $\triangle ABC$ below, $AB \cong AC$. The measure of $\angle B$ is 40°.

![Diagram](image1)

What is the measure of $\angle A$?
1. 40°
2. 50°
3. 70°
4. 100°

135 In $\triangle ABC$, $AB \cong BC$. An altitude is drawn from B to AC and intersects AC at D. Which conclusion is not always true?
1. $\angle ABD \cong \angle CBD$
2. $\angle BDA \cong \angle BDC$
3. $AD \cong BD$
4. $AD \cong DC$

136 In isosceles triangle ABC, $AB = BC$. Which statement will always be true?
1. $m\angle B = m\angle A$
2. $m\angle A > m\angle B$
3. $m\angle A = m\angle C$
4. $m\angle C < m\angle B$

137 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1. acute
2. congruent
3. right
4. similar

138 In the diagram below of $\triangle ACD$, B is a point on AC such that $\triangle ADB$ is an equilateral triangle, and $\triangle DBC$ is an isosceles triangle with $DB \cong BC$. Find $m\angle C$.

![Diagram](image2)

139 In $\triangle RST$, $m\angle RST = 46$ and $RS \cong ST$. Find $m\angle STR$.

140 In the diagram below of $\triangle GJK$, H is a point on GJ, $HJ \cong JK$, $m\angle G = 28$, and $m\angle GJK = 70$. Determine whether $\triangle GHK$ is an isosceles triangle and justify your answer.

![Diagram](image3)
G.G.32: EXTERIOR ANGLE THEOREM

141 In the diagram of $\triangle KLM$ below, $m\angle L = 70$, $m\angle M = 50$, and MK is extended through N.

What is the measure of $\angle LKN$?
1 60°
2 120°
3 180°
4 300°

142 In $\triangle FGH$, $m\angle F = 42$ and an exterior angle at vertex H has a measure of 104. What is $m\angle G$?
1 34
2 62
3 76
4 146

143 In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D.

If $m\angle BCD = 6x + 2$, $m\angle BAC = 3x + 15$, and $m\angle ABC = 2x - 1$, what is the value of x?

1 12
2 $\frac{10}{11}$
3 16
4 $18\frac{1}{9}$

144 In the diagram below of $\triangle HQP$, side HP is extended through P to T, $m\angle QPT = 6x + 20$, $m\angle HQP = x + 40$, and $m\angle PHQ = 4x - 5$. Find $m\angle QPT$.

(Not drawn to scale)
145 In the diagram below of $\triangle ABC$, side BC is extended to point D, $m\angle A = x$, $m\angle B = 2x + 15$, and $m\angle ACD = 5x + 5$.

What is $m\angle B$?
1. 5
2. 20
3. 25
4. 55

146 In the diagram below of $\triangle BCD$, side DB is extended to point A.

Which statement must be true?
1. $m\angle C > m\angle D$
2. $m\angle ABC < m\angle D$
3. $m\angle ABC > m\angle C$
4. $m\angle ABC > m\angle C + m\angle D$

147 Side PQ of $\triangle PQR$ is extended through Q to point T. Which statement is not always true?
1. $m\angle RQT > m\angle R$
2. $m\angle RQT > m\angle P$
3. $m\angle RQT = m\angle P + m\angle R$
4. $m\angle RQT > m\angle PQR$

148 In the diagram below of $\triangle ABC$, D is a point on \overline{AB}, $AC = 7$, $AD = 6$, and $BC = 18$.

The length of DB could be
1. 5
2. 12
3. 19
4. 25

149 Which set of numbers represents the lengths of the sides of a triangle?
1. $\{5, 18, 13\}$
2. $\{6, 17, 22\}$
3. $\{16, 24, 7\}$
4. $\{26, 8, 15\}$

150 In $\triangle ABC$, $AB = 5$ feet and $BC = 3$ feet. Which inequality represents all possible values for the length of AC, in feet?
1. $2 \leq AC \leq 8$
2. $2 < AC < 8$
3. $3 \leq AC \leq 7$
4. $3 < AC < 7$
151 In the diagram below of $\triangle ABC$ with side \overline{AC} extended through D, $m\angle A = 37$ and $m\angle BCD = 117$. Which side of $\triangle ABC$ is the longest side? Justify your answer.

(Not drawn to scale)

152 In $\triangle PQR$, $PQ = 8$, $QR = 12$, and $RP = 13$. Which statement about the angles of $\triangle PQR$ must be true?

1. $m\angle Q > m\angle P > m\angle R$
2. $m\angle Q > m\angle R > m\angle P$
3. $m\angle R > m\angle P > m\angle Q$
4. $m\angle P > m\angle R > m\angle Q$

153 In $\triangle ABC$, $AB = 7$, $BC = 8$, and $AC = 9$. Which list has the angles of $\triangle ABC$ in order from smallest to largest?

1. $\angle A, \angle B, \angle C$
2. $\angle B, \angle A, \angle C$
3. $\angle C, \angle B, \angle A$
4. $\angle C, \angle A, \angle B$

154 In $\triangle ABC$, $m\angle A = 95$, $m\angle B = 50$, and $m\angle C = 35$. Which expression correctly relates the lengths of the sides of this triangle?

1. $AB < BC < CA$
2. $AB < AC < BC$
3. $AC < BC < AB$
4. $BC < AC < AB$

155 In scalene triangle ABC, $m\angle B = 45$ and $m\angle C = 55$. What is the order of the sides in length, from longest to shortest?

1. \overline{AB}, \overline{BC}, \overline{AC}
2. \overline{BC}, \overline{AC}, \overline{AB}
3. \overline{AC}, \overline{BC}, \overline{AB}
4. \overline{BC}, \overline{AB}, \overline{AC}

156 In $\triangle RST$, $m\angle R = 58$ and $m\angle S = 73$. Which inequality is true?

1. $RT < TS < RS$
2. $RS < RT < TS$
3. $RT < RS < TS$
4. $RS < TS < RT$

157 In the diagram below of $\triangle ACT$, $\overrightarrow{BE} \parallel \overrightarrow{AT}$.

If $CB = 3$, $CA = 10$, and $CE = 6$, what is the length of ET?

1. 5
2. 14
3. 20
4. 26
158. In the diagram below of $\triangle ABC$, $TV \parallel BC$, $AT = 5$, $TB = 7$, and $AV = 10$. What is the length of VC?

1. $3 \frac{1}{2}$
2. $7 \frac{1}{7}$
3. 14
4. 24

159. In $\triangle ABC$, point D is on AB, and point E is on BC such that $DE \parallel AC$. If $DB = 2$, $DA = 7$, and $DE = 3$, what is the length of AC?

1. 8
2. 9
3. 10.5
4. 13.5

160. In the diagram below of $\triangle ACD$, E is a point on AD and B is a point on AC, such that $EB \parallel DC$. If $AE = 3$, $ED = 6$, and $DC = 15$, find the length of EB.

161. In the diagram below of $\triangle ADE$, B is a point on AE and C is a point on AD such that $BC \parallel ED$, $AC = x - 3$, $BE = 20$, $AB = 16$, and $AD = 2x + 2$. Find the length of AC.
162 In the diagram below of \(\triangle ABC \), \(D \) is a point on \(AB \), \(E \) is a point on \(BC \), \(AC \parallel DE \), \(CE = 25 \) inches, \(AD = 18 \) inches, and \(DB = 12 \) inches. Find, to the nearest tenth of an inch, the length of \(EB \).

