<table>
<thead>
<tr>
<th>TOPIC</th>
<th>STANDARD</th>
<th>SUBTOPIC</th>
<th>QUESTION #</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE</td>
<td>F.IF.B.6</td>
<td>Rate of Change</td>
<td>1-12</td>
</tr>
<tr>
<td>QUADRATICS</td>
<td>A.REI.B.4</td>
<td>Solving Quadratics</td>
<td>13-23</td>
</tr>
<tr>
<td></td>
<td>A.REI.B.4</td>
<td>Using the Discriminant</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>A.REI.B.4</td>
<td>Complex Conjugate Root Theorem</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>G.GPE.A.2</td>
<td>Graphing Quadratic Functions</td>
<td>26-336</td>
</tr>
<tr>
<td>POWERS</td>
<td>A.SSE.B.3</td>
<td>Modeling Exponential Functions</td>
<td>37-46</td>
</tr>
<tr>
<td></td>
<td>F.BF.A.1</td>
<td>Modeling Exponential Functions</td>
<td>47-51</td>
</tr>
<tr>
<td></td>
<td>F.LE.A.2</td>
<td>Modeling Exponential Functions</td>
<td>52-56</td>
</tr>
<tr>
<td></td>
<td>F.LE.B.5</td>
<td>Modeling Exponential Functions</td>
<td>57-60</td>
</tr>
<tr>
<td></td>
<td>F.IF.B.4</td>
<td>Evaluating Logarithmic Expressions</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>F.IF.C.7</td>
<td>Graphing Exponential Functions</td>
<td>62-67</td>
</tr>
<tr>
<td></td>
<td>F.IF.C.7</td>
<td>Graphing Logarithmic Functions</td>
<td>68-75</td>
</tr>
<tr>
<td></td>
<td>A.CED.A.1</td>
<td>Exponential Growth</td>
<td>76-80</td>
</tr>
<tr>
<td></td>
<td>F.LE.A.4</td>
<td>Exponential Equations</td>
<td>81-84</td>
</tr>
<tr>
<td></td>
<td>F.LE.A.4</td>
<td>Exponential Growth</td>
<td>85-89</td>
</tr>
<tr>
<td></td>
<td>F.LE.A.4</td>
<td>Exponential Decay</td>
<td>90-93</td>
</tr>
<tr>
<td>POLYNOMIALS</td>
<td>A.SSE.A.2</td>
<td>Factoring Polynomials</td>
<td>96-107</td>
</tr>
<tr>
<td></td>
<td>A.APR.B.3</td>
<td>Solving Polynomial Equations</td>
<td>108-112</td>
</tr>
<tr>
<td></td>
<td>A.APR.B.3</td>
<td>Graphing Polynomial Functions</td>
<td>113-117</td>
</tr>
<tr>
<td></td>
<td>F.IF.B.4</td>
<td>Graphing Polynomial Functions</td>
<td>118-124</td>
</tr>
<tr>
<td></td>
<td>F.IF.C.7</td>
<td>Graphing Polynomial Functions</td>
<td>125-135</td>
</tr>
<tr>
<td></td>
<td>A.APR.B.2</td>
<td>Remainder Theorem</td>
<td>136-149</td>
</tr>
<tr>
<td></td>
<td>A.APR.C.4</td>
<td>Polynomial Identities</td>
<td>150-160</td>
</tr>
<tr>
<td>RADICALS</td>
<td>N.RN.A.2</td>
<td>Operations with Radicals</td>
<td>161-164</td>
</tr>
<tr>
<td></td>
<td>A.REI.A.2</td>
<td>Solving Radicals</td>
<td>165-177</td>
</tr>
<tr>
<td></td>
<td>N.RN.A.1</td>
<td>Radicals and Rational Exponents</td>
<td>178-181</td>
</tr>
<tr>
<td></td>
<td>N.RN.A.2</td>
<td>Radicals and Rational Exponents</td>
<td>182-194</td>
</tr>
<tr>
<td></td>
<td>N.CN.A.2</td>
<td>Operations with Complex Numbers</td>
<td>195-207</td>
</tr>
<tr>
<td>RATIONALS</td>
<td>A.APR.D.6</td>
<td>Undefined Rationals</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>A.APR.D.6</td>
<td>Expressions with Negative Expressions</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>A.APR.D.6</td>
<td>Rational Expressions</td>
<td>210-225</td>
</tr>
<tr>
<td></td>
<td>A.APR.D.7</td>
<td>Addition and Subtraction of Rationals</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>A.CED.A.1</td>
<td>Modeling Rationals</td>
<td>227-231</td>
</tr>
<tr>
<td></td>
<td>A.REL.A.2</td>
<td>Solving Rationals</td>
<td>232-244</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>A.REI.C.6</td>
<td>Solving Linear Systems</td>
<td>245-252</td>
</tr>
<tr>
<td></td>
<td>A.REI.C.7</td>
<td>Quadratic-Linear Systems</td>
<td>253-261</td>
</tr>
<tr>
<td></td>
<td>A.REI.D.11</td>
<td>Quadratic-Linear Systems</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>A.REI.D.11</td>
<td>Other Systems</td>
<td>263-280</td>
</tr>
<tr>
<td>FUNCTIONS</td>
<td>F.BF.A.1</td>
<td>Operations with Functions</td>
<td>281-287</td>
</tr>
<tr>
<td></td>
<td>F.LE.A.2</td>
<td>Families of Functions</td>
<td>288-290</td>
</tr>
<tr>
<td></td>
<td>F.IF.C.9</td>
<td>Comparing Functions</td>
<td>291-296</td>
</tr>
<tr>
<td></td>
<td>F.BF.B.3</td>
<td>Transformations with Functions</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>F.BF.B.3</td>
<td>Even and Odd Functions</td>
<td>298-302</td>
</tr>
<tr>
<td></td>
<td>F.BF.B.4</td>
<td>Inverse of Functions</td>
<td>303-312</td>
</tr>
<tr>
<td>Subject</td>
<td>Standards/Topics</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>SEQUENCES AND SERIES</td>
<td>F.LE.A.2 Sequences</td>
<td>313-321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.IF.A.3 Sequences</td>
<td>322-325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.BF.A.2 Sequences</td>
<td>326-335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.BF.B.6 Sigma Notation</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.SSE.B.4 Series</td>
<td>337-349</td>
<td></td>
</tr>
<tr>
<td>TRIGONOMETRY</td>
<td>F.TF.A.1 Unit Circle</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.A.2 Reciprocal Trigonometric Relationships</td>
<td>351-352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.A.2 Reference Angles</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.A.2 Determining Trigonometric Functions</td>
<td>355-359</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.C.8 Determining Trigonometric Functions</td>
<td>360-364</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.C.8 Simplifying Trigonometric Identities</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.TF.B.5 Modeling Trigonometric Functions</td>
<td>366-369</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.IF.B.4 Graphing Trigonometric Functions</td>
<td>370-379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.IF.C.7 Graphing Trigonometric Functions</td>
<td>380-396</td>
<td></td>
</tr>
<tr>
<td>CONICS</td>
<td>G.GPE.A.1 Equations of Conics</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>GRAPHS AND STATISTICS</td>
<td>S.IC.A.2 Analysis of Data</td>
<td>398-405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.IC.B.3 Analysis of Data</td>
<td>406-418</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.IC.B.4 Analysis of Data</td>
<td>419-422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.IC.B.5 Analysis of Data</td>
<td>423-432</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.IC.B.6 Analysis of Data</td>
<td>433-434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.ID.B.6 Regression</td>
<td>435-339</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.ID.A.4 Normal Distributions</td>
<td>440-452</td>
<td></td>
</tr>
<tr>
<td>PROBABILITY</td>
<td>S.CP.B.7 Theoretical Probability</td>
<td>453-454</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.CP.A.2 Probability of Compound Events</td>
<td>455-457</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.CP.A.1 Venn Diagrams</td>
<td>458</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.CP.A.3 Conditional Probability</td>
<td>459-465</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.CP.A.4 Conditional Probability</td>
<td>466-472</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.CP.B.6 Conditional Probability</td>
<td>473-475</td>
<td></td>
</tr>
</tbody>
</table>
1 Joelle has a credit card that has a 19.2% annual interest rate compounded monthly. She owes a total balance of B dollars after m months. Assuming she makes no payments on her account, the table below illustrates the balance she owes after m months.

<table>
<thead>
<tr>
<th>m</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>10</td>
<td>1172.00</td>
</tr>
<tr>
<td>19</td>
<td>1352.00</td>
</tr>
<tr>
<td>36</td>
<td>1770.80</td>
</tr>
<tr>
<td>60</td>
<td>2591.90</td>
</tr>
<tr>
<td>69</td>
<td>2990.00</td>
</tr>
<tr>
<td>72</td>
<td>3135.80</td>
</tr>
<tr>
<td>73</td>
<td>3186.00</td>
</tr>
</tbody>
</table>

Over which interval of time is her average rate of change for the balance on her credit card account the greatest?
1 month 10 to month 60
2 month 19 to month 69
3 month 36 to month 72
4 month 60 to month 73

2 The distance needed to stop a car after applying the brakes varies directly with the square of the car’s speed. The table below shows stopping distances for various speeds.

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (ft)</td>
<td>6.25</td>
<td>25</td>
<td>56.25</td>
<td>100</td>
<td>156.25</td>
<td>225</td>
<td>306.25</td>
</tr>
</tbody>
</table>

Determine the average rate of change in braking distance, in ft/mph, between one car traveling at 50 mph and one traveling at 70 mph. Explain what this rate of change means as it relates to braking distance.
3 A cardboard box manufacturing company is building boxes with length represented by \(x + 1 \), width by \(5 - x \), and height by \(x - 1 \). The volume of the box is modeled by the function below.

Over which interval is the volume of the box changing at the fastest average rate?

1 \([1,2]\)
2 \([1,3.5]\)
3 \([1,5]\)
4 \([0,3.5]\)

4 Irma initially ran one mile in over ten minutes. She then began a training program to reduce her one-mile time. She recorded her one-mile time once a week for twelve consecutive weeks, as modeled in the graph below.

Which statement regarding Irma’s one-mile training program is correct?

1 Her one-mile speed increased as the number of weeks increased.
2 Her one-mile speed decreased as the number of weeks increased.
3 If the trend continues, she will run under a six-minute mile by week thirteen.
4 She reduced her one-mile time the most between weeks ten and twelve.

5 The function \(f(x) = 2^{-0.25x} \cdot \sin\left(\frac{\pi}{2} x\right) \) represents a damped sound wave function. What is the average rate of change for this function on the interval \([-7, 7]\), to the nearest hundredth?

1 \(-3.66\)
2 \(-0.30\)
3 \(-0.26\)
4 \(3.36\)
6 The value of a new car depreciates over time. Greg purchased a new car in June 2011. The value, \(V \), of his car after \(t \) years can be modeled by the equation
\[
\log_{0.8} \left(\frac{V}{17000} \right) = t.
\]
What is the average decreasing rate of change per year of the value of the car from June 2012 to June 2014, to the nearest ten dollars per year?
1 1960
2 2180
3 2450
4 2770

7 The function \(N(t) = 100e^{-0.023t} \) models the number of grams in a sample of cesium-137 that remain after \(t \) years. On which interval is the sample's average rate of decay the fastest?
1 \([1,10]\)
2 \([10,20]\)
3 \([15,25]\)
4 \([1,30]\)

8 The function \(N(x) = 90(0.86)^x + 69 \) can be used to predict the temperature of a cup of hot chocolate in degrees Fahrenheit after \(x \) minutes. What is the approximate average rate of change of the temperature of the hot chocolate, in degrees per minute, over the interval \([0,6]\)?
1 −8.93
2 −0.11
3 0.11
4 8.93

9 The equation \(t = \frac{1}{0.0105} \ln \left(\frac{A}{5000} \right) \) relates time, \(t \), in years, to the amount of money, \(A \), earned by a $5000 investment. Which statement accurately describes the relationship between the average rates of change of \(t \) on the intervals \([6000, 8000]\) and \([9000, 12,000]\)?
1 A comparison cannot be made because the intervals are different sizes.
2 The average rate of change is equal for both intervals.
3 The average rate of change is larger for the interval \([6000, 8000]\).
4 The average rate of change is larger for the interval \([9000, 12,000]\).

10 The world population was 2560 million people in 1950 and 3040 million in 1960 and can be modeled by the function \(p(t) = 2560e^{0.017185t} \), where \(t \) is time in years after 1950 and \(p(t) \) is the population in millions. Determine the average rate of change of \(p(t) \) in millions of people per year, from \(4 \leq t \leq 8 \). Round your answer to the nearest hundredth.

11 The average monthly high temperature in Buffalo, in degrees Fahrenheit, can be modeled by the function \(B(t) = 25.29 \sin(0.4895t - 1.9752) + 55.2877 \), where \(t \) is the month number (January = 1). State, to the nearest tenth, the average monthly rate of temperature change between August and November. Explain its meaning in the given context.
12. The table below shows the number of hours of daylight on the first day of each month in Rochester, NY.

<table>
<thead>
<tr>
<th>Month</th>
<th>Hours of Daylight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>9.4</td>
</tr>
<tr>
<td>Feb.</td>
<td>10.6</td>
</tr>
<tr>
<td>March</td>
<td>11.9</td>
</tr>
<tr>
<td>April</td>
<td>13.9</td>
</tr>
<tr>
<td>May</td>
<td>14.7</td>
</tr>
<tr>
<td>June</td>
<td>15.4</td>
</tr>
<tr>
<td>July</td>
<td>15.1</td>
</tr>
<tr>
<td>Aug.</td>
<td>13.9</td>
</tr>
<tr>
<td>Sept.</td>
<td>12.5</td>
</tr>
<tr>
<td>Oct.</td>
<td>11.1</td>
</tr>
<tr>
<td>Nov.</td>
<td>9.7</td>
</tr>
<tr>
<td>Dec.</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Given the data, what is the average rate of change in hours of daylight per month from January 1st to April 1st? Interpret what this means in the context of the problem.

QUADRATICS

A.REI.B.4: SOLVING QUADRATICS

13. The solutions to the equation $-\frac{1}{2}x^2 = -6x + 20$ are
 1. $-6 \pm 2i$
 2. $-6 \pm 2\sqrt{19}$
 3. $6 \pm 2i$
 4. $6 \pm 2\sqrt{19}$

14. A solution of the equation $2x^2 + 3x + 2 = 0$ is
 1. $\frac{-3}{4} + \frac{1}{4}i\sqrt{7}$
 2. $\frac{3}{4} + \frac{1}{4}i$
 3. $\frac{3}{4} + \frac{1}{4}\sqrt{7}$
 4. $\frac{1}{2}$

15. The solution to the equation $18x^2 - 24x + 87 = 0$ is
 1. $\frac{2}{3} \pm 6i\sqrt{158}$
 2. $\frac{2}{3} \pm \frac{1}{6}i\sqrt{158}$
 3. $\frac{2}{3} \pm 6i\sqrt{158}$
 4. $\frac{2}{3} \pm \frac{1}{6}i\sqrt{158}$

16. The solution to the equation $4x^2 + 98 = 0$ is
 1. ± 7
 2. $\pm 7i$
 3. $\frac{7\sqrt{2}}{2}$
 4. $\frac{7i\sqrt{2}}{2}$
17 The roots of the equation \(x^2 + 2x + 5 = 0 \) are
1. \(-3\) and \(1\)
2. \(-1\), only
3. \(-1 + 2i\) and \(-1 - 2i\)
4. \(-1 + 4i\) and \(-1 - 4i\)

18 The roots of the equation \(3x^2 + 2x = -7 \) are
1. \(-2, \frac{1}{3}\)
2. \(-\frac{7}{3}, 1\)
3. \(\frac{1}{3} \pm \frac{2i\sqrt{5}}{3}\)
4. \(\frac{1}{3} \pm \frac{\sqrt{11}}{3}\)

19 The solutions to the equation \(5x^2 - 2x + 13 = 9 \) are
1. \(\frac{1}{5} \pm \frac{\sqrt{21}}{5}\)
2. \(\frac{1}{5} \pm \frac{\sqrt{19}}{5}i\)
3. \(\frac{1}{5} \pm \frac{\sqrt{66}}{5}i\)
4. \(\frac{1}{5} \pm \frac{\sqrt{66}}{5}\)

20 What is the solution when the equation \(wx^2 + w = 0 \) is solved for \(x\), where \(w\) is a positive integer?
1. \(-1\)
2. \(0\)
3. \(6\)
4. \(\pm i\)

21 If a solution of \(2(2x - 1) = 5x^2\) is expressed in simplest \(a + bi\) form, the value of \(b\) is
1. \(\frac{\sqrt{6}}{5} - i\)
2. \(\frac{\sqrt{6}}{5}\)
3. \(\frac{1}{5}i\)
4. \(\frac{1}{5}\)

22 Solve the equation \(2x^2 + 5x + 8 = 0\). Express the answer in \(a + bi\) form.

23 a) Algebraically determine the roots, in simplest \(a + bi\) form, to the equation below.
\[x^2 - 2x + 7 = 4x - 10\]

b) Consider the system of equations below.
\[y = x^2 - 2x + 7\]
\[y = 4x - 10\]
The graph of this system confirms the solution from part \(a\) is imaginary. Explain why.
A.REI.B.4: USING THE DISCRIMINANT

24 Which representation of a quadratic has imaginary roots?

1 2(x + 3)² = 64
2 2x² + 32 = 0

G.GPE.A.2: GRAPHING QUADRATIC FUNCTIONS

26 Which equation represents the set of points equidistant from line \(\ell \) and point \(R \) shown on the graph below?