163 In the diagram below of \(\triangle ACT \), \(D \) is the midpoint of \(AC \), \(O \) is the midpoint of \(AT \), and \(G \) is the midpoint of \(CT \).

G.G.42: MIDSEGMENTS

If \(AC = 10 \), \(AT = 18 \), and \(CT = 22 \), what is the perimeter of parallelogram \(CDOG \)?

1. 21
2. 25
3. 32
4. 40

164 In the diagram below of \(\triangle ABC \), \(DE \) is a midsegment of \(\triangle ABC \), \(DE = 7 \), \(AB = 10 \), and \(BC = 13 \). Find the perimeter of \(\triangle ABC \).

165 In the diagram below, the vertices of \(\triangle DEF \) are the midpoints of the sides of equilateral triangle \(ABC \), and the perimeter of \(\triangle ABC \) is 36 cm.

What is the length, in centimeters, of \(EF \)?

1. 6
2. 12
3. 18
4. 4
166 In the diagram below of $\triangle ABC$, D is the midpoint of AB, and E is the midpoint of BC.

If $AC = 4x + 10$, which expression represents DE?

1. $x + 2.5$
2. $2x + 5$
3. $2x + 10$
4. $8x + 20$

167 In the diagram of $\triangle ABC$ below, $AB = 10$, $BC = 14$, and $AC = 16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle ABC$.

168 On the set of axes below, graph and label $\triangle DEF$ with vertices at $D(-4,-4)$, $E(-2,2)$, and $F(8,-2)$. If G is the midpoint of EF and H is the midpoint of DF, state the coordinates of G and H and label each point on your graph. Explain why $GH \parallel DE$.

The diagram and graph are not included in this text representation.
169 Triangle HKL has vertices $H(-7,2)$, $K(3,-4)$, and $L(5,4)$. The midpoint of HL is M and the midpoint of LK is N. Determine and state the coordinates of points M and N. Justify the statement: MN is parallel to HK. [The use of the set of axes below is optional.]

G.G.21: CENTROID, ORTHOCENTER, INCENTER AND CIRCUMCENTER

170 The diagram below shows the construction of the center of the circle circumscribed about $\triangle ABC$.

This construction represents how to find the intersection of
1. the angle bisectors of $\triangle ABC$
2. the medians to the sides of $\triangle ABC$
3. the altitudes to the sides of $\triangle ABC$
4. the perpendicular bisectors of the sides of $\triangle ABC$
171 In the diagram below of \(\triangle ABC \), \(\overline{CD} \) is the bisector of \(\angle BCA \), \(\overline{AE} \) is the bisector of \(\angle CAB \), and \(\overline{BG} \) is drawn.

Which statement must be true?
1. \(DG = EG \)
2. \(AG = BG \)
3. \(\angle AEB \cong \angle AEC \)
4. \(\angle DBG \cong \angle EBG \)

172 Which geometric principle is used in the construction shown below?

1. The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2. The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4. The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

173 The vertices of the triangle in the diagram below are \(A(7,9) \), \(B(3,3) \), and \(C(11,3) \).

What are the coordinates of the centroid of \(\triangle ABC \)?
1. \((5,6)\)
2. \((7,3)\)
3. \((7,5)\)
4. \((9,6)\)

174 Triangle \(ABC \) has vertices \(A(3,3) \), \(B(7,9) \), and \(C(11,3) \). Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]
175 In which triangle do the three altitudes intersect outside the triangle?
1 a right triangle
2 an acute triangle
3 an obtuse triangle
4 an equilateral triangle

176 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
1 scalene triangle
2 isosceles triangle
3 equilateral triangle
4 right isosceles triangle

G.G.43: CENTROID

177 In the diagram below of $\triangle ABC$, medians \overline{AD}, \overline{BE}, and \overline{CF} intersect at G.

If $CF = 24$, what is the length of FG?
1 8
2 10
3 12
4 16

178 In the diagram below of $\triangle ACE$, medians \overline{AD}, \overline{EB}, and \overline{CF} intersect at G. The length of FG is 12 cm.

What is the length, in centimeters, of GC?
1 24
2 12
3 6
4 4

179 In the diagram of $\triangle ABC$ below, Jose found centroid P by constructing the three medians. He measured CF and found it to be 6 inches.

If $PF = x$, which equation can be used to find x?
1 $x + x = 6$
2 $2x + x = 6$
3 $3x + 2x = 6$
4 $x + \frac{2}{3}x = 6$
180 In the diagram below, point P is the centroid of $\triangle ABC$.

If $PM = 2x + 5$ and $BP = 7x + 4$, what is the length of PM?

1. 9
2. 2
3. 18
4. 27

181 In the diagram below of $\triangle TEM$, medians \overline{TB}, \overline{EC}, and \overline{MA} intersect at D, and $TB = 9$. Find the length of TD.

182 The vertices of $\triangle ABC$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle ABC$?

1. $m \angle A = m \angle B$
2. $m \angle A = m \angle C$
3. $m \angle ACB = 90$
4. $m \angle ABC = 60$

183 Triangle ABC has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1. equilateral
2. isosceles
3. right
4. scalene

184 Triangle ABC has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]
POLYGONS

G.G.36: INTERIOR AND EXTERIOR ANGLES
OF POLYGONS

185 The pentagon in the diagram below is formed by five rays.

\[\begin{align*}
\text{What is the degree measure of angle } x? \\
1 & \quad 72 \\
2 & \quad 96 \\
3 & \quad 108 \\
4 & \quad 112
\end{align*} \]

186 The number of degrees in the sum of the interior angles of a pentagon is

\[\begin{align*}
1 & \quad 72 \\
2 & \quad 360 \\
3 & \quad 540 \\
4 & \quad 720
\end{align*} \]

187 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

\[\begin{align*}
1 & \quad \text{triangle} \\
2 & \quad \text{hexagon} \\
3 & \quad \text{octagon} \\
4 & \quad \text{quadrilateral}
\end{align*} \]

G.G.37: INTERIOR AND EXTERIOR ANGLES
OF POLYGONS

188 In the diagram below of regular pentagon \(ABCDE \), \(\overline{EB} \) is drawn.

\[\text{What is the measure of } \angle AEB? \]

\[\begin{align*}
1 & \quad 36^\circ \\
2 & \quad 54^\circ \\
3 & \quad 72^\circ \\
4 & \quad 108^\circ
\end{align*} \]

189 What is the measure of an interior angle of a regular octagon?

\[\begin{align*}
1 & \quad 45^\circ \\
2 & \quad 60^\circ \\
3 & \quad 120^\circ \\
4 & \quad 135^\circ
\end{align*} \]

190 What is the measure of each interior angle of a regular hexagon?

\[\begin{align*}
1 & \quad 60^\circ \\
2 & \quad 120^\circ \\
3 & \quad 135^\circ \\
4 & \quad 270^\circ
\end{align*} \]

191 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.
G.G.38: PARALLELOGRAMS

192 In the diagram below of parallelogram $ABCD$ with diagonals AC and BD, $m\angle 1 = 45$ and $m\angle DCB = 120$. What is the measure of $\angle 2$?
1. 15°
2. 30°
3. 45°
4. 60°

193 In the diagram below of parallelogram $STUV$, $SV = x + 3$, $VU = 2x - 1$, and $TU = 4x - 3$. What is the length of SV?
1. 5
2. 2
3. 7
4. 4

194 Which statement is true about every parallelogram?
1. All four sides are congruent.
2. The interior angles are all congruent.
3. Two pairs of opposite sides are congruent.
4. The diagonals are perpendicular to each other.

195 In the diagram below, parallelogram $ABCD$ has diagonals AC and BD that intersect at point E. Which expression is not always true?
1. $\angle DAE \cong \angle BCE$
2. $\angle DEC \cong \angle BEA$
3. $AC \cong DB$
4. $DE \cong EB$

G.G.39: PARALLELOGRAMS

196 In the diagram below of rhombus $ABCD$, $m\angle C = 100$. What is $m\angle DBC$?
1. 40
2. 45
3. 50
4. 80
197 In the diagram below, $MATH$ is a rhombus with diagonals AH and MT.

If $m\angle HAM = 12$, what is $m\angle AMT$?
1 12
2 78
3 84
4 156

198 In rhombus $ABCD$, the diagonals AC and BD intersect at E. If $AE = 5$ and $BE = 12$, what is the length of AB?
1 7
2 10
3 13
4 17

199 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
1 rhombus
2 rectangle
3 parallelogram
4 isosceles trapezoid

200 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1 an isosceles trapezoid
2 a parallelogram
3 a rectangle
4 a rhombus

201 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
1 the rhombus, only
2 the rectangle and the square
3 the rhombus and the square
4 the rectangle, the rhombus, and the square

202 In the diagram below, quadrilateral $STAR$ is a rhombus with diagonals SA and TR intersecting at E. $ST = 3x + 30$, $SR = 8x - 5$, $SE = 3z$, $TE = 5z + 5$, $AE = 4z - 8$, $m\angle RTA = 5y - 2$, and $m\angle TAS = 9y + 8$. Find SR, RT, and $m\angle TAS$.

G.G.40: TRAPEZOIDS

203 Isosceles trapezoid $ABCD$ has diagonals AC and BD. If $AC = 5x + 13$ and $BD = 11x - 5$, what is the value of x?
1 28
2 $10\frac{3}{4}$
3 3
4 $\frac{1}{2}$
204 In the diagram below of trapezoid $RSUT$, $RS \parallel TU$, X is the midpoint of RT, and V is the midpoint of SU.

If $RS = 30$ and $XV = 44$, what is the length of TU?
1. 37
2. 58
3. 74
4. 118

205 In isosceles trapezoid $ABCD$, $AB \cong CD$. If $BC = 20$, $AD = 36$, and $AB = 17$, what is the length of the altitude of the trapezoid?
1. 10
2. 12
3. 15
4. 16

206 In the diagram below of isosceles trapezoid $ABCD$, $AB = CD = 25$, $AD = 26$, and $BC = 12$.

What is the length of an altitude of the trapezoid?
1. 7
2. 14
3. 19
4. 24

207 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a
1. rectangle
2. rhombus
3. square
4. trapezoid

208 The diagram below shows isosceles trapezoid $ABCD$ with $AB \parallel DC$ and $AD \cong BC$. If $m \angle BAD = 2x$ and $m \angle BCD = 3x + 5$, find $m \angle BAD$.

209 In the diagram below of isosceles trapezoid $DEFG$, $DE \parallel GF$, $DE = 4x - 2$, $EF = 3x + 2$, $FG = 5x - 3$, and $GD = 2x + 5$. Find the value of x.

G.G.41: SPECIAL QUADRILATERALS

210 A quadrilateral whose diagonals bisect each other and are perpendicular is a
1. rhombus
2. rectangle
3. trapezoid
4. parallelogram
211 Given: Quadrilateral \(ABCD\), diagonal \(AFEC\),
\(AE \cong FC\), \(BF \perp AC\), \(DE \perp AC\), \(\angle 1 \cong \angle 2\)
Prove: \(ABCD\) is a parallelogram.

212 Given: \(JKLM\) is a parallelogram.
\(JM \cong LN\)
\(\angle LMN \cong \angle LNM\)
Prove: \(JKLM\) is a rhombus.

213 The coordinates of the vertices of parallelogram \(ABCD\) are \(A(-3,2), B(-2,-1), C(4,1),\) and \(D(3,4)\). The slopes of which line segments could be calculated to show that \(ABCD\) is a rectangle?
1. \(\overline{AB}\) and \(\overline{DC}\)
2. \(\overline{AB}\) and \(\overline{BC}\)
3. \(\overline{AD}\) and \(\overline{BC}\)
4. \(\overline{AC}\) and \(\overline{BD}\)

214 Given: Quadrilateral \(ABCD\) has vertices \(A(-5,6), B(6,6), C(8,-3),\) and \(D(-3,-3)\).
Prove: Quadrilateral \(ABCD\) is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

215 Quadrilateral \(MATH\) has coordinates \(M(1,1), A(-2,5), T(3,5),\) and \(H(6,1)\). Prove that quadrilateral \(MATH\) is a rhombus and prove that it is not a square. [The use of the grid is optional.]
216 Given: $\triangle ABC$ with vertices $A(-6,-2), B(2,8),$ and $C(6,-2)$. \overline{AB} has midpoint D, \overline{BC} has midpoint E, and \overline{AC} has midpoint F.

Prove: $ADEF$ is a parallelogram

$ADEF$ is not a rhombus

[The use of the grid is optional.]

CONICS

G.G.49: CHORDS

217 In the diagram below, circle O has a radius of 5, and $CE = 2$. Diameter \overline{AC} is perpendicular to chord \overline{BD} at E.

What is the length of \overline{BD}?

1. 12
2. 10
3. 8
4. 4
218 In the diagram below of circle O, radius OC is 5 cm. Chord AB is 8 cm and is perpendicular to OC at point P.

What is the length of OP, in centimeters?

1. 8
2. 2
3. 3
4. 4

219 In the diagram below of circle O, diameter AOB is perpendicular to chord CD at point E, $OA = 6$, and $OE = 2$.

What is the length of CE?

1. $4\sqrt{3}$
2. $2\sqrt{3}$
3. $8\sqrt{2}$
4. $4\sqrt{2}$

220 In the diagram below of circle O, diameter AB is perpendicular to chord CD at E. If $AO = 10$ and $BE = 4$, find the length of CE.

221 In the diagram below, $\triangle ABC$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1. $AB > AC > BC$
2. $AB < AC$ and $AC > BC$
3. $AC > AB > BC$
4. $AC = AB$ and $AB > BC$
G.G.52: CHORDS

222 In the diagram of circle O below, chords AB and CD are parallel, and BD is a diameter of the circle.

If $m\overarc{AD} = 60$, what is $m\angle CDB$?

1. 20
2. 30
3. 60
4. 120

224 In the diagram below, two parallel lines intersect circle O at points $A, B, C,$ and D, with $m\overarc{AB} = x + 20$ and $m\overarc{DC} = 2x - 20$. Find $m\overarc{AB}$.

225 In the diagram below of circle O, chord $AB \parallel$ chord CD, and chord $CD \parallel$ chord EF.

Which statement must be true?

1. $CE \cong DF$
2. $AC \cong DF$
3. $AC \cong CE$
4. $EF \cong CD$
226 In the diagram below of circle O, chord AB is parallel to chord CD.