1 \(y = -\frac{1}{8} (x + 2)^2 + 1 \)
2 \(y = -\frac{1}{8} (x + 2)^2 - 1 \)
3 \(y = \frac{1}{8} (x - 2)^2 + 1 \)
4 \(y = -\frac{1}{8} (x - 2)^2 - 1 \)

A.REI.B.4: COMPLEX CONJUGATE ROOT THEOREM

25 Which equation has \(1 - i \) as a solution?

1 \(x^2 + 2x - 2 = 0 \)
2 \(x^2 + 2x + 2 = 0 \)
3 \(x^2 - 2x - 2 = 0 \)
4 \(x^2 - 2x + 2 = 0 \)

27 What is the equation of the directrix for the parabola \(-8(y - 3) = (x + 4)^2\)?

1 \(y = 5 \)
2 \(y = 1 \)
3 \(y = -2 \)
4 \(y = -6 \)
28 The parabola described by the equation
\[y = \frac{1}{12} (x - 2)^2 + 2 \] has the directrix at \(y = -1 \). The focus of the parabola is
1. (2, -1)
2. (2, 2)
3. (2, 3)
4. (2, 5)

29 Which equation represents a parabola with a focus of (0, 4) and a directrix of \(y = 2 \)?
1. \(y = x^2 + 3 \)
2. \(y = -x^2 + 1 \)
3. \(y = x^2 + 3 \)
4. \(y = \frac{x^2}{4} + 3 \)

30 A parabola has its focus at (1, 2) and its directrix is \(y = -2 \). The equation of this parabola could be
1. \(y = 8(x + 1)^2 \)
2. \(y = \frac{1}{8} (x + 1)^2 \)
3. \(y = 8(x - 1)^2 \)
4. \(y = \frac{1}{8} (x - 1)^2 \)

31 Which equation represents a parabola with the focus at (0, -1) and the directrix of \(y = 1 \)?
1. \(x^2 = -8y \)
2. \(x^2 = -4y \)
3. \(x^2 = 8y \)
4. \(x^2 = 4y \)

32 Which equation represents a parabola with a focus of (-2, 5) and a directrix of \(y = 9 \)?
1. \((y - 7)^2 = 8(x + 2) \)
2. \((y - 7)^2 = -8(x + 2) \)
3. \((x + 2)^2 = 8(y - 7) \)
4. \((x + 2)^2 = -8(y - 7) \)

33 Which equation represents the equation of the parabola with focus (-3, 3) and directrix \(y = 7 \)?
1. \(y = \frac{1}{8} (x + 3)^2 - 5 \)
2. \(y = \frac{1}{8} (x - 3)^2 + 5 \)
3. \(y = -\frac{1}{8} (x + 3)^2 + 5 \)
4. \(y = -\frac{1}{8} (x - 3)^2 + 5 \)

34 The directrix of the parabola \(12(y + 3) = (x - 4)^2 \) has the equation \(y = -6 \). Find the coordinates of the focus of the parabola.
35 Determine an equation for the parabola with focus
$(4, -1)$ and directrix $y = -5$. (Use of the grid below is optional.)

36 The parabola $y = -\frac{1}{20} (x - 3)^2 + 6$ has its focus at
$(3, 1)$. Determine and state the equation of the
directrix. (The use of the grid below is optional.)

POWERS

A.SSE.B.3: MODELING EXPONENTIAL
FUNCTIONS

37 A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population, $B(t)$, can be represented by the function
$B(t) = 750(1.16)^t$, where the t represents the number of years since the study began. In terms of the monthly rate of growth, the population of red-winged blackbirds can be best approximated by the function

1. $B(t) = 750(1.012)^{12t}$
2. $B(t) = 750(1.16)^{\frac{t}{12}}$

38 A student studying public policy created a model for the population of Detroit, where the population decreased 25% over a decade. He used the model
$P = 714(0.75)^d$, where P is the population, in thousands, d decades after 2010. Another student, Suzanne, wants to use a model that would predict the population after y years. Suzanne's model is best represented by

1. $P = 714(0.6500)^y$
2. $P = 714(0.8500)^y$
3. $P = 714(0.9716)^y$
4. $P = 714(0.9750)^y$
39 Iridium-192 is an isotope of iridium and has a half-life of 73.83 days. If a laboratory experiment begins with 100 grams of Iridium-192, the number of grams, \(A \), of Iridium-192 present after \(t \) days would be \(A = 100 \left(\frac{1}{2} \right)^{\frac{t}{73.83}} \). Which equation approximates the amount of Iridium-192 present after \(t \) days?

1. \(A = 100 \left(\frac{1}{2} \right)^{\frac{t}{73.83}} \)
2. \(A = 100 \left(\frac{1}{147.66} \right)^t \)
3. \(A = 100 \cdot 0.990656^t \)
4. \(A = 100 \cdot 0.116381^t \)

40 On average, college seniors graduating in 2012 could compute their growing student loan debt using the function \(D(t) = 29,400 \cdot (1.068)^t \), where \(t \) is time in years. Which expression is equivalent to 29,400(1.068)^t and could be used by students to identify an approximate daily interest rate on their loans?

1. \(29,400 \left(\frac{0.068}{365} \right)^t \)
2. \(29,400 \left(\frac{1.068}{365} \right)^{365t} \)
3. \(29,400 \left(1 + \frac{0.068}{365} \right)^t \)
4. \(29,400 \left(\frac{1}{365} \right)^{365t} \)

41 The half-life of iodine-131 is 8 days. The percent of the isotope left in the body \(d \) days after being introduced is \(I = 100 \left(\frac{1}{2} \right)^{\frac{d}{8}} \). When this equation is written in terms of the number \(e \), the base of the natural logarithm, it is equivalent to \(I = 100e^{kd} \). What is the approximate value of the constant, \(k \)?

1. \(-0.087\)
2. \(0.087\)
3. \(-11.542\)
4. \(11.542\)

42 Stephanie found that the number of white-winged cross bills in an area can be represented by the formula \(C = 550(1.08)^t \), where \(t \) represents the number of years since 2010. Which equation correctly represents the number of white-winged cross bills in terms of the monthly rate of population growth?

1. \(C = 550(1.00643)^t \)
2. \(C = 550(1.00643)^{12t} \)
3. \(C = 550(1.00643)^{\left(\frac{t}{12} \right)} \)
4. \(C = 550(1.00643)^{t+12} \)

43 Julia deposits $2000 into a savings account that earns 4% interest per year. The exponential function that models this savings account is \(y = 2000(1.04)^t \), where \(t \) is the time in years. Which equation correctly represents the amount of money in her savings account in terms of the monthly growth rate?

1. \(y = 166.67(1.04)^{0.12t} \)
2. \(y = 2000(1.01)^t \)
3. \(y = 2000(1.0032737)^{12t} \)
4. \(y = 166.67(1.0032737)^t \)
44 Kelly-Ann has $20,000 to invest. She puts half of the money into an account that grows at an annual rate of 0.9% compounded monthly. At the same time, she puts the other half of the money into an account that grows continuously at an annual rate of 0.8%. Which function represents the value of Kelly-Ann's investments after t years?

1. $f(t) = 10,000(1.9)^t + 10,000e^{0.8t}$
2. $f(t) = 10,000(1.009)^t + 10,000e^{0.008t}$
3. $f(t) = 10,000(1.075)^{12t} + 10,000e^{0.8t}$
4. $f(t) = 10,000(1.00075)^{12t} + 10,000e^{0.008t}$

45 A study of black bears in the Adirondacks reveals that their population can be represented by the function $P(t) = 3500(1.025)^t$, where t is the number of years since the study began. Which function is correctly rewritten to reveal the monthly growth rate of the black bear population?

1. $P(t) = 3500(1.00206)^{12t}$
2. $P(t) = 3500(1.00206)^{\frac{t}{12}}$
3. $P(t) = 3500(1.34489)^{12t}$
4. $P(t) = 3500(1.34489)^{\frac{t}{12}}$

46 For a given time, x, in seconds, an electric current, y, can be represented by $y = 2.5\left(1 - 2.7^{-10x}\right)$. Which equation is not equivalent?

1. $y = 2.5 - 2.7^{-10x}$
2. $y = 2.5 - 2.5\left(2.7^{-2}\right)^{-0.5x}$
3. $y = 2.5 - 2.5\left(\frac{1}{2.7^{10x}}\right)$
4. $y = 2.5 - 2.5\left(2.7^{-2}\right)\left(2.7^{0.5x}\right)$

47 Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let m represent months.]

1. $(1.0525)^m$
2. $(1.0525)^{\frac{12}{m}}$
3. $(1.00427)^m$
4. $(1.00427)^{\frac{m}{12}}$

48 According to a pricing website, Indroid phones lose 58% of their cash value over 1.5 years. Which expression can be used to estimate the value of a $300 Indroid phone in 1.5 years?

1. $300e^{-0.87}$
2. $300e^{-0.63}$
3. $300e^{-0.58}$
4. $300e^{-0.42}$

49 A payday loan company makes loans between $100 and $1000 available to customers. Every 14 days, customers are charged 30% interest with compounding. In 2013, Remi took out a $300 payday loan. Which expression can be used to calculate the amount she would owe, in dollars, after one year if she did not make payments?

1. $300(0.30)^{\frac{365}{14}}$
2. $300(1.30)^{\frac{365}{14}}$
3. $300(0.30)^{\frac{365}{14}}$
4. $300(1.30)^{\frac{365}{14}}$
50 Camryn puts $400 into a savings account that earns 6% annually. The amount in her account can be modeled by \(C(t) = 400(1.06)^t \) where \(t \) is the time in years. Which expression best approximates the amount of money in her account using a weekly growth rate?

1. \(400(1.001153846)^t \)
2. \(400(1.00121184)^t \)
3. \(400(1.001153846)^{52t} \)
4. \(400(1.00121184)^{52t} \)

51 Susan won $2,000 and invested it into an account with an annual interest rate of 3.2%. If her investment were compounded monthly, which expression best represents the value of her investment after \(t \) years?

1. \(2000(1.003)^{12t} \)
2. \(2000(1.032)^{\frac{t}{12}} \)
3. \(2064^{\frac{t}{12}} \)
4. \(2000(1.032)^t \)

52 Sodium iodide-131, used to treat certain medical conditions, has a half-life of 1.8 hours. The data table below shows the amount of sodium iodide-131, rounded to the nearest thousandth, as the dose fades over time.

<table>
<thead>
<tr>
<th>Number of Half Lives</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of Sodium Iodide-131</td>
<td>139.000</td>
<td>69.500</td>
<td>34.750</td>
<td>17.375</td>
<td>8.688</td>
</tr>
</tbody>
</table>

What approximate amount of sodium iodide-131 will remain in the body after 18 hours?

1. 0.001
2. 0.136
3. 0.271
4. 0.543

53 A rabbit population doubles every 4 weeks. There are currently five rabbits in a restricted area. If \(t \) represents the time, in weeks, and \(P(t) \) is the population of rabbits with respect to time, about how many rabbits will there be in 98 days?

1. 56
2. 152
3. 3688
4. 81,920

54 Biologists are studying a new bacterium. They create a culture with 100 of the bacteria and anticipate that the number of bacteria will double every 30 hours. Write an equation for the number of bacteria, \(B \), in terms of the number of hours, \(t \), since the experiment began.
55 A population of 950 bacteria grows continuously at a rate of 4.75% per day. Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base. Determine the bacterial population after 36 hours, to the nearest bacterium.

56 Titanium-44 is a radioactive isotope such that every 63 years, its mass decreases by half. For a sample of titanium-44 with an initial mass of 100 grams, write a function that will give the mass of the sample remaining after any amount of time. Define all variables. Scientists sometimes use the average yearly decrease in mass for estimation purposes. Use the average yearly decrease in mass of the sample between year 0 and year 10 to predict the amount of the sample remaining after 40 years. Round your answer to the nearest tenth. Is the actual mass of the sample or the estimated mass greater after 40 years? Justify your answer.

58 The function \(p(t) = 110e^{0.03922t} \) models the population of a city, in millions, \(t \) years after 2010. As of today, consider the following two statements:
I. The current population is 110 million.
II. The population increases continuously by approximately 3.9% per year.
This model supports
1 I, only
2 II, only
3 both I and II
4 neither I nor II

59 An equation to represent the value of a car after \(t \) months of ownership is \(v = 32,000(0.81)^{\frac{t}{12}} \). Which statement is not correct?
1 The car lost approximately 19% of its value each month.
2 The car maintained approximately 98% of its value each month.
3 The value of the car when it was purchased was $32,000.
4 The value of the car 1 year after it was purchased was $25,920.

60 A savings account, \(S \), has an initial value of $50. The account grows at a 2% interest rate compounded \(n \) times per year, \(t \), according to the function below.
\[
S(t) = 50 \left(1 + \frac{0.02}{n} \right)^{nt}
\]
Which statement about the account is correct?
1 As the value of \(n \) increases, the amount of interest per year decreases.
2 As the value of \(n \) increases, the value of the account approaches the function \(S(t) = 50e^{0.02t} \).
3 As the value of \(n \) decreases to one, the amount of interest per year increases.
4 As the value of \(n \) decreases to one, the value of the account approaches the function \(S(t) = 50(1 - 0.02)^t \).
61 The loudness of sound is measured in units called decibels (dB). These units are measured by first assigning an intensity I_0 to a very soft sound that is called the threshold sound. The sound to be measured is assigned an intensity, I, and the decibel rating, d, of this sound is found using $d = 10 \log \frac{I}{I_0}$. The threshold sound audible to the average person is 1.0×10^{-12} W/m2 (watts per square meter). Consider the following sound level classifications:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Decibel Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>45-69 dB</td>
</tr>
<tr>
<td>Loud</td>
<td>70-89 dB</td>
</tr>
<tr>
<td>Very loud</td>
<td>90-109 dB</td>
</tr>
<tr>
<td>Deafening</td>
<td>>110 dB</td>
</tr>
</tbody>
</table>

How would a sound with intensity 6.3×10^{-3} W/m2 be classified?

1 moderate
2 loud
3 very loud
4 deafening

62 Which function represents exponential decay?

1 $y = 2^{0.3t}$
2 $y = 1.2^{3t}$
3 $y = \left(\frac{1}{2}\right)^{-t}$
4 $y = 5^{-t}$

63 Which statement is true about the graph of $f(x) = \left(\frac{1}{8}\right)^x$?

1 The graph is always increasing.
2 The graph is always decreasing.
3 The graph passes through (1,0).
4 The graph has an asymptote, $x = 0$.