Which statement must be true?
1. $AC \cong BD$
2. $AB \cong CD$
3. $AB \cong CD$
4. $ABD \cong CDB$

227 In the diagram below, trapezoid $ABCD$, with bases AB and DC, is inscribed in circle O, with diameter DC. If $m\overline{AB}=80$, find $m\overline{BC}$.

228 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1. 1
2. 2
3. 3
4. 4

229 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B?
1. 1
2. 2
3. 3
4. 4
230 Line segment AB is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
1 right
2 obtuse
3 scalene
4 isosceles

231 Tangents PA and PB are drawn to circle O from an external point, P, and radii OA and OB are drawn. If $m \angle APB = 40$, what is the measure of $\angle AOB$?
1 140°
2 100°
3 70°
4 50°

232 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of TA to AC is $1:3$. If $TS = 24$, find the length of SE.

G.G.51: ARCS DETERMINED BY ANGLES

233 In the diagram below of $\triangle PAO$, AP is tangent to circle O at point A, $OB = 7$, and $BP = 18$.

What is the length of AP?
1 10
2 12
3 17
4 24

234 In the diagram below of circle O, chords AD and BC intersect at E, $m \angle AC = 87$, and $m \angle BD = 35$.

What is the degree measure of $\angle CEA$?
1 87
2 61
3 43.5
4 26
235 In the diagram below of circle O, chords AE and DC intersect at point B, such that $m\widehat{AC} = 36$ and $m\widehat{DE} = 20$.

What is $m\angle ABC$?
1. 56
2. 36
3. 28
4. 8

236 In the diagram below of circle O, chords AB and CD intersect at E.

If $m\angle AEC = 34$ and $m\widehat{AC} = 50$, what is $m\widehat{DB}$?
1. 16
2. 18
3. 68
4. 118

237 In the diagram below of circle O, chords AD and BC intersect at E.

Which relationship must be true?
1. $\triangle CAE \cong \triangle DBE$
2. $\triangle AEC \sim \triangle BDE$
3. $\angle ACB \cong \angle CBD$
4. $CA \cong DB$

238 In the diagram below, quadrilateral $JUMP$ is inscribed in a circle.

Opposite angles J and M must be
1. right
2. complementary
3. congruent
4. supplementary
239 In the diagram below of circle O, chords DF, DE, FG, and EG are drawn such that $m\overset{\frown}{DF} : m\overset{\frown}{FE} : m\overset{\frown}{EG} : m\overset{\frown}{GD} = 5 : 2 : 1 : 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

240 In the diagram below of circle C, $m\overset{\frown}{QT} = 140$, and $m\angle P = 40$.

What is $m\overset{\frown}{RS}$?

1. 50
2. 60
3. 90
4. 110

241 In the diagram below, tangent ML and secant MNK are drawn to circle O. The ratio $m\overset{\frown}{LN} : m\overset{\frown}{NK} : m\overset{\frown}{KL} = 3 : 4 : 5$. Find $m\angle LMK$.

242 In the diagram below, PS is a tangent to circle O at point S, PQR is a secant, $PS = x$, $PQ = 3$, and $PR = x + 18$.

What is the length of PS?

1. 6
2. 9
3. 3
4. 27
243 In the diagram below, tangent \overline{AB} and secant \overline{ACD} are drawn to circle O from an external point A, $AB = 8$, and $AC = 4$.

What is the length of \overline{CD}?
1. 16
2. 13
3. 12
4. 10

244 In the diagram below, tangent \overline{PA} and secant \overline{PBC} are drawn to circle O from external point P.

If $PB = 4$ and $BC = 5$, what is the length of \overline{PA}?
1. 20
2. 9
3. 8
4. 6

245 In the diagram below of circle O, \overline{PA} is tangent to circle O at A, and \overline{PBC} is a secant with points B and C on the circle.

If $PA = 8$ and $PB = 4$, what is the length of \overline{BC}?
1. 20
2. 16
3. 15
4. 12

246 In the diagram below of circle O, secant \overline{AB} intersects circle O at D, secant \overline{AOC} intersects circle O at E, $AE = 4$, $AB = 12$, and $DB = 6$.

What is the length of \overline{OC}?
1. 4.5
2. 7
3. 9
4. 14
247 In the diagram of circle O below, chord \overline{AB} intersects chord \overline{CD} at E, $DE = 2x + 8$, $EC = 3$, $AE = 4x - 3$, and $EB = 4$.

What is the value of x?
1 1
2 3.6
3 5
4 10.25

248 In the diagram below of circle O, chords \overline{AB} and \overline{CD} intersect at E.

If $CE = 10$, $ED = 6$, and $AE = 4$, what is the length of EB?
1 15
2 12
3 6.7
4 2.4

249 In the diagram below of circle O, chord \overline{AB} bisects chord \overline{CD} at E. If $AE = 8$ and $BE = 9$, find the length of \overline{CE} in simplest radical form.

250 In the diagram below, \overline{AB}, \overline{BC}, and \overline{AC} are tangents to circle O at points F, E, and D, respectively, $AF = 6$, $CD = 5$, and $BE = 4$.

What is the perimeter of $\triangle ABC$?
1 15
2 25
3 30
4 60
251 In the diagram below, \(\triangle ABC \) is circumscribed about circle \(O \) and the sides of \(\triangle ABC \) are tangent to the circle at points \(D, E, \) and \(F \).

![Diagram](image)

If \(AB = 20, AE = 12, \) and \(CF = 15 \), what is the length of \(AC \)?

1. 8
2. 15
3. 23
4. 27

G.G.71: EQUATIONS OF CIRCLES

252 The diameter of a circle has endpoints at \((-2, 3)\) and \((6, 3)\). What is an equation of the circle?

1. \((x - 2)^2 + (y - 3)^2 = 16\)
2. \((x + 2)^2 + (y - 3)^2 = 4\)
3. \((x + 2)^2 + (y + 3)^2 = 16\)
4. \((x + 2)^2 + (y + 3)^2 = 4\)

253 What is an equation of a circle with its center at \((-3, 5)\) and a radius of 4?

1. \((x - 3)^2 + (y + 5)^2 = 16\)
2. \((x + 3)^2 + (y - 5)^2 = 16\)
3. \((x - 3)^2 + (y + 5)^2 = 4\)
4. \((x + 3)^2 + (y - 5)^2 = 4\)

254 Which equation represents the circle whose center is \((-2, 3)\) and whose radius is 5?

1. \((x - 2)^2 + (y + 3)^2 = 5\)
2. \((x + 2)^2 + (y - 3)^2 = 5\)
3. \((x + 2)^2 + (y - 3)^2 = 25\)
4. \((x - 2)^2 + (y + 3)^2 = 25\)

255 What is an equation of a circle with center \((7, -3)\) and radius 4?

1. \((x - 7)^2 + (y + 3)^2 = 4\)
2. \((x + 7)^2 + (y - 3)^2 = 4\)
3. \((x - 7)^2 + (y + 3)^2 = 16\)
4. \((x + 7)^2 + (y - 3)^2 = 16\)

256 What is an equation of the circle with a radius of 5 and center at \((1, -4)\)?

1. \((x + 1)^2 + (y - 4)^2 = 5\)
2. \((x - 1)^2 + (y + 4)^2 = 5\)
3. \((x + 1)^2 + (y - 4)^2 = 25\)
4. \((x - 1)^2 + (y + 4)^2 = 25\)

257 Which equation represents circle \(O \) with center \((2, -8)\) and radius 9?

1. \((x + 2)^2 + (y - 8)^2 = 9\)
2. \((x - 2)^2 + (y + 8)^2 = 9\)
3. \((x + 2)^2 + (y - 8)^2 = 81\)
4. \((x - 2)^2 + (y + 8)^2 = 81\)
258 Write an equation of the circle whose diameter \overline{AB} has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

260 What is an equation for the circle shown in the graph below?

261 What is an equation of circle O shown in the graph below?

G.G.72: EQUATIONS OF CIRCLES

259 Which equation represents circle K shown in the graph below?

1. $(x + 5)^2 + (y - 1)^2 = 3$
2. $(x + 5)^2 + (y - 1)^2 = 9$
3. $(x - 5)^2 + (y + 1)^2 = 3$
4. $(x - 5)^2 + (y + 1)^2 = 9$

1. $x^2 + y^2 = 2$
2. $x^2 + y^2 = 4$
3. $x^2 + y^2 = 8$
4. $x^2 + y^2 = 16$

1. $(x + 1)^2 + (y - 3)^2 = 25$
2. $(x - 1)^2 + (y + 3)^2 = 25$
3. $(x - 5)^2 + (y + 6)^2 = 25$
4. $(x + 5)^2 + (y - 6)^2 = 25$
262 What is an equation of circle O shown in the graph below?

1. $(x + 2)^2 + (y - 2)^2 = 9$
2. $(x + 2)^2 + (y - 2)^2 = 3$
3. $(x - 2)^2 + (y + 2)^2 = 9$
4. $(x - 2)^2 + (y + 2)^2 = 3$

263 Write an equation for circle O shown on the graph below.

G.G.73: EQUATIONS OF CIRCLES

265 What are the center and radius of a circle whose equation is $(x - A)^2 + (y - B)^2 = C$?
1. center $= (A, B)$; radius $= C$
2. center $= (-A, -B)$; radius $= C$
3. center $= (A, B)$; radius $= \sqrt{C}$
4. center $= (-A, -B)$; radius $= \sqrt{C}$

266 What are the center and the radius of the circle whose equation is $(x - 3)^2 + (y + 3)^2 = 36$
1. center $= (3, -3)$; radius $= 6$
2. center $= (-3, 3)$; radius $= 6$
3. center $= (3, -3)$; radius $= 36$
4. center $= (-3, 3)$; radius $= 36$

267 The equation of a circle is $x^2 + (y - 7)^2 = 16$. What are the center and radius of the circle?
1. center $= (0, 7)$; radius $= 4$
2. center $= (0, 7)$; radius $= 16$
3. center $= (0, -7)$; radius $= 4$
4. center $= (0, -7)$; radius $= 16$
268 What are the center and the radius of the circle whose equation is \((x - 5)^2 + (y + 3)^2 = 16\)?
1. \((-5, 3)\) and 16
2. \((5, -3)\) and 16
3. \((-5, 3)\) and 4
4. \((5, -3)\) and 4

269 A circle has the equation \((x - 2)^2 + (y + 3)^2 = 36\). What are the coordinates of its center and the length of its radius?
1. \((-2, 3)\) and 6
2. \((2, -3)\) and 6
3. \((-2, 3)\) and 36
4. \((2, -3)\) and 36

270 A circle is represented by the equation \(x^2 + (y + 3)^2 = 13\). What are the coordinates of the center of the circle and the length of the radius?
1. \((0, 3)\) and 13
2. \((0, 3)\) and \(\sqrt{13}\)
3. \((0, -3)\) and 13
4. \((0, -3)\) and \(\sqrt{13}\)
272 The equation of a circle is \((x - 2)^2 + (y + 4)^2 = 4\). Which diagram is the graph of the circle?

273 Which graph represents a circle with the equation \((x - 3)^2 + (y + 1)^2 = 4\)?
MEASURING IN THE
PLANES AND SPACE

G.G.11: VOLUME

274 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

G.G.12: VOLUME

275 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?
1 20
2 60
3 120
4 240

276 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

277 A rectangular prism has a volume of $3x^2 + 18x + 24$. Its base has a length of $x + 2$ and a width of 3. Which expression represents the height of the prism?
1 $x + 4$
2 $x + 2$
3 3
4 $x^2 + 6x + 8$

278 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
1 3.3 by 5.5
2 2.5 by 7.2
3 12 by 8
4 9 by 9

G.G.13: VOLUME

279 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

280 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm. Find, in centimeters, the height of the pyramid if the volume is 288 cm3.
G.G.14: VOLUME AND LATERAL AREA

281 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

\[V = \pi r^2 h \]

![Diagram of cylinder](image)

1. \(162\pi\)
2. \(324\pi\)
3. \(972\pi\)
4. \(3,888\pi\)

282 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm?

\[V = \pi r^2 h \]

1. \(180\pi\)
2. \(540\pi\)
3. \(675\pi\)
4. \(2,160\pi\)

283 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

\[V = \pi r^2 h \]

1. 6.3
2. 11.2
3. 19.8
4. 39.8

284 The volume of a cylinder is 12,566.4 cm\(^3\). The height of the cylinder is 8 cm. Find the radius of the cylinder to the nearest tenth of a centimeter.

\[V = \pi r^2 h \]

1. 172.7
2. 172.8
3. 345.4
4. 345.6

285 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

\[A_{\text{lateral}} = 2\pi rh \]

1. 172.7
2. 172.8
3. 345.4
4. 345.6

286 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600\(\pi\) cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

\[V = \pi r^2 h \]

1. \(172.7\pi\)
2. \(172.8\pi\)
3. \(345.4\pi\)
4. \(345.6\pi\)

G.G.15: VOLUME AND LATERAL AREA

287 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

![Diagram of cone](image)

What is the volume of the cone to the nearest cubic inch?

\[V = \frac{1}{3}\pi r^2 h \]

1. 201
2. 481
3. 603
4. 804
288 A right circular cone has a base with a radius of 15 cm, a vertical height of 20 cm, and a slant height of 25 cm. Find, in terms of \(\pi \), the number of square centimeters in the lateral area of the cone.

G.G.16: VOLUME AND SURFACE AREA

289 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is:
1. \(12\pi \)
2. \(36\pi \)
3. \(48\pi \)
4. \(288\pi \)

290 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of \(\pi \).

291 If the surface area of a sphere is represented by \(144\pi \), what is the volume in terms of \(\pi \)?
1. \(36\pi \)
2. \(48\pi \)
3. \(216\pi \)
4. \(288\pi \)

292 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

G.G.45: SIMILARITY

293 In the diagram below, \(\triangle ABC \sim \triangle EFG \), \(m\angle C = 4x + 30 \), and \(m\angle G = 5x + 10 \). Determine the value of \(x \).

294 If \(\triangle ABC \sim \triangle XYZ \), \(m\angle A = 50 \), and \(m\angle C = 30 \), what is \(m\angle X \)?
1. 30
2. 50
3. 80
4. 100

295 As shown in the diagram below, \(\triangle ABC \sim \triangle DEF \), \(AB = 7x \), \(BC = 4 \), \(DE = 7 \), and \(EF = x \).

What is the length of \(AB \)?
1. 28
2. 2
3. 14
4. 4
296 In the diagram below, \(\triangle ABC \sim \triangle DEF \), \(DE = 4 \), \(AB = x \), \(AC = x + 2 \), and \(DF = x + 6 \). Determine the length of \(AB \). [Only an algebraic solution can receive full credit.]