64 If the function $g(x) = ab^x$ represents exponential growth, which statement about $g(x)$ is false?

1 $a > 0$ and $b > 1$
2 The y-intercept is $(0,a)$.
3 The asymptote is $y = 0$.
4 The x-intercept is $(b,0)$.

65 The function $M(t)$ represents the mass of radium over time, t, in years.

$$M(t) = 100e^{\frac{\ln\frac{1}{2}}{1590}t}$$

Determine if the function $M(t)$ represents growth or decay. Explain your reasoning.
66 Describe the transformation applied to the graph of \(p(x) = 2^x \) that forms the new function \(q(x) = 2^{x-3} + 4 \).

67 Graph \(y = 400(.85)^x - 6 \) on the set of axes below.

F.IF.C.7: GRAPHING LOGARITHMIC FUNCTIONS

68 Which statement about the graph of \(c(x) = \log_6 x \) is false?
1. The asymptote has equation \(y = 0 \).
2. The graph has no \(y \)-intercept.
3. The domain is the set of positive reals.
4. The range is the set of all real numbers.

69 Which sketch best represents the graph of \(x = 3^y \)?

70 The graph of \(y = \log_2 x \) is translated to the right 1 unit and down 1 unit. The coordinates of the \(x \)-intercept of the translated graph are
1. \((0,0)\)
2. \((1,0)\)
3. \((2,0)\)
4. \((3,0)\)
71 If \(f(x) = \log_3 x \) and \(g(x) \) is the image of \(f(x) \) after a translation five units to the left, which equation represents \(g(x) \)?

1. \(g(x) = \log_3 (x + 5) \)
2. \(g(x) = \log_3 x + 5 \)
3. \(g(x) = \log_3 (x - 5) \)
4. \(g(x) = \log_3 x - 5 \)

72 Graph \(y = \log_2 (x + 3) - 5 \) on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as \(x \) approaches \(-3\) and as \(x \) approaches positive infinity.

73 Graph \(f(x) = \log_2 (x + 6) \) on the set of axes below.

74 Graph the following function on the axes below.
\(f(x) = \log_3 (2 - x) \)

State the domain of \(f \). State the equation of the asymptote.
75 On the grid below, graph the function \(y = \log_2(x - 3) + 1 \)

76 If $5000 is put into a savings account that pays 3.5% interest compounded monthly, how much money, to the nearest ten cents, would be in that account after 6 years, assuming no money was added or withdrawn?

- 1 $5177.80
- 2 $5941.30
- 3 $6146.30
- 4 $6166.50

A.CED.A.1: EXPONENTIAL GROWTH

77 Carla wants to start a college fund for her daughter Lila. She puts $63,000 into an account that grows at a rate of 2.55% per year, compounded monthly. Write a function, \(C(t) \), that represents the amount of money in the account \(t \) years after the account is opened, given that no more money is deposited into or withdrawn from the account. Calculate algebraically the number of years it will take for the account to reach $100,000, to the nearest hundredth of a year.
78 Monthly mortgage payments can be found using the formula below:

\[
M = \frac{P \left(\frac{r}{12} \right) \left(1 + \frac{r}{12} \right)^n}{\left(1 + \frac{r}{12} \right)^n - 1}
\]

- \(M\) = monthly payment
- \(P\) = amount borrowed
- \(r\) = annual interest rate
- \(n\) = number of monthly payments

The Banks family would like to borrow $120,000 to purchase a home. They qualified for an annual interest rate of 4.8%. Algebraically determine the fewest number of whole years the Banks family would need to include in the mortgage agreement in order to have a monthly payment of no more than $720.

79 Seth’s parents gave him $5000 to invest for his 16th birthday. He is considering two investment options. Option \(A\) will pay him 4.5% interest compounded annually. Option \(B\) will pay him 4.6% compounded quarterly. Write a function of option \(A\) and option \(B\) that calculates the value of each account after \(n\) years. Seth plans to use the money after he graduates from college in 6 years. Determine how much more money option \(B\) will earn than option \(A\) to the nearest cent.

Algebraically determine, to the nearest tenth of a year, how long it would take for option \(B\) to double Seth’s initial investment.

80 Tony is evaluating his retirement savings. He currently has $318,000 in his account, which earns an interest rate of 7% compounded annually. He wants to determine how much he will have in the account in the future, even if he makes no additional contributions to the account. Write a function, \(A(t)\), to represent the amount of money that will be in his account in \(t\) years. Graph \(A(t)\) where \(0 \leq t \leq 20\) on the set of axes below.

Tony's goal is to save $1,000,000. Determine algebraically, to the nearest year, how many years it will take for him to achieve his goal. Explain how your graph of \(A(t)\) confirms your answer.
F.LE.A.4: EXPONENTIAL EQUATIONS

81 If \(ae^{bt} = c\), where \(a\), \(b\), and \(c\) are positive, then \(t\) equals
1. \(\ln \left(\frac{c}{ab} \right)\)
2. \(\ln \left(\frac{cb}{a} \right)\)
3. \(\frac{\ln (c/a)}{b}\)
4. \(\frac{\ln (c/a)}{\ln b}\)

82 What is the solution to \(8(2^{x+3}) = 48\)?
1. \(x = \ln 6 / \ln 2 - 3\)
2. \(x = 0\)
3. \(x = \ln 48 / \ln 16 - 3\)
4. \(x = \ln 4 - 3\)

83 The solution of \(87e^{0.3x} = 5918\), to the nearest thousandth, is
1. 0.583
2. 1.945
3. 4.220
4. 14.066

84 Which expression is not a solution to the equation \(2^t = \sqrt{10}\)?
1. \(\frac{1}{2} \log_2 10\)
2. \(\log_2 \sqrt{10}\)
3. \(\log_4 10\)
4. \(\log_{10} 4\)

F.LE.A.4: EXPONENTIAL GROWTH

85 Judith puts \$5000 into an investment account with interest compounded continuously. Which approximate annual rate is needed for the account to grow to \$9110 after 30 years?
1. 2%
2. 2.2%
3. 0.02%
4. 0.022%

86 A house purchased 5 years ago for \$100,000 was just sold for \$135,000. Assuming exponential growth, approximate the annual growth rate, to the nearest percent.

87 In New York State, the minimum wage has grown exponentially. In 1966, the minimum wage was \$1.25 an hour and in 2015, it was \$8.75. Algebraically determine the rate of growth to the nearest percent.

88 Determine, to the nearest tenth of a year, how long it would take an investment to double at a \(3\frac{3}{4}\%\) interest rate, compounded continuously.
After sitting out of the refrigerator for a while, a turkey at room temperature (68°F) is placed into an oven at 8 a.m., when the oven temperature is 325°F. Newton’s Law of Heating explains that the temperature of the turkey will increase proportionally to the difference between the temperature of the turkey and the temperature of the oven, as given by the formula below:

\[T = T_a + (T_0 - T_a) e^{-kt} \]

where:
- \(T \) is the temperature of the object after \(t \) hours
- \(T_a \) is the temperature surrounding the object
- \(T_0 \) is the initial temperature of the object
- \(t \) is the time in hours
- \(k \) is the decay constant

The turkey reaches the temperature of approximately 100°F after 2 hours. Find the value of \(k \), to the nearest thousandth, and write an equation to determine the temperature of the turkey after \(t \) hours. Determine the Fahrenheit temperature of the turkey, to the nearest degree, at 3 p.m.

The Fahrenheit temperature, \(F(t) \), of a heated object at time \(t \), in minutes, can be modeled by the function below. \(F_s \) is the surrounding temperature, \(F_0 \) is the initial temperature of the object, and \(k \) is a constant.

\[F(t) = F_s + (F_0 - F_s) e^{-kt} \]

Coffee at a temperature of 195°F is poured into a container. The room temperature is kept at a constant 68°F and \(k = 0.05 \). Coffee is safe to drink when its temperature is, at most, 120°F. To the nearest minute, how long will it take until the coffee is safe to drink?

1. 7
2. 10
3. 11
4. 18

One of the medical uses of Iodine–131 (I–131), a radioactive isotope of iodine, is to enhance x-ray images. The half-life of I–131 is approximately 8.02 days. A patient is injected with 20 milligrams of I–131. Determine, to the nearest day, the amount of time needed before the amount of I–131 in the patient’s body is approximately 7 milligrams.

A radioactive substance has a mass of 140 g at 3 p.m. and 100 g at 8 p.m. Write an equation in the form \(A = A_0 \left(\frac{1}{2} \right)^{\frac{t}{h}} \) that models this situation, where \(h \) is the constant representing the number of hours in the half-life, \(A_0 \) is the initial mass, and \(A \) is the mass \(t \) hours after 3 p.m. Using this equation, solve for \(h \), to the nearest ten thousandth. Determine when the mass of the radioactive substance will be 40 g. Round your answer to the nearest tenth of an hour.
93 The half-life of a radioactive substance is 15 years. Write an equation that can be used to determine the amount, \(s(t)\), of 200 grams of this substance that remains after \(t\) years. Determine algebraically, to the nearest year, how long it will take for \(\frac{1}{10}\) of this substance to remain.

POLYNOMIALS

A.SSE.A.2: FACTORING POLYNOMIALS

94 What is the completely factored form of \(k^4 - 4k^2 + 8k^3 - 32k + 12k^2 - 48\)?
1. \((k - 2)(k + 2)(k + 3)(k + 4)\)
2. \((k - 2)(k + 2)(k + 6)(k + 4)\)
3. \((k + 2)(k - 2)(k + 3)(k + 4)\)
4. \((k + 2)(k - 2)(k + 6)(k + 2)\)

95 The completely factored form of \(2d^4 + 6d^3 - 18d^2 - 54d\) is
1. \(2d(d^2 - 9)(d + 3)\)
2. \(2d(d^2 + 9)(d + 3)\)
3. \(2d(d + 3)^2(d - 3)\)
4. \(2d(d - 3)^2(d + 3)\)

96 Factored completely, \(m^3 + m^2 - 6m\) is equivalent to
1. \((m + 3)(m - 2)\)
2. \((m^2 + 3m)(m^2 - 2)\)
3. \(m(m^4 + m^2 - 6)\)
4. \(m(m^2 + 3)(m^2 - 2)\)

97 The completely factored form of \(n^4 - 9n^3 + 4n^2 - 36n - 12n^2 + 108\) is
1. \((n^2 - 9)(n + 6)(n - 2)\)
2. \((n + 3)(n - 3)(n + 6)(n - 2)\)
3. \((n - 3)(n - 3)(n + 6)(n - 2)\)
4. \((n + 3)(n - 3)(n - 6)(n + 2)\)

98 When the expression \((x + 2)^2 + 4(x + 2) + 3\) is rewritten as the product of two binomials, the result is
1. \((x + 3)(x + 1)\)
2. \((x + 5)(x + 3)\)
3. \((x + 2)(x + 2)\)
4. \((x + 6)(x + 1)\)

99 If \(a^3 + 27 = (a + 3)(a^2 + ma + 9)\), then \(m\) equals
1. \(-9\)
2. \(-3\)
3. \(3\)
4. \(6\)

100 Which factorization is incorrect?
1. \(4k^2 - 49 = (2k + 7)(2k - 7)\)
2. \(a^3 - 8b^3 = (a - 2b)(a^2 + 2ab + 4b^2)\)
3. \(m^3 + 3m^2 - 4m + 12 = (m - 2)^2(m + 3)\)
4. \(t^3 + 5t^2 + 6t + t^2 + 5t + 6 = (t + 1)(t + 2)(t + 3)\)

101 Which expression has been rewritten correctly to form a true statement?
1. \((x + 2)^2 + 2(x + 2) - 8 = (x + 6)x\)
2. \(x^4 + 4x^3 + 9x^2y^2 - 36y^2 = (x + 3y)^2(x - 2)^2\)
3. \(x^3 + 3x^2 - 4xy^2 - 12y^2 = (x - 2y)(x + 3)^2\)
4. \((x^2 - 4)^2 - 5(x^2 - 4) - 6 = (x^2 - 7)(x^2 - 6)\)
102 Which expression is equivalent to
\[x^6 y^4 (x^4 - 16) - 9(x^4 - 16) \]?
1 \[x^{10} y^4 - 16x^6 y^4 - 9x^4 - 144 \]
2 \[(x^6 y^4 - 9)(x^2 + 2)^3 (x - 2) \]
3 \[(x^3 y^2 + 3)(x^3 y^2 - 3)(x^2 + 2)^2 (x^2 - 2)^2 \]
4 \[(x^3 y^2 + 3)(x^3 y^2 - 3)(x^2 + 4)(x^2 - 4) \]

A.APR.B.3: SOLVING POLYNOMIAL EQUATIONS

108 The zeros for \(f(x) = x^4 - 4x^3 - 9x^2 + 36x \) are
1 \(\{0, \pm 3, 4\} \)
2 \(\{0, 3, 4\} \)
3 \(\{0, \pm 3, -4\} \)
4 \(\{0, 3, -4\} \)

109 What are the zeros of \(P(m) = (m^2 - 4)(m^2 + 1) \)?
1 \(2 \) and \(-2 \), only
2 \(2, -2, \) and \(-4 \)
3 \(-4, i, \) and \(-i \)
4 \(2, -2, i, \) and \(-i \)

110 Given \(c(m) = m^3 - 2m^2 + 4m - 8 \), the solution of \(c(m) = 0 \) is
1 \(\pm 2 \)
2 \(2, \) only
3 \(2i, 2 \)
4 \(\pm 2i, 2 \)

111 When factoring to reveal the roots of the equation \(x^3 + 2x^2 - 9x - 18 = 0 \), which equations can be used?
I. \(x^2 (x + 2) - 9(x + 2) = 0 \)
II. \(x(x^2 - 9) + 2(x^2 - 9) = 0 \)
III. \((x - 2)(x^2 - 9) = 0 \)
1 I and II, only
2 I and III, only
3 II and III, only
4 I, II, and III
112 Which statement regarding polynomials and their zeros is true?
1. \(f(x) = (x^2 - 1)(x + a) \) has zeros of 1 and \(-a\), only.
2. \(f(x) = x^3 - ax^2 + 16x - 16a \) has zeros of 4 and \(a\), only.
3. \(f(x) = (x^3 + 25)(x + a) \) has zeros of \(\pm 5 \) and \(-a\).
4. \(f(x) = x^3 - ax^2 - 9x + 9a \) has zeros of \(\pm 3 \) and \(a\).

A.APR.B.3: GRAPHING POLYNOMIAL EQUATIONS

113 Evan graphed a cubic function, \(f(x) = ax^3 + bx^2 + cx + d \), and determined the roots of \(f(x) \) to be \(\pm 1 \) and 2. What is the value of \(b\), if \(a = 1\)?
1. 1
2. 2
3. \(-1\)
4. \(-2\)

114 The graph of the function \(p(x) \) is sketched below.

Which equation could represent \(p(x) \)?
1. \(p(x) = (x^2 - 9)(x - 2) \)
2. \(p(x) = x^3 - 2x^2 + 9x + 18 \)
3. \(p(x) = (x^2 + 9)(x - 2) \)
4. \(p(x) = x^3 + 2x^2 - 9x - 18 \)

115 A sketch of \(r(x) \) is shown below.

An equation for \(r(x) \) could be
1. \(r(x) = (x - a)(x + b)(x + c) \)
2. \(r(x) = (x + a)(x - b)(x - c)^2 \)
3. \(r(x) = (x + a)(x - b)(x - c) \)
4. \(r(x) = (x - a)(x + b)(x + c)^2 \)
116 Which graph represents a polynomial function that contains $x^2 + 2x + 1$ as a factor?

117 The graph of $y = f(x)$ is shown below. The function has a leading coefficient of 1.

Write an equation for $f(x)$. The function g is formed by translating function f left 2 units. Write an equation for $g(x)$.