297 Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is not true?
1. Their areas have a ratio of 4:1.
2. Their altitudes have a ratio of 2:1.
3. Their perimeters have a ratio of 2:1.
4. Their corresponding angles have a ratio of 2:1.

298 Given \(\triangle ABC \sim \triangle DEF \) such that \(\frac{AB}{DE} = \frac{3}{2} \). Which statement is not true?
1. \(\frac{BC}{EF} = \frac{3}{2} \)
2. \(\frac{m\angle A}{m\angle D} = \frac{3}{2} \)
3. \(\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4} \)
4. \(\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2} \)

299 \(\triangle ABC \) is similar to \(\triangle DEF \). The ratio of the length of \(AB \) to the length of \(DE \) is 3:1. Which ratio is also equal to 3:1?
1. \(\frac{m\angle A}{m\angle D} \)
2. \(\frac{m\angle B}{m\angle F} \)
3. \(\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} \)
4. \(\frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} \)

G.G.47: SIMILARITY

300 In the diagram below, the length of the legs \(AC \) and \(BC \) of right triangle \(ABC \) are 6 cm and 8 cm, respectively. Altitude \(CD \) is drawn to the hypotenuse of \(\triangle ABC \).

What is the length of \(AD \) to the nearest tenth of a centimeter?
1. 3.6
2. 6.0
3. 6.4
4. 4.0
301 In the diagram below of right triangle ACB, altitude CD is drawn to hypotenuse AB.

If $AB = 36$ and $AC = 12$, what is the length of AD?
1. 32
2. 6
3. 3
4. 4

302 In the diagram below of right triangle ABC, CD is the altitude to hypotenuse AB, $CB = 6$, and $AD = 5$.

What is the length of BD?
1. 5
2. 9
3. 3
4. 4

303 In the diagram below of right triangle ABC, altitude BD is drawn to hypotenuse AC, $AC = 16$, and $CD = 7$.

What is the length of BD?
1. $3\sqrt{7}$
2. $4\sqrt{7}$
3. $7\sqrt{3}$
4. 12

304 In $\triangle PQR$, $\angle PRQ$ is a right angle and RT is drawn perpendicular to hypotenuse PQ. If $PT = x$, $RT = 6$, and $TQ = 4x$, what is the length of PQ?
1. 9
2. 12
3. 3
4. 15

305 In the diagram below, $\triangle RST$ is a $3 - 4 - 5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

What is the length of h?
1. 15
2. 10
3. $\frac{60}{11}$
4. $\frac{90}{11}$
306 In the diagram below of right triangle \(ACB\), altitude \(CD\) intersects \(AB\) at \(D\). If \(AD = 3\) and \(DB = 4\), find the length of \(CD\) in simplest radical form.

TRANSFORMATIONS
G.G.54: ROTATIONS

307 The coordinates of the vertices of \(\triangle RST\) are \(R(-2,3), S(4,4),\) and \(T(2,-2)\). Triangle \(R'S'T'\) is the image of \(\triangle RST\) after a rotation of 90° about the origin. State the coordinates of the vertices of \(\triangle R'S'T'\). [The use of the set of axes below is optional.]

G.G.54: REFLECTIONS

308 Triangle \(ABC\) has vertices \(A(-2,2), B(-1,-3),\) and \(C(4,0)\). Find the coordinates of the vertices of \(\triangle A'B'C'\), the image of \(\triangle ABC\) after the transformation \(r_{x-axis}\). [The use of the grid is optional.]
309 Triangle \(XYZ\), shown in the diagram below, is reflected over the line \(x = 2\). State the coordinates of \(X'Y'Z'\), the image of \(XYZ\).

310 Point \(A\) is located at \((4, -7)\). The point is reflected in the \(x\)-axis. Its image is located at
1. \((-4, 7)\)
2. \((-4, -7)\)
3. \((4, 7)\)
4. \((7, -4)\)

311 What is the image of the point \((2, -3)\) after the transformation \(r_{y = \text{axis}}\)?
1. \((2, 3)\)
2. \((-2, -3)\)
3. \((-2, 3)\)
4. \((-3, 2)\)

312 The coordinates of point \(A\) are \((-3a, 4b)\). If point \(A'\) is the image of point \(A\) reflected over the line \(y = x\), the coordinates of \(A'\) are
1. \((4b, -3a)\)
2. \((3a, 4b)\)
3. \((-3a, -4b)\)
4. \((-4b, -3a)\)

313 What is the image of the point \((-5, 2)\) under the translation \(T_{3,-4}\)?
1. \((-9, 5)\)
2. \((-8, 6)\)
3. \((-2, -2)\)
4. \((-15, -8)\)

314 Triangle \(ABC\) has vertices \(A(1, 3), B(0, 1),\) and \(C(4, 0)\). Under a translation, \(A'\), the image point of \(A\), is located at \((4, 4)\). Under this same translation, point \(C'\) is located at
1. \((7, 1)\)
2. \((5, 3)\)
3. \((3, 2)\)
4. \((1, -1)\)
G.G.54: COMPOSITIONS OF TRANSFORMATIONS

315 The coordinates of the vertices of parallelogram $ABCD$ are $A(-2, 2)$, $B(3, 5)$, $C(4, 2)$, and $D(-1, -1)$. State the coordinates of the vertices of parallelogram $A''B''C''D''$ that result from the transformation $r_{y-axis} \circ T_{2, -3}$. [The use of the set of axes below is optional.]

316 What is the image of point $A(4, 2)$ after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?
1. $(-4, 2)$
2. $(4, -2)$
3. $(-4, -2)$
4. $(2, -4)$

317 The point $(3, -2)$ is rotated 90° about the origin and then dilated by a scale factor of 4. What are the coordinates of the resulting image?
1. $(-12, 8)$
2. $(12, -8)$
3. $(8, 12)$
4. $(-8, -12)$
319 As shown on the set of axes below, \(\triangle GHS \) has vertices \(G(3, 1), H(5, 3), \) and \(S(1, 4) \). Graph and state the coordinates of \(\triangle G''H''S'' \), the image of \(\triangle GHS \) after the transformation \(T_{-3,1} \circ D_2 \).

320 The endpoints of \(\overline{AB} \) are \(A(3, 2) \) and \(B(7, 1) \). If \(\overline{A''B''} \) is the result of the transformation of \(\overline{AB} \) under \(D_2 \circ T_{-4,3} \), what are the coordinates of \(A'' \) and \(B'' \)?

1. \(A''(-2, 10) \) and \(B''(6, 8) \)
2. \(A''(-1, 5) \) and \(B''(3, 4) \)
3. \(A''(2, 7) \) and \(B''(10, 5) \)
4. \(A''(14, -2) \) and \(B''(22, -4) \)

G.G.55: PROPERTIES OF TRANSFORMATIONS

321 The vertices of \(\triangle ABC \) are \(A(3, 2), B(6, 1), \) and \(C(4, 6) \). Identify and graph a transformation of \(\triangle ABC \) such that its image, \(\triangle A'B'C' \), results in \(\overline{AB} \parallel \overline{A'B'} \).
322 Triangle ABC has coordinates $A(2,-2)$, $B(2,1)$, and $C(4,-2)$. Triangle $A'B'C'$ is the image of $\triangle ABC$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle ABC$ and its image, $\triangle A'B'C'$. Determine the relationship between the area of $\triangle ABC$ and the area of $\triangle A'B'C'$. Justify your response.