23
118 Consider the end behavior description below.
• as \(x \to -\infty, f(x) \to \infty \)
• as \(x \to \infty, f(x) \to -\infty \)
Which function satisfies the given conditions?
1. \(f(x) = x^4 + 2x^2 + 1 \)
2. \(f(x) = x^3 + 2x - 6 \)

119 There was a study done on oxygen consumption of snails as a function of pH, and the result was a degree 4 polynomial function whose graph is shown below.

Which statement about this function is incorrect?
1. The degree of the polynomial is even.
2. There is a positive leading coefficient.
3. At two pH values, there is a relative maximum value.
4. There are two intervals where the function is decreasing.

120 A polynomial equation of degree three, \(p(x) \), is used to model the volume of a rectangular box. The graph of \(p(x) \) has \(x \) intercepts at \(-2, 10, \) and \(14 \). Which statements regarding \(p(x) \) could be true?
A. The equation of \(p(x) = (x - 2)(x + 10)(x + 14) \).
B. The equation of \(p(x) = -(x + 2)(x - 10)(x - 14) \).
C. The maximum volume occurs when \(x = 10 \).
D. The maximum volume of the box is approximately 56.
1. \(A \) and \(C \)
2. \(A \) and \(D \)
3. \(B \) and \(C \)
4. \(B \) and \(D \)
121 The function below models the average price of gas in a small town since January 1st.

\[G(t) = -0.0049t^4 + 0.0923t^3 - 0.56t^2 + 1.166t + 3.23, \]

where \(0 \leq t \leq 10. \)

If \(G(t) \) is the average price of gas in dollars and \(t \) represents the number of months since January 1st, the absolute maximum \(G(t) \) reaches over the given domain is about

1. $1.60
2. $3.92
3. $4.01
4. $7.73

122 An estimate of the number of milligrams of a medication in the bloodstream \(t \) hours after 400 mg has been taken can be modeled by the function below.

\[I(t) = 0.5t^4 + 3.45t^3 - 96.65t^2 + 347.7t, \]

where \(0 \leq t \leq 6 \)

Over what time interval does the amount of medication in the bloodstream strictly increase?

1. 0 to 2 hours
2. 0 to 3 hours
3. 2 to 6 hours
4. 3 to 6 hours

123 Which description could represent the graph of

\[f(x) = 4x^2(x + a) - x - a, \] if \(a \) is an integer?

1. As \(x \to -\infty, f(x) \to -\infty, \) as \(x \to \infty, f(x) \to \infty, \) and the graph has 3 \(x \)-intercepts.
2. As \(x \to -\infty, f(x) \to -\infty, \) as \(x \to \infty, f(x) \to \infty, \) and the graph has 3 \(x \)-intercepts.
3. As \(x \to -\infty, f(x) \to -\infty, \) as \(x \to \infty, f(x) \to -\infty, \) and the graph has 4 \(x \)-intercepts.
4. As \(x \to -\infty, f(x) \to -\infty, \) as \(x \to \infty, f(x) \to \infty, \) and the graph has 4 \(x \)-intercepts.

124 Factor completely over the set of integers:

\[16x^4 - 81. \] Sara graphed the polynomial \(y = 16x^4 - 81 \) and stated “All the roots of \(y = 16x^4 - 81 \) are real.” Is Sara correct? Explain your reasoning.
125 If a, b, and c are all positive real numbers, which graph could represent the sketch of the graph of $p(x) = -a(x+b)(x^2 - 2cx + c^2)$?

126 Which graph has the following characteristics?
- three real zeros
- as $x \to -\infty$, $f(x) \to -\infty$
- as $x \to \infty$, $f(x) \to \infty$
127 A 4th degree polynomial has zeros $-5, 3, i, \text{ and } -i$. Which graph could represent the function defined by this polynomial?

128 The zeros of a quartic polynomial function are $2, -2, 4, \text{ and } -4$. Use the zeros to construct a possible sketch of the function, on the set of axes below.

129 On the axes below, sketch a possible function $p(x) = (x - a)(x - b)(x + c)$, where $a, b, \text{ and } c$ are positive, $a > b$, and $p(x)$ has a positive y-intercept of d. Label all intercepts.
130 On the grid below, sketch a cubic polynomial whose zeros are 1, 3, and -2.

131 Find algebraically the zeros for \(p(x) = x^3 + x^2 - 4x - 4 \). On the set of axes below, graph \(y = p(x) \).

132 The zeros of a quartic polynomial function \(h \) are \(-1, \pm 2, \) and 3. Sketch a graph of \(y = h(x) \) on the grid below.

133 On the grid below, graph the function \(f(x) = x^3 - 6x^2 + 9x + 6 \) on the domain \(-1 \leq x \leq 4\).
134 Graph \(y = x^3 - 4x^2 + 2x + 7 \) on the set of axes below.

135 A major car company analyzes its revenue, \(R(x) \), and costs \(C(x) \), in millions of dollars over a fifteen-year period. The company represents its revenue and costs as a function of time, in years, \(x \), using the given functions.

\[
R(x) = 550x^3 - 12,000x^2 + 83,000x + 7000
\]

\[
C(x) = 880x^3 - 21,000x^2 + 150,000x - 160,000
\]

The company's profits can be represented as the difference between its revenue and costs. Write the profit function, \(P(x) \), as a polynomial in standard form. Graph \(y = P(x) \) on the set of axes below over the domain \(2 \leq x \leq 16 \).

Over the given domain, state when the company was the least profitable and the most profitable, to the nearest year. Explain how you determined your answer.
A.APR.B.2: REMAINDER THEOREM

136 The graph of \(p(x) \) is shown below.

What is the remainder when \(p(x) \) is divided by \(x + 4 \)?

1. \(x - 4 \)
2. \(-4\)
3. 0
4. 4

137 If \(p(x) = 2x^3 - 3x + 5 \), what is the remainder of \(p(x) + (x - 5) \)?

1. \(-230\)
2. 0
3. 40
4. 240

138 If \(x - 1 \) is a factor of \(x^3 - kx^2 + 2x \), what is the value of \(k \)?

1. 0
2. 2
3. 3
4. \(-3\)

139 When \(g(x) \) is divided by \(x + 4 \), the remainder is 0. Given \(g(x) = x^4 + 3x^3 - 6x^2 - 6x + 8 \), which conclusion about \(g(x) \) is true?

1. \(g(4) = 0 \)
2. \(g(-4) = 0 \)
3. \(x - 4 \) is a factor of \(g(x) \).
4. No conclusion can be made regarding \(g(x) \).

140 Which binomial is a factor of \(x^4 - 4x^2 - 4x + 8 \)?

1. \(x - 2 \)
2. \(x + 2 \)
3. \(x - 4 \)
4. \(x + 4 \)

141 Which binomial is \textit{not} a factor of the expression \(x^3 - 11x^2 + 16x + 84 \)?

1. \(x + 2 \)
2. \(x + 4 \)
3. \(x - 6 \)
4. \(x - 7 \)

142 Given \(P(x) = x^3 - 3x^2 - 2x + 4 \), which statement is true?

1. \(x - 1 \) is a factor because \(P(-1) = 2 \).
2. \(x + 1 \) is a factor because \(P(-1) = 2 \).
3. \(x + 1 \) is a factor because \(P(1) = 0 \).
4. \(x - 1 \) is a factor because \(P(1) = 0 \).

143 Use an appropriate procedure to show that \(x - 4 \) is a factor of the function \(f(x) = 2x^3 - 5x^2 - 11x - 4 \). Explain your answer.
144 Given \(z(x) = 6x^3 + bx^2 - 52x + 15, \) \(z(2) = 35, \) and \(z(-5) = 0, \) algebraically determine all the zeros of \(z(x). \)

145 Determine if \(x - 5 \) is a factor of \(2x^3 - 4x^2 - 7x - 10. \) Explain your answer.

146 Given \(r(x) = x^3 - 4x^2 + 4x - 6, \) find the value of \(r(2). \) What does your answer tell you about \(x - 2 \) as a factor of \(r(x)? \) Explain.

147 Evaluate \(j(-1) \) given \(j(x) = 2x^4 - x^3 - 35x^2 + 16x + 48. \) Explain what your answer tells you about \(x + 1 \) as a factor. Algebraically find the remaining zeros of \(j(x). \)

148 Determine for which polynomial(s) \((x + 2) \) is a factor. Explain your answer.

\[
P(x) = x^4 - 3x^3 - 16x - 12 \\
Q(x) = x^3 - 3x^2 - 16x - 12
\]

149 Show why \(x - 3 \) is a factor of \(m(x) = x^3 - x^2 - 5x - 3. \) Justify your answer.

A.APR.C.4: POLYNOMIAL IDENTITIES

150 Mr. Farison gave his class the three mathematical rules shown below to either prove or disprove. Which rules can be proved for all real numbers?

\[
\begin{align*}
I & \quad (m + p)^2 = m^2 + 2np + p^2 \\
II & \quad (x + y)^3 = x^3 + 3xy + y^3 \\
III & \quad (a^2 + b^2)^2 = (a^2 - b^2)^2 + (2ab)^2
\end{align*}
\]

1 I, only
2 I and II
3 II and III
4 I and III

151 Which statement(s) are true for all real numbers?

\[
\begin{align*}
I & \quad (x - y)^2 = x^2 + y^2 \\
II & \quad (x + y)^3 = x^3 + 3xy + y^3
\end{align*}
\]

1 I, only
2 II, only
3 I and II
4 neither I nor II

152 The expression \((x + a)(x + b) \) can not be written as

\[
\begin{align*}
1 & \quad a(x + b) + x(x + b) \\
2 & \quad x^2 + abx + ab \\
3 & \quad x^2 + (a + b)x + ab \\
4 & \quad x(x + a) + b(x + a)
\end{align*}
\]

153 Which expression can be rewritten as \((x + 7)(x - 1)? \)

\[
\begin{align*}
1 & \quad (x + 3)^2 - 16 \\
2 & \quad (x + 3)^2 - 10(x + 3) - 2(x + 3) + 20 \\
3 & \quad \frac{(x - 1)(x^2 - 6x - 7)}{(x + 1)} \\
4 & \quad \frac{(x + 7)(x^2 + 4x + 3)}{(x + 3)}
\end{align*}
\]
154 Given the following polynomials
\[x = (a + b + c)^2 \]
\[y = a^2 + b^2 + c^2 \]
\[z = ab + bc + ac \]
Which identity is true?
1. \(x = y - z \)
2. \(x = y + z \)
3. \(x = y - 2z \)
4. \(x = y + 2z \)

155 Emmeline is working on one side of a polynomial identity proof used to form Pythagorean triples. Her work is shown below:
\[(5x)^2 + (5x^2 - 5)^2\]
Step 1: \(25x^2 + (5x^2 - 5)^2\)
Step 2: \(25x^2 + 25x^2 + 25\)
Step 3: \(50x^2 + 25\)
Step 4: \(75x^2\)
What statement is true regarding Emmeline's work?
1. Emmeline's work is entirely correct.
2. There is a mistake in step 2, only.
3. There are mistakes in step 2 and step 4.
4. There is a mistake in step 4, only.

156 Algebraically prove that the difference of the squares of any two consecutive integers is an odd integer.

157 Algebraically prove that \(\frac{x^3 + 9}{x^3 + 8} = 1 + \frac{1}{x^3 + 8}\), where \(x \neq -2\).

158 Algebraically determine the values of \(h\) and \(k\) to correctly complete the identity stated below.
\[2x^3 - 10x^2 + 11x - 7 = (x - 4)(2x^2 + hx + 3) + k \]

159 Verify the following Pythagorean identity for all values of \(x\) and \(y\):
\[(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2 \]

160 Erin and Christa were working on cubing binomials for math homework. Erin believed they could save time with a shortcut. She wrote down the rule for Christa to follow.
\[(a + b)^3 = a^3 + b^3 \]
Does Erin's shortcut always work? Justify your result algebraically.

RADICALS

N.RN.A.2: OPERATIONS WITH RADICALS

161 For positive values of \(x\), which expression is equivalent to \(\sqrt[3]{16x^2} \cdot \sqrt[3]{8x^5}\)?
1. \(6\sqrt[6]{x^3}\)
2. \(6\sqrt[3]{x^5}\)
3. \(4\sqrt[3]{x^2} + 2\sqrt[5]{x^5}\)
4. \(4\sqrt[3]{x^3} + 2\sqrt[3]{x^3}\)

162 For \(x > 0\), which expression is equivalent to \(\frac{3\sqrt[3]{x^2} \cdot \sqrt{x^5}}{\sqrt[6]{x}}\)?
1. \(x\)
2. \(\sqrt[2]{x^2}\)
3. \(x^3\)
4. \(x^{10}\)
163 Given $y > 0$, the expression $\sqrt[3]{3x^2y} \cdot \sqrt[3]{27x^3y^2}$ is equivalent to

1. $81x^5y^3$
2. $3^{1.3}x^2y$\[5\]
3. $3^{\frac{5}{2}}x^2y^{\frac{5}{3}}$
4. $3^{\frac{1}{2}}x^{\frac{2}{3}}y^{\frac{2}{3}}$

164 Write $\sqrt[3]{x} \cdot \sqrt{x}$ as a single term with a rational exponent.

165 The solution set for the equation $\sqrt{56 - x} = x$ is

1. $\{-8, 7\}$
2. $\{-7, 8\}$
3. $\{7\}$
4. $\{\}$

166 The solution set for the equation $\sqrt{x + 14} - \sqrt{2x + 5} = 1$ is

1. $\{-6\}$
2. $\{2\}$
3. $\{18\}$
4. $\{2, 22\}$

167 What is the solution set for x in the equation below?

$\sqrt{x + 1} - 1 = x$

1. $\{1\}$
2. $\{0\}$
3. $\{-1, 0\}$
4. $\{0, 1\}$

168 The value(s) of x that satisfy $\sqrt{x^2 - 4x - 5} = 2x - 10$ are

1. $\{5\}$
2. $\{7\}$
3. $\{5, 7\}$
4. $\{3, 5, 7\}$

169 The solution set for the equation $b = \sqrt{2b^2 - 64}$ is

1. $\{-8\}$
2. $\{8\}$
3. $\{\pm 8\}$
4. $\{\}$

170 What is the solution set of $x = \sqrt{3x + 40}$?

1. $\{-5, 8\}$
2. $\{8\}$
3. $\{-4, 10\}$
4. $\{\}$

171 Solve algebraically for all values of x:

$\sqrt{x - 5} + x = 7$

172 Solve the equation $\sqrt{2x - 7} + x = 5$ algebraically, and justify the solution set.

173 Solve algebraically for all values of x:

$\sqrt{x - 4} + x = 6$

174 Solve algebraically for all values of x:

$\sqrt{6 - 2x} + x = 2(x + 15) - 9$
175 Solve the given equation algebraically for all values of \(x \). \(3\sqrt{x} - 2x = -5 \)

176 The speed of a tidal wave, \(s \), in hundreds of miles per hour, can be modeled by the equation \(s = \sqrt{t} - 2t + 6 \), where \(t \) represents the time from its origin in hours. Algebraically determine the time when \(s = 0 \). How much faster was the tidal wave traveling after 1 hour than 3 hours, to the nearest mile per hour? Justify your answer.

177 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, \(B \), are determined by the equation \(B = 1.69\sqrt{s} + 4.45 - 3.49 \), where \(s \) is the speed of the wind in mph, and \(B \) is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Wind Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaufort Number</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer. In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a \(B \) value of exactly 15. Algebraically determine the value of \(s \), to the nearest mph. Any \(B \) values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.
N.RN.A.1: RADICALS AND RATIONAL EXPONENTS

178 Explain how \(\left(\frac{1}{3}\right)^{\frac{5}{2}} \) can be written as the equivalent radical expression \(\sqrt[5]{9} \).

179 Explain how \((-8)^{\frac{4}{3}}\) can be evaluated using properties of rational exponents to result in an integer answer.

180 Explain why \(81^{\frac{3}{4}}\) equals 27.

181 Explain what a rational exponent, such as \(\frac{5}{2}\), means. Use this explanation to evaluate \(9^{\frac{5}{2}}\).

N.RN.A.2: RADICALS AND RATIONAL EXPONENTS

182 For \(x \neq 0\), which expressions are equivalent to one divided by the sixth root of \(x\)?

I. \(\frac{\sqrt[6]{x}}{\sqrt{x}}\)
II. \(\frac{\sqrt[6]{x}}{\sqrt[3]{x}}\)
III. \(\frac{1}{x^{\frac{1}{6}}}\)

1 I and II, only
2 I and III, only
3 II and III, only
4 I, II, and III

183 When \(b > 0\) and \(d\) is a positive integer, the expression \((3b)^{\frac{2}{d}}\) is equivalent to

1 \(\frac{1}{(\sqrt[3]{3b})^{2}}\)
2 \((\sqrt[3]{3b})^{d}\)
3 \(\frac{1}{\sqrt[3]{b^{d}}}\)
4 \((\frac{d}{\sqrt[3]{3b}})^{2}\)

184 The expression \(\left(\frac{m^{2}}{\sqrt[3]{m}}\right)^{\frac{1}{2}}\) is equivalent to

1 \(-\sqrt[6]{m^{5}}\)
2 \(\frac{1}{\sqrt[6]{m^{5}}}\)
3 \(-m\sqrt[m]{m}\)
4 \(\frac{1}{m^{5}\sqrt[m]{m}}\)

185 If \(n = \sqrt[5]{a^{5}}\) and \(m = a\), where \(a > 0\), an expression for \(\frac{n}{m}\) could be

1 \(a^{\frac{5}{2}}\)
2 \(a^{4}\)
3 \(\sqrt[3]{a^{2}}\)
4 \(\sqrt[3]{a^{3}}\)
186 What does \(\left(\frac{-54x^9}{y^4} \right)^{\frac{2}{3}} \) equal?

1. \(\frac{9ix^6 \sqrt[4]{4}}{y^3 \sqrt[4]{y^2}} \)
2. \(\frac{9ix^6 \sqrt[4]{4}}{y^2 \sqrt[4]{y^2}} \)
3. \(\frac{9x^6 \sqrt[4]{4}}{y \sqrt[4]{y}} \)
4. \(\frac{9x^6 \sqrt[4]{4}}{y^2 \sqrt[4]{y^2}} \)

187 For \(x \geq 0 \), which equation is false?

1. \((x^{\frac{3}{2}})^2 = 4 \sqrt[4]{x^3} \)
2. \((x^3)^{\frac{1}{4}} = 4 \sqrt[4]{x^3} \)
3. \((x^{\frac{2}{3}})^{\frac{1}{2}} = 4 \sqrt[4]{x^3} \)
4. \((x^3)^{\frac{2}{3}} = 3 \sqrt[4]{x^4} \)

188 The expression \(\sqrt[8]{81x^{8}y^{6}} \) is equivalent to

1. \(3x^2y^2 \)
2. \(3x^4y^2 \)
3. \(9x^3y^2 \)
4. \(9x^4y^2 \)

189 Use the properties of rational exponents to determine the value of \(y \) for the equation:

\[
\frac{3\sqrt[3]{x^8}}{\left(x^4 \right)^{\frac{1}{3}}} = x^y, \quad x > 1
\]

190 Given the equal terms \(\sqrt[3]{x^5} \) and \(y^\frac{5}{6} \), determine and state \(y \), in terms of \(x \).

191 Express the fraction \(\frac{2x^{\frac{3}{2}}}{16x^4} \) in simplest radical form.

192 Justify why \(\sqrt[3]{x^{2}y^{5}} \) is equivalent to \(x^{-\frac{1}{2}}y^\frac{2}{3} \) using properties of rational exponents, where \(x \neq 0 \) and \(y \neq 0 \).

193 Kenzie believes that for \(x \geq 0 \), the expression \(\left(\sqrt[7]{x^2} \right) \left(\sqrt[5]{x^3} \right) \) is equivalent to \(\sqrt[35]{x^5} \). Is she correct? Justify your response algebraically.
194 For \(n > 0 \), is the expression
\[
\left(\frac{1}{n^2} \right)^8 \sqrt[p^5 n^4}{p^2 n^6} \sqrt[p^2 n^6]{p^2 n^4} \text{ equivalent to } p^{18 n^6} \sqrt[p^2 n^6]{p^2 n^4}?
\]
Justify your answer.

195 Given \(i \) is the imaginary unit, \((2 - yi)^2\) in simplest form is
1. \(y^2 - 4yi + 4 \)
2. \(-y^2 - 4yi + 4 \)
3. \(-y^2 + 4 \)
4. \(y^2 + 4 \)

196 The expression \(6xi^3(-4xi + 5)\) is equivalent to
1. \(2x - 5i \)
2. \(-24x^2 - 30xi \)
3. \(-24x^2 + 30x - i \)
4. \(26x - 24x^2 i - 5i \)

197 Which expression is equivalent to \((3k - 2i)^2\), where \(i \) is the imaginary unit?
1. \(9k^2 - 4 \)
2. \(9k^2 + 4 \)
3. \(9k^2 - 12ki - 4 \)
4. \(9k^2 - 12k + 4 \)

198 The expression \(6 - (3x - 2i)^2\) is equivalent to
1. \(-9x^2 + 12xi + 10 \)
2. \(9x^2 - 12xi + 2 \)
3. \(-9x^2 + 10 \)
4. \(-9x^2 + 12xi - 4i + 6 \)

199 Where \(i \) is the imaginary unit, the expression \((x + 3i)^2 - (2x - 3i)^2\) is equivalent to
1. \(-3x^2 \)
2. \(-3x^2 - 18 \)
3. \(-3x^2 + 18xi \)
4. \(-3x^2 - 6xi - 18 \)

200 If \(A = -3 + 5i \), \(B = 4 - 2i \), and \(C = 1 + 6i \), where \(i \) is the imaginary unit, then \(A - BC \) equals
1. \(5 - 17i \)
2. \(5 + 27i \)
3. \(-19 - 17i \)
4. \(-19 + 27i \)

201 Which expression is equivalent to
\((2x - i)^2 - (2x - i)(2x + 3i)\) where \(i \) is the imaginary unit and \(x \) is a real number?
1. \(-4 - 8xi \)
2. \(-4 + 4xi \)
3. \(2 \)
4. \(8x - 4i \)

202 Expressed in simplest \(a + bi\) form,
\((7 - 3i) + (x - 2i)^2 - (4i + 2x^2)\) is
1. \((3 - x^2) - (4x + 7)i \)
2. \((3 + 3x^2) - (4x + 7)i \)
3. \((3 - x^2) - 7i \)
4. \((3 + 3x^2) - 7i \)
203 Write \((5 + 2yi)(4 - 3i) - (5 - 2yi)(4 - 3i)\) in a \(bi\) form, where \(y\) is a real number.

204 Simplify \(xi(i - 7i)^2\), where \(i\) is the imaginary unit.

205 Express \((1 - i)^3\) in a \(bi\) form.

206 Elizabeth tried to find the product of \((2 + 4i)\) and \((3 - i)\), and her work is shown below.

\[
(2 + 4i)(3 - i) \\
= 6 - 2i + 12i - 4i^2 \\
= 6 + 10i - 4i^2 \\
= 6 + 10i - 4(1) \\
= 6 + 10i - 4 \\
= 2 + 10i \\
\]

Identify the error in the process shown and determine the correct product of \((2 + 4i)\) and \((3 - i)\).

207 Write \(-\frac{1}{2} i^3(\sqrt{-9} - 4) - 3i^2\) in simplest \(a + bi\) form.

RATIONALS

A.APR.D.6: UNDEFINED RATIONALS

208 The function \(f(x) = \frac{x - 3}{x^2 + 2x - 8}\) is undefined when \(x\) equals

1. 2 or -4
2. 4 or -2
3. 3, only
4. 2, only

A.APR.D.6: EXPRESSIONS WITH NEGATIVE EXPONENTS

209 The expression \(-\frac{3x^2 - 5x + 2}{x^3 + 2x^2}\) can be rewritten as

1. \(-\frac{3x - 3}{x^2 + 2x}\)
2. \(-\frac{3x - 1}{x^2}\)
3. \(-3x^{-1} + 1\)
4. \(-3x^{-1} + x^{-2}\)

A.APR.D.6: RATIONAL EXPRESSIONS

210 Written in simplest form, \(-\frac{c^2 - d^2}{d^2 + cd - 2c^2}\) where \(c \neq d\), is equivalent to

1. \(\frac{c + d}{d + 2c}\)
2. \(\frac{c - d}{d + 2c}\)
3. \(-\frac{c - d}{d + 2c}\)
4. \(-\frac{c + d}{d + 2c}\)
211 For all values of \(x \) for which the expression is defined, \(\frac{x^3 + 2x^2 - 9x - 18}{x^3 - x^2 - 6x} \), in simplest form, is equivalent to

1. \(3 \)
2. \(\frac{17}{2} \)
3. \(\frac{x + 3}{x} \)
4. \(\frac{x^2 - 9}{x(x - 3)} \)

212 Which expression(s) are equivalent to \(\frac{x^2 - 4x}{2x} \), where \(x \neq 0 \)?

I. \(\frac{x}{2} - 2 \)
II. \(\frac{x - 4}{2} \)
III. \(\frac{x - 1}{2} - \frac{3}{2} \)

1. II, only
2. I and II
3. II and III
4. I, II, and III

213 Written in simplest form, the fraction \(\frac{x^3 - 9x}{9 - x^2} \), where \(x \neq \pm 3 \), is equivalent to

1. \(-x \)
2. \(x \)
3. \(\frac{-x(x + 3)}{(3 + x)} \)
4. \(\frac{x(x - 3)}{(3 - x)} \)

214 The expression \(\frac{x^3 + 2x^2 + x + 6}{x + 2} \) is equivalent to

1. \(x^2 + 3 \)
2. \(x^2 + 1 + \frac{4}{x + 2} \)
3. \(2x^2 + x + 6 \)
4. \(2x^2 + 1 + \frac{4}{x + 2} \)

215 The expression \(\frac{6x^3 + 17x^2 + 10x + 2}{2x^2 + 3} \) equals

1. \(3x^2 + 4x - 1 + \frac{5}{2x + 3} \)
2. \(6x^2 + 8x - 2 + \frac{5}{2x + 3} \)
3. \(6x^2 - x + 13 - \frac{37}{2x + 3} \)
4. \(3x^2 + 13x + \frac{49}{2} + \frac{151}{2x + 3} \)

216 The expression \(\frac{4x^3 + 5x + 10}{2x + 3} \) is equivalent to

1. \(2x^2 + 3x - 7 + \frac{31}{2x + 3} \)
2. \(2x^2 - 3x + 7 - \frac{11}{2x + 3} \)
3. \(2x^2 + 2.5x + 5 + \frac{15}{2x + 3} \)
4. \(2x^2 - 2.5x - 5 - \frac{20}{2x + 3} \)
217 Which expression is equivalent to \(\frac{4x^3 + 9x - 5}{2x - 1} \), where \(x \neq \frac{1}{2} \)?

1. \(2x^2 + x + 5 \)
2. \(2x^2 + \frac{11}{2} + \frac{1}{2(2x - 1)} \)
3. \(2x^2 - x + 5 \)
4. \(2x^2 - x + 4 + \frac{1}{2x - 1} \)

218 Which expression is equivalent to \(\frac{2x^4 + 8x^3 - 25x^2 - 6x + 14}{x + 6} \)?

1. \(2x^3 + 4x^2 + x - 12 + \frac{86}{x + 6} \)
2. \(2x^3 - 4x^2 - x + 14 \)
3. \(2x^3 - 4x^2 - x + \frac{14}{x + 6} \)
4. \(2x^3 - 4x^2 - x \)

219 The expression \(\frac{9x^2 - 2}{3x + 1} \) is equivalent to

1. \(3x - 1 - \frac{1}{3x + 1} \)
2. \(3x - 1 + \frac{1}{3x + 1} \)
3. \(3x + 1 - \frac{1}{3x + 1} \)
4. \(3x + 1 + \frac{1}{3x + 1} \)

220 Given \(x \neq -2 \), the expression \(\frac{2x^2 + 5x + 8}{x + 2} \) is equivalent to

1. \(2x^2 + \frac{9}{x + 2} \)
2. \(2x + \frac{7}{x + 2} \)
3. \(2x + 1 + \frac{6}{x + 2} \)
4. \(2x + 9 - \frac{10}{x + 2} \)

221 What is the quotient when \(10x^3 - 3x^2 - 7x + 3 \) is divided by \(2x - 1 \)?

1. \(5x^2 + x + 3 \)
2. \(5x^2 - x + 3 \)
3. \(5x^2 - x - 3 \)
4. \(5x^2 + x - 3 \)

222 Given \(f(x) = 3x^2 + 7x - 20 \) and \(g(x) = x - 2 \), state the quotient and remainder of \(\frac{f(x)}{g(x)} \), in the form \(q(x) + \frac{r(x)}{g(x)} \).

223 Determine the quotient and remainder when \(6a^3 + 11a^2 - 4a - 9 \) is divided by \(3a - 2 \). Express your answer in the form \(q(a) + \frac{r(a)}{d(a)} \).

224 Given \(a(x) = x^4 + 2x^3 + 4x - 10 \) and \(b(x) = x + 2 \), determine \(\frac{a(x)}{b(x)} \) in the form \(q(x) + \frac{r(x)}{b(x)} \). Is \(b(x) \) a factor of \(a(x) \)? Explain.
225 When the function \(p(x) \) is divided by \(x - 1 \) the quotient is \(x^2 + 7 + \frac{5}{x - 1} \). State \(p(x) \) in standard form.

A.APR.D.7: ADDITION AND SUBTRACTION OF RATIONALS

226 The expression \(2 - \frac{x - 1}{x + 2} \) is equivalent to

1. \(1 - \frac{3}{x + 2} \)
2. \(1 + \frac{3}{x + 2} \)
3. \(1 - \frac{1}{x + 2} \)
4. \(1 + \frac{1}{x + 2} \)

A.CED.A.1: MODELING RATIONALS

227 A number, minus twenty times its reciprocal, equals eight. The number is

1. 10 or \(-2\)
2. 10 or 2
3. \(-10 \) or \(-2\)
4. \(-10 \) or 2

228 Julie averaged 85 on the first three tests of the semester in her mathematics class. If she scores 93 on each of the remaining tests, her average will be 90. Which equation could be used to determine how many tests, \(T \), are left in the semester?

1. \(\frac{255 + 93T}{3T} = 90 \)
2. \(\frac{255 + 90T}{3T} = 93 \)
3. \(\frac{255 + 93T}{T + 3} = 90 \)
4. \(\frac{255 + 90T}{T + 3} = 93 \)

229 Mallory wants to buy a new window air conditioning unit. The cost for the unit is $329.99. If she plans to run the unit three months out of the year for an annual operating cost of $108.78, which function models the cost per year over the lifetime of the unit, \(C(n) \), in terms of the number of years, \(n \), that she owns the air conditioner.

1. \(C(n) = 329.99 + 108.78n \)
2. \(C(n) = 329.99 + 326.34n \)
3. \(C(n) = \frac{329.99 + 108.78n}{n} \)
4. \(C(n) = \frac{329.99 + 326.34n}{n} \)
230 A manufacturing plant produces two different-sized containers of peanuts. One container weighs \(x\) ounces and the other weighs \(y\) pounds. If a gift set can hold one of each size container, which expression represents the number of gift sets needed to hold 124 ounces?