323 Triangle DEG has the coordinates $D(1,1)$, $E(5,1)$, and $G(5,4)$. Triangle DEG is rotated 90° about the origin to form $\triangle D'E'G'$. On the grid below, graph and label $\triangle DEG$ and $\triangle D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.
324 Which expression best describes the transformation shown in the diagram below?

1 same orientation; reflection
2 opposite orientation; reflection
3 same orientation; translation
4 opposite orientation; translation

325 The rectangle $ABCD$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1 slope of AB
2 parallelism of AB and CD
3 length of AB
4 measure of $\angle A$

326 A transformation of a polygon that always preserves both length and orientation is

1 dilation
2 translation
3 line reflection
4 glide reflection

327 Quadrilateral $MNOP$ is a trapezoid with $MN \parallel OP$. If $M'O'N'O'$ is the image of $MNOP$ after a reflection over the x-axis, which two sides of quadrilateral $M'O'N'O'$ are parallel?

1 $M'N'$ and $O'P'$
2 $M'N'$ and $N'O'$
3 $P'M'$ and $O'P'$
4 $P'M'$ and $N'O'$
328 Pentagon $PQRST$ has PQ parallel to TS. After a translation of $T_{2,-5}$, which line segment is parallel to $P'Q'$?
1. $R'Q'$
2. $R'S'$
3. $T'S'$
4. $T'P'$

329 When a quadrilateral is reflected over the line $y = x$, which geometric relationship is not preserved?
1. congruence
2. orientation
3. parallelism
4. perpendicularly

G.G.57: PROPERTIES OF TRANSFORMATIONS

330 Which transformation of the line $x = 3$ results in an image that is perpendicular to the given line?
1. $r_{x\text{-axis}}$
2. $r_{y\text{-axis}}$
3. $r_{y=x}$
4. $r_{x=1}$

G.G.59: PROPERTIES OF TRANSFORMATIONS

331 On the set of axes below, Geoff drew rectangle $ABCD$. He will transform the rectangle by using the translation $(x, y) \rightarrow (x + 2, y + 1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?
1. exactly 28 square units
2. less than 28 square units
3. greater than 28 square units
4. It cannot be determined from the information given.

332 When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?
1. $\overline{AC} \cong \overline{A'C'}$
2. $\angle A \cong \angle A'$
3. perimeter of $\triangle ABC = \text{perimeter of } \triangle A'B'C'$
4. $2(\text{area of } \triangle ABC) = \text{area of } \triangle A'B'C'$

333 In $\triangle KLM$, $m\angle K = 36$ and $KM = 5$. The transformation D_2 is performed on $\triangle KLM$ to form $\triangle K'L'M'$. Find $m\angle K'$. Justify your answer.

Find the length of $K'M'$. Justify your answer.
334 In the diagram below, under which transformation will \(\Delta A'B'C' \) be the image of \(\Delta ABC \)?

1. rotation
2. dilation
3. translation
4. glide reflection

335 In the diagram below, which transformation was used to map \(\Delta ABC \) to \(\Delta A'B'C' \)?

1. dilation
2. rotation
3. reflection
4. glide reflection

337 Which transformation can map the letter S onto itself?

1. glide reflection
2. translation
3. line reflection
4. rotation

338 The diagram below shows \(\overline{AB} \) and \(\overline{DE} \).

Which transformation will move \(\overline{AB} \) onto \(\overline{DE} \) such that point D is the image of point A and point E is the image of point B?

1. \(T_{3,-3} \)
2. \(D_{\frac{1}{2}} \)
3. \(R_{90^\circ} \)
4. \(r_{y=x} \)

336 Which transformation is not always an isometry?

1. rotation
2. dilation
3. reflection
4. translation
339 As shown on the graph below, \(\Delta R'S'T'\) is the image of \(\Delta RST\) under a single transformation.

Which transformation does this graph represent?
1 glide reflection
2 line reflection
3 rotation
4 translation

340 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the \(y\)-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

G.G.60: IDENTIFYING TRANSFORMATIONS

341 After a composition of transformations, the coordinates \(A(4,2), B(4,6),\) and \(C(2,6)\) become \(A'(-2,-1), B'(-2,-3),\) and \(C'(-1,-3),\) as shown on the set of axes below.

Which composition of transformations was used?
1 \(R_{180}\circ D_2\)
2 \(R_{90}\circ D_2\)
3 \(D_{\frac{1}{2}}\circ R_{180}\)
4 \(D_{\frac{1}{2}}\circ R_{90}\)

342 Which transformation produces a figure similar but not congruent to the original figure?
1 \(T_{1,3}\)
2 \(D_{\frac{1}{2}}\)
3 \(R_{90}\)
4 \(r_{y=x}\)
343 In the diagram below, $\triangle A'B'C'$ is a transformation of $\triangle ABC$, and $\triangle A''B''C''$ is a transformation of $\triangle A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a
1 reflection followed by a rotation
2 reflection followed by a translation
3 translation followed by a rotation
4 translation followed by a reflection

344 A polygon is transformed according to the rule: $(x, y) \rightarrow (x + 2, y)$. Every point of the polygon moves two units in which direction?
1 up
2 down
3 left
4 right

LOGIC

G.G.24: STATEMENTS AND NEGATIONS

345 What is the negation of the statement “The Sun is shining”?
1 It is cloudy.
2 It is daytime.
3 It is not raining.
4 The Sun is not shining.

346 What is the negation of the statement “Squares are parallelograms”?
1 Parallelograms are squares.
2 Parallelograms are not squares.
3 It is not the case that squares are parallelograms.
4 It is not the case that parallelograms are squares.

347 What is the negation of the statement “I am not going to eat ice cream”?
1 I like ice cream.
2 I am going to eat ice cream.
3 If I eat ice cream, then I like ice cream.
4 If I don’t like ice cream, then I don’t eat ice cream.

348 Which statement is the negation of “Two is a prime number” and what is the truth value of the negation?
1 Two is not a prime number; false
2 Two is not a prime number; true
3 A prime number is two; false
4 A prime number is two; true

349 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.
Given \(\triangle ABC \) with base \(\overline{AFEDC} \), median \(\overline{BF} \), altitude \(\overline{BD} \), and \(\overline{BE} \) bisects \(\angle ABC \), which conclusion is valid?

1. \(\angle FAB \cong \angle ABF \)
2. \(\angle ABF \cong \angle CBD \)
3. \(CE \cong EA \)
4. \(CF \cong FA \)

G.G.25: COMPOUND STATEMENTS

Which compound statement is true?

1. A triangle has three sides and a quadrilateral has five sides.
2. A triangle has three sides if and only if a quadrilateral has five sides.
3. If a triangle has three sides, then a quadrilateral has five sides.
4. A triangle has three sides or a quadrilateral has five sides.

The statement "\(x \) is a multiple of 3, and \(x \) is an even integer" is true when \(x \) is equal to

1. 9
2. 8
3. 3
4. 6

Given: Two is an even integer or three is an even integer. Determine the truth value of this disjunction. Justify your answer.

G.G.26: CONDITIONAL STATEMENTS

What is the inverse of the statement “If two triangles are not similar, their corresponding angles are not congruent”?