1 \(\frac{124}{16x + y}\)
2 \(\frac{x + 16y}{124}\)
3 \(\frac{124}{x + 16y}\)
4 \(\frac{16x + y}{124}\)

231 A formula for work problems involving two people is shown below.

\[\frac{1}{t_1} + \frac{1}{t_2} = \frac{1}{t_b}\]

\(t_1\) = the time taken by the first person to complete the job
\(t_2\) = the time taken by the second person to complete the job
\(t_b\) = the time it takes for them working together to complete the job
Fred and Barney are carpenters who build the same model desk. It takes Fred eight hours to build the desk while it only takes Barney six hours. Write an equation that can be used to find the time it would take both carpenters working together to build a desk. Determine, to the nearest tenth of an hour, how long it would take Fred and Barney working together to build a desk.

232 The focal length, \(F\), of a camera’s lens is related to the distance of the object from the lens, \(J\), and the distance to the image area in the camera, \(W\), by the formula below.

\[\frac{1}{J} + \frac{1}{W} = \frac{1}{F}\]

When this equation is solved for \(J\) in terms of \(F\) and \(W\), \(J\) equals
1 \(F - W\)
2 \(\frac{FW}{F - W}\)
3 \(\frac{FW}{W - F}\)
4 \(\frac{1}{F} - \frac{1}{W}\)

233 What is the solution set of the equation

\[\frac{3x + 25}{x + 7} - 5 = \frac{3}{x}\]

1 \(\left\{\frac{3}{2}, 7\right\}\)
2 \(\left\{\frac{7}{2}, -3\right\}\)
3 \(\left\{\frac{3}{2}, 7\right\}\)
4 \(\left\{\frac{7}{2}, -3\right\}\)

234 What is the solution, if any, of the equation

\[\frac{2}{x + 3} - \frac{3}{4 - x} = \frac{2x - 2}{x^2 - x - 12}\]

1 \(-1\)
2 \(-5\)
3 all real numbers
4 no real solution
235 The solutions to \(x + 3 - \frac{4}{x-1} = 5 \) are

1. \(\frac{3}{2} \pm \frac{\sqrt{17}}{2} \)
2. \(\frac{3}{2} \pm \frac{\sqrt{17}}{2} i \)
3. \(\frac{3}{2} + \frac{\sqrt{33}}{2} \)
4. \(\frac{3}{2} + \frac{\sqrt{33}}{2} i \)

236 What is the solution set of the equation \(\frac{2}{x} - 3x = 2x - 3 \)?

1. \(\{3\} \)
2. \(\left\{ \frac{3}{2} \right\} \)
3. \(\{-2, 3\} \)
4. \(\{-1, \frac{3}{2}\} \)

237 What is the solution set of the equation \(\frac{2}{3x+1} = \frac{1}{x} - \frac{6x}{3x+1} \)?

1. \(\left\{ \frac{1}{3}, 2 \right\} \)
2. \(\left\{ \frac{1}{3} \right\} \)
3. \(\left\{ \frac{1}{2} \right\} \)
4. \(\left\{ \frac{1}{3}, -2 \right\} \)

238 What is the solution set of the equation \(\frac{10}{x^2 - 2x} + \frac{4}{x} = \frac{5}{x-2} \)?

1. \(\{0, 2\} \)
2. \(\{0\} \)
3. \(\{2\} \)
4. \(\{\} \)

239 To solve \(\frac{2x}{x-2} - \frac{11}{x} = \frac{8}{x^2 - 2x} \), Ren multiplied both sides by the least common denominator. Which statement is true?

1. 2 is an extraneous solution.
2. \(\frac{7}{2} \) is an extraneous solution.
3. 0 and 2 are extraneous solutions.
4. This equation does not contain any extraneous solutions.

240 Solve for \(x \): \(\frac{1}{x} - \frac{1}{3} = \frac{1}{3x} \)

241 Solve for all values of \(p \): \(\frac{3p}{p-5} - \frac{2}{p+3} = \frac{p}{p+3} \)

242 Algebraically solve for \(x \): \(\frac{-3}{x+3} + \frac{1}{2} = \frac{x}{6} - \frac{1}{2} \)

243 Algebraically solve for \(x \): \(\frac{7}{2x} - \frac{2}{x+1} = \frac{1}{4} \)
Sarah is fighting a sinus infection. Her doctor prescribed a nasal spray and an antibiotic to fight the infection. The active ingredients, in milligrams, remaining in the bloodstream from the nasal spray, $n(t)$, and the antibiotic, $a(t)$, are modeled in the functions below, where t is the time in hours since the medications were taken.

$$n(t) = \frac{t+1}{t+5} + \frac{18}{t^2 + 8t + 15}$$

$$a(t) = \frac{9}{t+3}$$

Determine which drug is made with a greater initial amount of active ingredient. Justify your answer. Sarah's doctor told her to take both drugs at the same time. Determine algebraically the number of hours after taking the medications when both medications will have the same amount of active ingredient remaining in her bloodstream.

SYSTEMS

A.REI.C.6: SOLVING LINEAR SYSTEMS

For the system shown below, what is the value of z?

$$y = -2x + 14$$

$$3x - 4z = 2$$

$$3x - y = 16$$

1 5
2 2
3 6
4 4

Which value is not contained in the solution of the system shown below?

$$a + 5b - c = -20$$

$$4a - 5b + 4c = 19$$

$$-a - 5b - 5c = 2$$

1 -2
2 2
3 3
4 -3

Consider the system of equations below:

$$x + y - z = 6$$

$$2x - 3y + 2z = -19$$

$$-x + 4y - z = 17$$

Which number is not the value of any variable in the solution of the system?

1 -1
2 2
3 3
4 -4

Consider the system below.

$$x + y + z = 9$$

$$x - y - z = -1$$

$$x - y + z = 21$$

Which value is not in the solution, (x,y,z), of the system?

1 -8
2 -6
3 11
4 4
249 Solve the following system of equations algebraically for all values of \(x, y,\) and \(z: \)
\[
\begin{align*}
x + 3y + 5z &= 45 \\
6x - 3y + 2z &= -10 \\
-2x + 3y + 8z &= 72
\end{align*}
\]

250 Solve the following system of equations algebraically for all values of \(x, y,\) and \(z: \)
\[
\begin{align*}
x + y + z &= 1 \\
2x + 4y + 6z &= 2 \\
-x + 3y - 5z &= 11
\end{align*}
\]

251 Solve the following system of equations algebraically for all values of \(x, y,\) and \(z: \)
\[
\begin{align*}
2x + 3y - 4z &= -1 \\
x - 2y + 5z &= 3 \\
-4x + y + z &= 16
\end{align*}
\]

252 Solve the following system of equations algebraically for all values of \(a, b,\) and \(c: \)
\[
\begin{align*}
a + 4b + 6c &= 23 \\
a + 2b + c &= 2 \\
6b + 2c &= a + 14
\end{align*}
\]

253 What is the solution to the system of equations \(y = 3x - 2\) and \(y = g(x)\) where \(g(x)\) is defined by the function below?

\[
\begin{align*}
&\text{1} \quad \{(0,-2)\} \\
&\text{2} \quad \{(0,-2),(1,6)\} \\
&\text{3} \quad \{(1,6)\} \\
&\text{4} \quad \{(1,1),(6,16)\}
\end{align*}
\]

254 What is the solution set of the following system of equations?
\[
\begin{align*}
y &= 3x + 6 \\
y &= (x + 4)^2 - 10
\end{align*}
\]
\[
\begin{align*}
&\text{1} \quad \{(-5,-9)\} \\
&\text{2} \quad \{(5,21)\} \\
&\text{3} \quad \{(0,6),(-5,-9)\} \\
&\text{4} \quad \{(0,6),(5,21)\}
\end{align*}
\]
255 What are the solution(s) to the system of equations shown below?

\[\begin{align*}
 x^2 + y^2 &= 5 \\
 y &= 2x \\
 2x + 2y &= 10 \\
 2x - y &= 4 \\
 (x + 3)^2 + y^2 &= 8 \\
\end{align*} \]

1. \(x = 1 \) and \(x = -1 \)
2. \(x = 1 \)
3. \((1,2) \) and \((-1,-2) \)
4. \((1,2) \), only

256 Consider the system shown below.

\[\begin{align*}
 2x - y &= 4 \\
 (x + 3)^2 + y^2 &= 8 \\
\end{align*} \]

The two solutions of the system can be described as

1. both imaginary
2. both irrational
3. both rational
4. one rational and one irrational

257 The graphs of the equations \(y = x^2 + 4x - 1 \) and \(y + 3 = x \) are drawn on the same set of axes. One solution of this system is

1. \((-5,-2) \)
2. \((-1,-4) \)
3. \((1,4) \)
4. \((-2,-1) \)

258 Algebraically determine the values of \(x \) that satisfy the system of equations below.

\[\begin{align*}
 y &= -2x + 1 \\
 y &= -2x^2 + 3x + 1 \\
\end{align*} \]

259 Solve the system of equations shown below algebraically.

\[\begin{align*}
 (x - 3)^2 + (y + 2)^2 &= 16 \\
 2x + 2y &= 10 \\
\end{align*} \]

260 Solve the following system of equations algebraically. \(x^2 + y^2 = 400 \)

\[\begin{align*}
 y &= x - 28 \\
\end{align*} \]

261 Algebraically solve the following system of equations.

\[\begin{align*}
 (x - 2)^2 + (y - 3)^2 &= 16 \\
 x + y - 1 &= 0 \\
\end{align*} \]

262 Sally’s high school is planning their spring musical. The revenue, \(R \), generated can be determined by the function \(R(t) = -33t^2 + 360t \), where \(t \) represents the price of a ticket. The production cost, \(C \), of the musical is represented by the function \(C(t) = 700 + 5t \). What is the highest ticket price, to the nearest dollar, they can charge in order to not lose money on the event?

1. \(t = 3 \)
2. \(t = 5 \)
3. \(t = 8 \)
4. \(t = 11 \)
A.REI.D.11: OTHER SYSTEMS

263 Selected values for the functions \(f\) and \(g\) are shown in the tables below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.12</td>
<td>-4.88</td>
<td>-2.01</td>
<td>-1.01</td>
</tr>
<tr>
<td>0</td>
<td>-6</td>
<td>0</td>
<td>0.58</td>
</tr>
<tr>
<td>1.23</td>
<td>-4.77</td>
<td>8.52</td>
<td>2.53</td>
</tr>
<tr>
<td>8.52</td>
<td>2.53</td>
<td>13.11</td>
<td>3.01</td>
</tr>
<tr>
<td>9.01</td>
<td>3.01</td>
<td>16.52</td>
<td>3.29</td>
</tr>
</tbody>
</table>

A solution to the equation \(f(x) = g(x)\) is
1 0 3 3.01
2 2.53 4 8.52

264 The populations of two small towns at the beginning of 2018 and their annual population growth rate are shown in the table below.

<table>
<thead>
<tr>
<th>Town</th>
<th>Population</th>
<th>Annual Population Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonesville</td>
<td>1240</td>
<td>6% increase</td>
</tr>
<tr>
<td>Williamstown</td>
<td>890</td>
<td>11% increase</td>
</tr>
</tbody>
</table>

Assuming the trend continues, approximately how many years after the beginning of 2018 will it take for the populations to be equal?
1 7 3 68
2 20 4 125

265 To the nearest tenth, the value of \(x\) that satisfies \(2^x = -2x + 11\) is
1 2.5
2 2.6
3 5.8
4 5.9

266 When \(g(x) = \frac{2}{x + 2}\) and \(h(x) = \log(x + 1) + 3\) are graphed on the same set of axes, which coordinates best approximate their point of intersection?
1 (-0.9, 1.8)
2 (-0.9, 1.9)
3 (1.4, 3.3)
4 (1.4, 3.4)
267 For which values of x, rounded to the nearest hundredth, will $|x^2 - 9| - 3 = \log_3 x$?

1. 2.29 and 3.63
2. 2.37 and 3.54
3. 2.84 and 3.17
4. 2.92 and 3.06

268 If $p(x) = 2 \ln(x) - 1$ and $m(x) = \ln(x + 6)$, then what is the solution for $p(x) = m(x)$?

1. 1.65
2. 3.14
3. 5.62
4. no solution

269 How many solutions exist for $\frac{1}{1 - x^2} = -|3x - 2| + 5$?

1. 1
2. 2
3. 3
4. 4

270 After examining the functions $f(x) = \ln(x + 2)$ and $g(x) = e^{x-1}$ over the interval $(-2,3]$, Lexi determined that the correct number of solutions to the equation $f(x) = g(x)$ is

1. 1
2. 2
3. 3
4. 0

271 Which value, to the nearest tenth, is the smallest solution of $f(x) = g(x)$ if $f(x) = 3 \sin \left(\frac{1}{2} x \right) - 1$ and $g(x) = x^3 - 2x + 1$?

1. -3.6
2. -2.1
3. -1.8
4. 1.4

272 Which value, to the nearest tenth, is not a solution of $p(x) = q(x)$ if $p(x) = x^3 + 3x^2 - 3x - 1$ and $q(x) = 3x + 8$?

1. -3.9
2. -1.1
3. 2.1
4. 4.7

273 If $f(x) = 3|x| - 1$ and $g(x) = 0.03x^3 - x + 1$, an approximate solution for the equation $f(x) = g(x)$ is

1. 1.96
2. 11.29
3. (-0.99, 1.96)
4. (11.29, 32.87)

274 Pedro and Bobby each own an ant farm. Pedro starts with 100 ants and says his farm is growing exponentially at a rate of 15% per month. Bobby starts with 350 ants and says his farm is steadily decreasing by 5 ants per month. Assuming both boys are accurate in describing the population of their ant farms, after how many months will they both have approximately the same number of ants?

1. 7
2. 8
3. 13
4. 36
275 Given: \(h(x) = \frac{2}{9}x^3 + \frac{8}{9}x^2 - \frac{16}{13}x + 2 \)

\(k(x) = -|0.7x| + 5 \)

State the solutions to the equation \(h(x) = k(x) \), rounded to the nearest hundredth.

276 Researchers in a local area found that the population of rabbits with an initial population of 20 grew continuously at the rate of 5% per month. The fox population had an initial value of 30 and grew continuously at the rate of 3% per month. Find, to the nearest tenth of a month, how long it takes for these populations to be equal.

277 Sketch the graphs of \(r(x) = \frac{1}{x} \) and \(a(x) = |x| - 3 \) on the set of axes below. Determine, to the nearest tenth, the positive solution of \(r(x) = a(x) \).

278 Drugs break down in the human body at different rates and therefore must be prescribed by doctors carefully to prevent complications, such as overdosing. The breakdown of a drug is represented by the function \(N(t) = N_0(e^{-rt}) \), where \(N(t) \) is the amount left in the body, \(N_0 \) is the initial dosage, \(r \) is the decay rate, and \(t \) is time in hours. Patient \(A \), \(A(t) \), is given 800 milligrams of a drug with a decay rate of 0.347. Patient \(B \), \(B(t) \), is given 400 milligrams of another drug with a decay rate of 0.231. Write two functions, \(A(t) \) and \(B(t) \), to represent the breakdown of the respective drug given to each patient. Graph each function on the set of axes below.

To the nearest hour, \(t \), when does the amount of the given drug remaining in patient \(B \) begin to exceed the amount of the given drug remaining in patient \(A \)? The doctor will allow patient \(A \) to take another 800 milligram dose of the drug once only 15% of the original dose is left in the body. Determine, to the nearest tenth of an hour, how long patient \(A \) will have to wait to take another 800 milligram dose of the drug.
The value of a certain small passenger car based on its use in years is modeled by
\[V(t) = 28482.698(0.684)^t \], where \(V(t) \) is the value in dollars and \(t \) is the time in years. Zach had to take out a loan to purchase the small passenger car. The function \(Z(t) = 22151.327(0.778)^t \), where \(Z(t) \) is measured in dollars, and \(t \) is the time in years, models the unpaid amount of Zach's loan over time. Graph \(V(t) \) and \(Z(t) \) over the interval \(0 \leq t \leq 5 \), on the set of axes below.

State when \(V(t) = Z(t) \), to the nearest hundredth, and interpret its meaning in the context of the problem. Zach takes out an insurance policy that requires him to pay a $3000 deductible in case of a collision. Zach will cancel the collision policy when the value of his car equals his deductible. To the nearest year, how long will it take Zach to cancel this policy? Justify your answer.
Website popularity ratings are often determined using models that incorporate the number of visits per week a website receives. One model for ranking websites is \(P(x) = \log(x - 4) \), where \(x \) is the number of visits per week in thousands and \(P(x) \) is the website's popularity rating. According to this model, if a website is visited 16,000 times in one week, what is its popularity rating, rounded to the nearest tenth? Graph \(y = P(x) \) on the axes below.

An alternative rating model is represented by \(R(x) = \frac{1}{2} x - 6 \), where \(x \) is the number of visits per week in thousands. Graph \(R(x) \) on the same set of axes. For what number of weekly visits will the two models provide the same rating?

FUNCTIONS

F.BF.A.1: OPERATIONS WITH FUNCTIONS

281 If \(p(x) = ab^x \) and \(r(x) = cd^x \), then \(p(x) \cdot r(x) \) equals
1. \(ac(b + d)^x \)
2. \(ac(b + d)^{2x} \)
3. \(ac(bd)^x \)
4. \(ac(bd)^2 \)

282 If \(g(c) = 1 - c^2 \) and \(m(c) = c + 1 \), then which statement is not true?
1. \(g(c) \cdot m(c) = 1 + c - c^2 - c^3 \)
2. \(g(c) + m(c) = 2 + c - c^2 \)
3. \(m(c) - g(c) = c + c^2 \)
4. \(\frac{m(c)}{g(c)} = \frac{-1}{1 - c} \)
283 If \(f(x) = x^2 + 9 \) and \(g(x) = x + 3 \), which operation would not result in a polynomial expression?

1. \(f(x) + g(x) \)
2. \(f(x) - g(x) \)
3. \(f(x) \cdot g(x) \)
4. \(f(x) \div g(x) \)

284 A manufacturing company has developed a cost model, \(C(x) = 0.15x^3 + 0.01x^2 + 2x + 120 \), where \(x \) is the number of items sold, in thousands. The sales price can be modeled by \(S(x) = 30 - 0.01x \). Therefore, revenue is modeled by \(R(x) = x \cdot S(x) \). The company's profit, \(P(x) = R(x) - C(x) \), could be modeled by

1. \(0.15x^3 + 0.02x^2 - 28x + 120 \)
2. \(-0.15x^3 - 0.02x^2 + 28x - 120 \)
3. \(-0.15x^3 + 0.01x^2 - 2.01x - 120 \)
4. \(-0.15x^3 + 32x + 120 \)

285 The profit function, \(p(x) \), for a company is the cost function, \(c(x) \), subtracted from the revenue function, \(r(x) \). The profit function for the Acme Corporation is \(p(x) = -0.5x^2 + 250x - 300 \) and the revenue function is \(r(x) = -0.3x^2 + 150x \). The cost function for the Acme Corporation is

1. \(c(x) = 0.2x^2 - 100x + 300 \)
2. \(c(x) = 0.2x^2 + 100x + 300 \)
3. \(c(x) = -0.2x^2 + 100x - 300 \)
4. \(c(x) = -0.8x^2 + 400x - 300 \)

286 Chet has $1200 invested in a bank account modeled by the function \(P(n) = 1200(1.002)^n \), where \(P(n) \) is the value of his account, in dollars, after \(n \) months. Chet's debt is modeled by the function \(Q(n) = 100n \), where \(Q(n) \) is the value of debt, in dollars, after \(n \) months. After \(n \) months, which function represents Chet's net worth, \(R(n) \)?

1. \(R(n) = 1200(1.002)^n + 100n \)
2. \(R(n) = 1200(1.002)^{12n} + 100n \)
3. \(R(n) = 1200(1.002)^n - 100n \)
4. \(R(n) = 1200(1.002)^{12n} - 100n \)

287 Given: \(f(x) = 2x^2 + x - 3 \) and \(g(x) = x - 1 \)
Express \(f(x) \cdot g(x) - [f(x) + g(x)] \) as a polynomial in standard form.

288 The graph of \(y = f(x) \) is shown below.

Which expression defines \(f(x) \)?

1. \(2x \)
2. \(5(2^x) \)
3. \(\frac{x}{5} \)
4. \(5(2^x) \)
289 Which table best represents an exponential relationship?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

290 Perry invested in property that cost him $1500. Five years later it was worth $3000, and 10 years from his original purchase, it was worth $6000. Assuming the growth rate remains the same, which type of function could he create to find the value of his investment 30 years from his original purchase?

1 exponential function
2 linear function
3 quadratic function
4 trigonometric function

F.IF.C.9: COMPARING FUNCTIONS

291 Consider $f(x) = 4x^2 + 6x - 3$, and $p(x)$ defined by the graph below.

The difference between the values of the maximum of p and minimum of f is

1 0.25
2 1.25
3 3.25
4 10.25
292 Which statement regarding the graphs of the functions below is untrue?

\[f(x) = 3 \sin 2x, \text{ from } -\pi < x < \pi \]
\[g(x) = (x - 0.5)(x + 4)(x - 2) \]
\[h(x) = \log_2 x \]
\[j(x) = -|4x - 2| + 3 \]

1. \(f(x) \) and \(j(x) \) have a maximum \(y \)-value of 3.
2. \(f(x), h(x), \) and \(j(x) \) have one \(y \)-intercept.
3. \(g(x) \) and \(j(x) \) have the same end behavior as \(x \to -\infty \).
4. \(g(x), h(x), \) and \(j(x) \) have rational zeros.

293 Consider the function \(p(x) = 3x^3 + x^2 - 5x \) and the graph of \(y = m(x) \) below.

\[p(x) = 3x^3 + x^2 - 5x \]

Which statement is true?

1. \(p(x) \) has three real roots and \(m(x) \) has two real roots.
2. \(p(x) \) has one real root and \(m(x) \) has two real roots.
3. \(p(x) \) has two real roots and \(m(x) \) has three real roots.
4. \(p(x) \) has three real roots and \(m(x) \) has four real roots.
294 Which function shown below has a greater average rate of change on the interval \([-2,4]\)? Justify your answer.

\[
g(x) = 4x^3 - 5x^2 + 3
\]

\[
\begin{array}{c|c}
 x & f(x) \\

 -4 & 0.3125 \\
 -3 & 0.625 \\
 -2 & 1.25 \\
 -1 & 2.5 \\
 0 & 5 \\
 1 & 10 \\
 2 & 20 \\
 3 & 40 \\
 4 & 80 \\
 5 & 160 \\
 6 & 320 \\
\end{array}
\]

295 The \(x\)-value of which function’s \(x\)-intercept is larger, \(f\) or \(h\)? Justify your answer.

\[f(x) = \log(x - 4)\]

\[
\begin{array}{c|c}
 x & h(x) \\

 -1 & 6 \\
 0 & 4 \\
 1 & 2 \\
 2 & 0 \\
 3 & -2 \\
\end{array}
\]

296 Consider the function \(h(x) = 2\sin(3x) + 1\) and the function \(q\) represented in the table below.

\[
\begin{array}{c|c}
 x & q(x) \\

 -2 & -8 \\
 -1 & 0 \\
 0 & 0 \\
 1 & -2 \\
 2 & 0 \\
\end{array}
\]

Determine which function has the smaller minimum value for the domain \([-2,2]\). Justify your answer.
F.BF.B.3: TRANSFORMATIONS WITH FUNCTIONS

297 The graph below represents national and New York State average gas prices.

![Graph of gas prices]

If New York State's gas prices are modeled by \(G(x) \) and \(C > 0 \), which expression best approximates the national average \(x \) months from August 2014?

1. \(G(x + C) \)
2. \(G(x) + C \)
3. \(G(x - C) \)
4. \(G(x) - C \)

F.BF.B.3: EVEN AND ODD FUNCTIONS

298 Functions \(f \), \(g \), and \(h \) are given below.

\[
\begin{align*}
 f(x) &= \sin(2x) \\
 g(x) &= f(x) + 1
\end{align*}
\]

Which statement is true about functions \(f \), \(g \), and \(h \)?

1. \(f(x) \) and \(g(x) \) are odd, \(h(x) \) is even.
2. \(f(x) \) and \(g(x) \) are even, \(h(x) \) is odd.
3. \(f(x) \) is odd, \(g(x) \) is neither, \(h(x) \) is even.
4. \(f(x) \) is even, \(g(x) \) is neither, \(h(x) \) is odd.

299 Which equation represents an odd function?

1. \(y = \sin x \)
2. \(y = \cos x \)
3. \(y = (x + 1)^3 \)
4. \(y = e^{5x} \)
300 Which function is even?
1 \(f(x) = \sin x \)
2 \(f(x) = x^3 - 4 \)
3 \(f(x) = |x - 2| + 5 \)
4 \(f(x) = x^4 + 3x^3 + 4 \)

301 If \(f(x) \) is an even function, which function must also be even?
1 \(f(x - 2) \)
2 \(f(x) + 3 \)
3 \(f(x + 1) \)
4 \(f(x + 1) + 3 \)

302 Algebraically determine whether the function \(j(x) = x^4 - 3x^2 - 4 \) is odd, even, or neither.

303 Given \(f^{-1}(x) = -\frac{3}{4}x + 2 \), which equation represents \(f(x) \)?
1 \(f(x) = \frac{4}{3}x - \frac{8}{3} \)
2 \(f(x) = -\frac{4}{3}x + \frac{8}{3} \)
3 \(f(x) = \frac{3}{4}x - 2 \)
4 \(f(x) = -\frac{3}{4}x + 2 \)

304 What is the inverse of the function \(y = \log_3 x \)?
1 \(y = x^3 \)
2 \(y = \log_3 3 \)
3 \(y = 3^x \)
4 \(x = 3^y \)

305 The inverse of the function \(f(x) = \frac{x + 1}{x - 2} \) is
1 \(f^{-1}(x) = \frac{x + 1}{x + 2} \)
2 \(f^{-1}(x) = \frac{2x + 1}{x - 1} \)
3 \(f^{-1}(x) = \frac{x + 1}{x - 2} \)
4 \(f^{-1}(x) = \frac{x - 1}{x + 1} \)

306 What is the inverse of \(f(x) = -6(x - 2) \)?
1 \(f^{-1}(x) = -2 - \frac{x}{6} \)
2 \(f^{-1}(x) = 2 - \frac{x}{6} \)
3 \(f^{-1}(x) = \frac{1}{-6(x - 2)} \)
4 \(f^{-1}(x) = 6(x + 2) \)

307 What is the inverse of \(f(x) = x^3 - 2 \)?
1 \(f^{-1}(x) = \sqrt[3]{x} + 2 \)
2 \(f^{-1}(x) = \pm \sqrt[3]{x} + 2 \)
3 \(f^{-1}(x) = \sqrt[3]{x} + 2 \)
4 \(f^{-1}(x) = \pm \sqrt[3]{x} + 2 \)

308 Given \(f(x) = \frac{1}{2}x + 8 \), which equation represents the inverse, \(g(x) \)?
1 \(g(x) = 2x - 8 \)
2 \(g(x) = 2x - 16 \)
3 \(g(x) = -\frac{1}{2}x + 8 \)
4 \(g(x) = -\frac{1}{2}x - 16 \)
309 If \(f(x) = a^x \) where \(a > 1 \), then the inverse of the function is
1. \(f^{-1}(x) = \log_a x \)
2. \(f^{-1}(x) = a \log x \)
3. \(f^{-1}(x) = \log_a x \)
4. \(f^{-1}(x) = x \log a \)

310 What is the inverse of the function \(y = 4x + 5 \)?
1. \(x = \frac{1}{4} y - \frac{5}{4} \)
2. \(y = \frac{1}{4} x - \frac{5}{4} \)
3. \(y = 4x - 5 \)
4. \(y = \frac{1}{4x + 5} \)

311 What is the inverse of \(f(x) = \frac{x}{x + 2} \), where \(x \neq -2 \)?
1. \(f^{-1}(x) = \frac{2x}{x - 1} \)
2. \(f^{-1}(x) = \frac{-2x}{x - 1} \)
3. \(f^{-1}(x) = \frac{x}{x - 2} \)
4. \(f^{-1}(x) = \frac{-x}{x - 2} \)

312 For the function \(f(x) = (x - 3)^2 + 1 \), find \(f^{-1}(x) \).

313 Given \(f(9) = -2 \), which function can be used to generate the sequence \(-8, -7.25, -6.5, -5.75, \ldots \)?
1. \(f(n) = -8 + 0.75n \)
2. \(f(n) = -8 - 0.75(n - 1) \)
3. \(f(n) = -8.75 + 0.75n \)
4. \(f(n) = -0.75 + 8(n - 1) \)

314 A recursive formula for the sequence \(18, 9, 4.5, \ldots \) is
1. \(g_1 = 18 \)
2. \(g_n = g_{n-1} \cdot \frac{1}{2} \)
3. \(g_1 = 18 \)
4. \(g_n = 2g_{n-1} \)

315 A recursive formula for the sequence \(40, 30, 22.5, \ldots \) is
1. \(g_n = 40 \left(\frac{3}{4} \right)^n \)
2. \(g_1 = 40 \)
3. \(g_n = g_{n-1} - 10 \)
4. \(g_1 = 40 \)
5. \(g_n = \frac{3}{4} g_{n-1} \)
316 The sequence \(a_1 = 6, \ a_n = 3a_{n-1} \) can also be written as
1. \(a_n = 6 \cdot 3^n \)
2. \(a_n = 6 \cdot 3^{n-1} \)
3. \(a_n = 2 \cdot 3^n \)
4. \(a_n = 2 \cdot 3^{n-1} \)

317 Write a recursive formula for the sequence
6, 9, 13.5, 20.25, ...

318 While experimenting with her calculator, Candy creates the sequence 4, 9, 19, 39, 79, Write a recursive formula for Candy's sequence. Determine the eighth term in Candy's sequence.

319 Write a recursive formula, \(a_n \), to describe the sequence graphed below.

320 Write an explicit formula for \(a_n \), the \(n \)th term of the recursively defined sequence below.
\[
a_1 = x + 1 \\
\]
\[
a_n = x(a_{n-1})
\]
For what values of \(x \) would \(a_n = 0 \) when \(n > 1 \)?
Elaina has decided to run the Buffalo half-marathon in May. She researched training plans on the Internet and is looking at two possible plans: Jillian’s 12-week plan and Josh’s 14-week plan. The number of miles run per week for each plan is plotted below.

Which one of the plans follows an arithmetic pattern? Explain how you arrived at your answer. Write a recursive definition to represent the number of miles run each week for the duration of the plan you chose. Jillian’s plan has an alternative if Elaina wanted to train instead for a full 26-mile marathon. Week one would start at 13 miles and follow the same pattern for the half-marathon, but it would continue for 14 weeks. Write an explicit formula, in simplest form, to represent the number of miles run each week for the full-marathon training plan.

When a ball bounces, the heights of consecutive bounces form a geometric sequence. The height of the first bounce is 121 centimeters and the height of the third bounce is 64 centimeters. To the nearest centimeter, what is the height of the fifth bounce?

1 25
2 34
3 36
4 42

Consider the following patterns:
I. 16, –12, 9, –6.75, …
II. 1, 4, 9, 16, …
III. 6, 18, 30, 42, …
IV. \[\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots \]

Which pattern is geometric?
1 I
2 II
3 III
4 IV
324 The eighth and tenth terms of a sequence are 64 and 100. If the sequence is either arithmetic or geometric, the ninth term can \textit{not} be
325 The recursive formula to describe a sequence is shown below.
\begin{align*}
a_1 &= 3 \\
a_n &= 1 + 2a_{n-1}
\end{align*}
State the first four terms of this sequence. Can this sequence be represented using an explicit geometric formula? Justify your answer.

326 After Roger’s surgery, his doctor administered pain medication in the following amounts in milligrams over four days.