1. If two triangles are similar, their corresponding angles are not congruent.
2. If corresponding angles of two triangles are not congruent, the triangles are not similar.
3. If two triangles are similar, their corresponding angles are congruent.
4. If corresponding angles of two triangles are congruent, the triangles are similar.

What is the converse of the statement "If Bob does his homework, then George gets candy"?

1. If George gets candy, then Bob does his homework.
2. Bob does his homework if and only if George gets candy.
3. If George does not get candy, then Bob does not do his homework.
4. If Bob does not do his homework, then George does not get candy.

Which statement is logically equivalent to "If it is warm, then I go swimming"?

1. If I go swimming, then it is warm.
2. If it is warm, then I do not go swimming.
3. If I do not go swimming, then it is not warm.
4. If it is not warm, then I do not go swimming.

What is the contrapositive of the statement, “If I am tall, then I will bump my head”?
1. If I bump my head, then I am tall.
2. If I do not bump my head, then I am tall.
3. If I am tall, then I will not bump my head.
4. If I do not bump my head, then I am not tall.

Write a statement that is logically equivalent to the statement “If two sides of a triangle are congruent, the angles opposite those sides are congruent.” Identify the new statement as the converse, inverse, or contrapositive of the original statement.
G.G.28: TRIANGLE CONGRUENCY

359 In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $AB \cong DE$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove $\triangle ABC \cong \triangle DEF$?
1 SSS
2 SAS
3 ASA
4 HL

360 In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $AE \cong OD$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?
1 $GE \cong LD$
2 $AG \cong OL$
3 $\angle AGE \cong \angle OLD$
4 $\angle AEG \cong \angle ODL$

361 In the diagram of quadrilateral $ABCD$, $AB \parallel CD$, $\angle ABC \cong \angle CDA$, and diagonal AC is drawn.

Which method can be used to prove $\triangle ABC$ is congruent to $\triangle CDA$?
1 AAS
2 SSA
3 SAS
4 SSS

362 As shown in the diagram below, AC bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle ABC \cong \triangle ADC$?
1 SSS
2 AAA
3 SAS
4 AAS

363 The diagonal AC is drawn in parallelogram $ABCD$.

Which method can not be used to prove that $\triangle ABC \cong \triangle CDA$?
1 SSS
2 SAS
3 SSA
4 ASA
G.G.29: TRIANGLE CONGRUENCY

364 In the diagram below, \(\Delta ABC \cong \Delta XYZ \).

Which two statements identify corresponding congruent parts for these triangles?
1. \(AB \cong XY \) and \(\angle C \cong \angle Y \)
2. \(AB \cong YZ \) and \(\angle C \cong \angle X \)
3. \(BC \cong XY \) and \(\angle A \cong \angle Y \)
4. \(BC \cong YZ \) and \(\angle A \cong \angle X \)

365 In the diagram below, \(\Delta ABC \cong \Delta XYZ \).

Which statement must be true?
1. \(\angle C \cong \angle Y \)
2. \(\angle A \cong \angle X \)
3. \(AC \cong YZ \)
4. \(CB \cong XZ \)

366 In the diagram of trapezoid \(ABCD \) below, diagonals \(AC \) and \(BD \) intersect at \(E \) and \(\Delta ABC \cong \Delta DCB \).

Which statement is true based on the given information?
1. \(AC \cong BC \)
2. \(CD \cong AD \)
3. \(\angle CDE \cong \angle BAD \)
4. \(\angle CDB \cong \angle BAC \)

367 The diagram below shows a pair of congruent triangles, with \(\angle ADB \cong \angle CDB \) and \(\angle ABD \cong \angle CBD \).

Which statement must be true?
1. \(\angle ADB \cong \angle CBD \)
2. \(\angle ABC \cong \angle ADC \)
3. \(AB \cong CD \)
4. \(AD \cong CD \)

368 If \(\Delta JKL \cong \Delta MNO \), which statement is always true?
1. \(\angle KLI \cong \angle NMO \)
2. \(\angle KIL \cong \angle MON \)
3. \(JL \cong MO \)
4. \(JK \cong ON \)
G.G.27: ANGLE PROOFS

369 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
1 supplementary angles
2 linear pair of angles
3 adjacent angles
4 vertical angles

G.G.27: TRIANGLE PROOFS

370 Given: \(\triangle ABC \) and \(\triangle EDC \), \(C \) is the midpoint of \(BD \) and \(AE \)
Prove: \(AB \parallel DE \)

G.G.27: QUADRILATERAL PROOFS

371 In the diagram below of quadrilateral \(ABCD \), \(AD \cong BC \) and \(\angle DAE \cong \angle BCE \). Line segments \(AC, DB, \) and \(FG \) intersect at \(E \).
Prove: \(\triangle AEF \cong \triangle CEG \)

372 Given: Quadrilateral \(ABCD \) with \(AB \parallel CD \), \(AD \parallel BC \), and diagonal \(BD \) is drawn
Prove: \(\angle BDC \cong \angle ABD \)

G.G.27: CIRCLE PROOFS

373 In the diagram below, quadrilateral \(ABCD \) is inscribed in circle \(O, \overline{AB} \parallel \overline{DC} \), and diagonals \(\overline{AC} \) and \(\overline{BD} \) are drawn. Prove that \(\triangle ACD \cong \triangle BDC \).

374 In the diagram below, \(PA \) and \(PB \) are tangent to circle \(O, \overline{OA} \) and \(\overline{OB} \) are radii, and \(OP \) intersects the circle at \(C \). Prove: \(\angle AOP \cong \angle BOP \)
G.G.44: SIMILARITY PROOFS

375 In the diagram below of \(\triangle PRT \), \(Q \) is a point on \(PR \), \(S \) is a point on \(TR \), \(QS \) is drawn, and \(\angle RPT \cong \angle RSQ \).

Which reason justifies the conclusion that \(\triangle PRT \sim \triangle SRQ \)?
1. AA
2. ASA
3. SAS
4. SSS

376 In the diagram of \(\triangle ABC \) and \(\triangle EDC \) below, \(\overline{AE} \) and \(BD \) intersect at \(C \), and \(\angle CAB \cong \angle CED \).

Which method can be used to show that \(\triangle ABC \) must be similar to \(\triangle EDC \)?
1. SAS
2. AA
3. SSS
4. HL

377 In the diagram below, \(\overline{SQ} \) and \(\overline{PR} \) intersect at \(T \), \(\overline{PQ} \) is drawn, and \(\overline{PS} \parallel \overline{QR} \).

What technique can be used to prove that \(\triangle PST \sim \triangle RQT \)?
1. SAS
2. SSS
3. ASA
4. AA

378 In \(\triangle ABC \) and \(\triangle DEF \), \(\frac{AC}{DF} = \frac{CB}{FE} \). Which additional information would prove \(\triangle ABC \sim \triangle DEF \)?
1. \(AC = DF \)
2. \(CB = FE \)
3. \(\angle ACB \cong \angle DFE \)
4. \(\angle BAC \cong \angle EDF \)
379 In the diagram below, $BFCE$, $AB \perp BE$, $DE \perp BE$, and $\angle BFD \cong \angle ECA$. Prove that $\triangle ABC \sim \triangle DEF$.

380 The diagram below shows $\triangle ABC$, with AEB, ADC, and $\angle ACB \cong \angle AED$. Prove that $\triangle ABC$ is similar to $\triangle ADE$.