<table>
<thead>
<tr>
<th>Day (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage (m)</td>
<td>2000</td>
<td>1680</td>
<td>1411.2</td>
<td>1185.4</td>
</tr>
</tbody>
</table>

How can this sequence best be modeled recursively?

\begin{align*}
1 & \quad m_1 = 2000 \\
2 & \quad m_n = 2000(0.84)^{n-1} \\
3 & \quad m_1 = 2000 \\
4 & \quad m_n = 2000(0.84)^{n+1}
\end{align*}

327 The population of Jamesburg for the years 2010-2013, respectively, was reported as follows:
250,000 250,937 251,878 252,822
How can this sequence be recursively modeled?

\begin{align*}
1 & \quad j_n = 250,000(1.00375)^{n-1} \\
2 & \quad j_n = 250,000 + 937^{(n-1)} \\
3 & \quad j_1 = 250,000 \\
4 & \quad j_1 = 1.00375j_{n-1} \\
4 & \quad j_n = 250,000 \\
4 & \quad j_n = j_{n-1} + 937
\end{align*}

328 In 2010, the population of New York State was approximately 19,378,000 with an annual growth rate of 1.5%. Assuming the growth rate is maintained for a large number of years, which equation can be used to predict the population of New York State \(t \) years after 2010?

\begin{align*}
1 & \quad P_t = 19,378,000(1.5)^t \\
2 & \quad P_0 = 19,378,000 \\
2 & \quad P_t = 19,378,000 + 1.015P_{t-1} \\
3 & \quad P_t = 19,378,000(1.015)^{t-1} \\
4 & \quad P_0 = 19,378,000 \\
4 & \quad P_t = 1.015P_{t-1}
\end{align*}
329 The Rickerts decided to set up an account for their daughter to pay for her college education. The day their daughter was born, they deposited $1000 in an account that pays 1.8% compounded annually. Beginning with her first birthday, they deposit an additional $750 into the account on each of her birthdays. Which expression correctly represents the amount of money in the account \(n \) years after their daughter was born?

1 \[a_n = 1000(1.018)^n + 750 \]
2 \[a_n = 1000(1.018)^n + 750n \]
3 \[a_0 = 1000 \]
\[a_n = a_{n-1}(1.018) + 750 \]
4 \[a_0 = 1000 \]
\[a_n = a_{n-1}(1.018) + 750n \]

330 The formula below can be used to model which scenario?

\[a_1 = 3000 \]
\[a_n = 0.80a_{n-1} \]
1 The first row of a stadium has 3000 seats, and each row thereafter has 80 more seats than the row in front of it.
2 The last row of a stadium has 3000 seats, and each row before it has 80 fewer seats than the row behind it.
3 A bank account starts with a deposit of $3000, and each year it grows by 80%.
4 The initial value of a specialty toy is $3000, and its value each of the following years is 20% less.

331 At her job, Pat earns $25,000 the first year and receives a raise of $1000 each year. The explicit formula for the \(n \)th term of this sequence is \(a_n = 25,000 + (n-1)1000 \). Which rule best represents the equivalent recursive formula?

1 \[a_n = 24,000 + 1000n \]
2 \[a_n = 25,000 + 1000n \]
3 \[a_1 = 25,000, a_n = a_{n-1} + 1000 \]
4 \[a_1 = 25,000, a_n = a_{n+1} + 1000 \]

332 The average depreciation rate of a new boat is approximately 8% per year. If a new boat is purchased at a price of $75,000, which model is a recursive formula representing the value of the boat \(n \) years after it was purchased?

1 \[a_n = 75,000(0.08)^n \]
2 \[a_0 = 75,000 \]
\[a_n = (0.92)^n \]
3 \[a_n = 75,000(1.08)^n \]
4 \[a_0 = 75,000 \]
\[a_n = 0.92(a_{n-1}) \]

333 Savannah just got contact lenses. Her doctor said she can wear them 2 hours the first day, and can then increase the length of time by 30 minutes each day. If this pattern continues, which formula would not be appropriate to determine the length of time, in either minutes or hours, she could wear her contact lenses on the \(n \)th day?

1 \[a_1 = 120 \]
\[a_n = a_{n-1} + 30 \]
2 \[a_1 = 90 + 30n \]
\[a_n = a_{n-1} + 0.5 \]
3 \[a_1 = 2 \]
\[a_n = 2.5 + 0.5n \]
334 Which situation could be modeled using a geometric sequence?

1. A cell phone company charges $30.00 per month for 2 gigabytes of data and $12.50 for each additional gigabyte of data.

2. The temperature in your car is 79°. You lower the temperature of your air conditioning by 2° every 3 minutes in order to find a comfortable temperature.

3. David’s parents have set a limit of 50 minutes per week that he may play online games during the school year. However, they will increase his time by 5% per week for the next ten weeks.

4. Sarah has $100.00 in her piggy bank and saves an additional $15.00 each week.

335 Simon lost his library card and has an overdue library book. When the book was 5 days late, he owed $2.25 to replace his library card and pay the fine for the overdue book. When the book was 21 days late, he owed $6.25 to replace his library card and pay the fine for the overdue book. Suppose the total amount Simon owes when the book is n days late can be determined by an arithmetic sequence. Determine a formula for a_n, the nth term of this sequence. Use the formula to determine the amount of money, in dollars, Simon needs to pay when the book is 60 days late.

336 Kristin wants to increase her running endurance. According to experts, a gradual mileage increase of 10% per week can reduce the risk of injury. If Kristin runs 8 miles in week one, which expression can help her find the total number of miles she will have run over the course of her 6-week training program?

1. $\sum_{n=1}^{6} 8(1.10)^{n-1}$

2. $\sum_{n=1}^{6} 8(1.10)^n$

3. $\frac{8 - 8(1.10)^{6}}{0.90}$

4. $\frac{8 - 8(0.10)^n}{1.10}$

F.BF.B.6: SIGMA NOTATION
337 Jake wants to buy a car and hopes to save at least $5000 for a down payment. The table below summarizes the amount of money he plans to save each week.

<table>
<thead>
<tr>
<th>Week</th>
<th>Money Saved, in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>31.25</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Based on this plan, which expression should he use to determine how much he has saved in \(n \) weeks?

1. \(\frac{2 - 2(2.5^n)}{1 - 2.5} \)
2. \(\frac{2 - 2(2.5^{n-1})}{1 - 2.5} \)
3. \(\frac{1 - 2.5^n}{1 - 2.5} \)
4. \(\frac{1 - 2.5^{n-1}}{1 - 2.5} \)

338 A ball is dropped from a height of 32 feet. It bounces and rebounds 80% of the height from which it was falling. What is the total downward distance, in feet, the ball traveled up to the 12th bounce?

1. 29
2. 58
3. 120
4. 149

339 Brian deposited 1 cent into an empty non-interest bearing bank account on the first day of the month. He then additionally deposited 3 cents on the second day, 9 cents on the third day, and 27 cents on the fourth day. What would be the total amount of money in the account at the end of the 20th day if the pattern continued?

1. $11,622,614.67
2. $17,433,922.00
3. $116,226,146.80
4. $1,743,392,200.00

340 The first term of a geometric sequence is 8 and the fourth term is 216. What is the sum of the first 12 terms of the corresponding series?

1. 236,192
2. 708,584
3. 2,125,760
4. 6,377,288

341 A 7-year lease for office space states that the annual rent is $85,000 for the first year and will increase by 6% each additional year of the lease. What will the total rent expense be for the entire 7-year lease?

1. $42,809.63
2. $90,425.53
3. $595,000.00
4. $713,476.20
342 Jasmine decides to put $100 in a savings account each month. The account pays 3% annual interest, compounded monthly. How much money, \(S \), will Jasmine have after one year?

1. \(S = 100(1.03)^{12} \)
2. \(S = \frac{100 - 100(1.0025)^{12}}{1 - 1.0025} \)
3. \(S = 100(1.0025)^{12} \)
4. \(S = \frac{100 - 100(1.03)^{12}}{1 - 1.03} \)

343 Alexa earns $33,000 in her first year of teaching and earns a 4% increase in each successive year. Write a geometric series formula, \(S_n \), for Alexa's total earnings over \(n \) years. Use this formula to find Alexa's total earnings for her first 15 years of teaching, to the nearest cent.

344 Rowan is training to run in a race. He runs 15 miles in the first week, and each week following, he runs 3% more than the week before. Using a geometric series formula, find the total number of miles Rowan runs over the first ten weeks of training, rounded to the nearest thousandth.

345 Given the geometric series \(300 + 360 + 432 + 518.4 + \ldots \), write a geometric series formula, \(S_n \), for the sum of the first \(n \) terms. Use the formula to find the sum of the first 10 terms, to the nearest tenth.

346 Sonja is cutting wire to construct a mobile. She cuts 100 inches for the first piece, 80 inches for the second piece, and 64 inches for the third piece. Assuming this pattern continues, write an explicit equation for \(a_n \), the length in inches of the \(n \)th piece. Sonja only has 40 feet of wire to use for the project and wants to cut 20 pieces total for the mobile using her pattern. Will she have enough wire? Justify your answer.

347 Using the formula below, determine the monthly payment on a 5-year car loan with a monthly percentage rate of 0.625% for a car with an original cost of $21,000 and a $1000 down payment, to the nearest cent.

\[
P_n = PMT \left(\frac{1 - (1 + i)^{-n}}{i} \right)
\]

where:
- \(P_n \) = present amount borrowed
- \(n \) = number of monthly pay periods
- \(PMT \) = monthly payment
- \(i \) = interest rate per month

The affordable monthly payment is $300 for the same time period. Determine an appropriate down payment, to the nearest dollar.

348 Jim is looking to buy a vacation home for $172,600 near his favorite southern beach. The formula to compute a mortgage payment, \(M \), is

\[
M = P \cdot \frac{r(1 + r)^N}{(1 + r)^N - 1}
\]

where \(P \) is the principal amount of the loan, \(r \) is the monthly interest rate, and \(N \) is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15-year mortgage. With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar. Algebraically determine and state the down payment, rounded to the nearest dollar, that Jim needs to make in order for his mortgage payment to be $1100.
The Wells family is looking to purchase a home in a suburb of Rochester with a 30-year mortgage that has an annual interest rate of 3.6%. The house the family wants to purchase is $152,500 and they will make a $15,250 down payment and borrow the remainder. Use the formula below to determine their monthly payment, to the nearest dollar.

\[
M = \frac{P \left(\frac{r}{12} \right) \left(1 + \frac{r}{12} \right)^n}{\left(1 + \frac{r}{12} \right)^n - 1}
\]

\(M\) = monthly payment
\(P\) = amount borrowed
\(r\) = annual interest rate
\(n\) = total number of monthly payments

TRIGONOMETRY

F.TF.A.1: UNIT CIRCLE

350 Which diagram shows an angle rotation of 1 radian on the unit circle?
F.TF.A.2: UNIT CIRCLE

351 The terminal side of \(\theta \), an angle in standard position, intersects the unit circle at \(P\left(\frac{1}{3}, -\frac{\sqrt{8}}{3}\right) \).

What is the value of sec \(\theta \)?

1 \(-3\)
2 \(\frac{3\sqrt{8}}{8}\)
3 \(\frac{1}{3}\)
4 \(-\frac{\sqrt{8}}{3}\)

352 Point \(M\left(t, \frac{4}{7}\right) \) is located in the second quadrant on the unit circle. Determine the exact value of \(t \).

F.TF.A.2: RECIPROCAL TRIGONOMETRIC RELATIONSHIPS

353 Using the unit circle below, explain why csc \(\theta = \frac{1}{y} \).

F.TF.A.2: REFERENCE ANGLES

354 Which diagram represents an angle, \(\alpha \), measuring \(\frac{13\pi}{20} \) radians drawn in standard position, and its reference angle, \(\theta \)?
F.TF.A.2: DETERMINING TRIGONOMETRIC FUNCTIONS

355 If the terminal side of angle \(\theta \), in standard position, passes through point \((-4,3)\), what is the numerical value of \(\sin \theta \)?

- 1. \(\frac{3}{5} \)
- 2. \(\frac{4}{5} \)
- 3. \(\frac{3}{5} \)
- 4. \(\frac{4}{5} \)

356 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, \(\theta \), intercepts the circle in Quadrant II at point \(C \). The \(y \)-coordinate of point \(C \) is 8. What is the value of \(\cos \theta \)?

- 1. \(\frac{3}{5} \)
- 2. \(\frac{3}{4} \)
- 3. \(\frac{3}{5} \)
- 4. \(\frac{4}{5} \)

357 The hours of daylight, \(y \), in Utica in days, \(x \), from January 1, 2013 can be modeled by the equation \(y = 3.06 \sin(0.017x - 1.40) + 12.23 \). How many hours of daylight, to the nearest tenth, does this model predict for February 14, 2013?

- 1. 9.4
- 2. 10.4
- 3. 12.1
- 4. 12.2

F.TF.C.8: DETERMINING TRIGONOMETRIC FUNCTIONS

358 The temperature, in degrees Fahrenheit, in Times Square during a day in August can be predicted by the function \(T(x) = 8 \sin(0.3x - 3) + 74 \), where \(x \) is the number of hours after midnight. According to this model, the predicted temperature, to the nearest degree Fahrenheit, at 7 P.M. is

- 1. 68
- 2. 74
- 3. 77
- 4. 81

359 An angle, \(\theta \), is in standard position and its terminal side passes through the point \((2,-1)\). Find the exact value of \(\sin \theta \).

360 Given that \(\sin^2 \theta + \cos^2 \theta = 1 \) and \(\sin \theta = \frac{\sqrt{2}}{5} \), what is a possible value of \(\cos \theta \)?

- 1. \(\frac{5 + \sqrt{2}}{5} \)
- 2. \(\frac{\sqrt{23}}{5} \)
- 3. \(\frac{3\sqrt{3}}{5} \)
- 4. \(\frac{\sqrt{35}}{5} \)
361 Given \(\cos \theta = \frac{7}{25} \), where \(\theta \) is an angle in standard position terminating in quadrant IV, and
\(\sin^2 \theta + \cos^2 \theta = 1 \), what is the value of \(\tan \theta \)?
1. \(\frac{24}{25} \)
2. \(\frac{24}{7} \)
3. \(\frac{24}{25} \)
4. \(\frac{24}{7} \)

362 If \(\cos \theta = -\frac{3}{4} \) and \(\theta \) is in Quadrant III, then \(\sin \theta \) is equivalent to
1. \(-\frac{\sqrt{7}}{4} \)
2. \(\frac{\sqrt{7}}{4} \)
3. \(-\frac{5}{4} \)
4. \(\frac{5}{4} \)

363 Using the identity \(\sin^2 \theta + \cos^2 \theta = 1 \), find the value of \(\tan \theta \), to the nearest hundredth, if \(\cos \theta = -0.7 \) and \(\theta \) is in Quadrant II.

364 Given \(\tan \theta = \frac{7}{24} \), and \(\theta \) terminates in Quadrant III, determine the value of \(\cos \theta \).

365 If \(\sin^2 (32^\circ) + \cos^2 (M) = 1 \), then \(M \) equals
1. \(32^\circ \)
2. \(58^\circ \)
3. \(68^\circ \)
4. \(72^\circ \)

366 Which equation is represented by the graph shown below?
1. \(y = \frac{1}{2} \cos 2x \)
2. \(y = \cos x \)
3. \(y = \frac{1}{2} \cos x \)
4. \(y = 2 \cos \frac{1}{2} x \)
367 The depth of the water at a marker 20 feet from the shore in a bay is depicted in the graph below. If the depth, d, is measured in feet and time, t, is measured in hours since midnight, what is an equation for the depth of the water at the marker?

1. $d = 5 \cos \left(\frac{\pi}{6} t \right) + 9$
2. $d = 9 \cos \left(\frac{\pi}{6} t \right) + 5$
3. $d = 9 \sin \left(\frac{\pi}{6} t \right) + 5$
4. $d = 5 \sin \left(\frac{\pi}{6} t \right) + 9$

368 The function $f(x) = a \cos bx + c$ is plotted on the graph shown below.

What are the values of a, b, and c?
1. $a = 2$, $b = 6$, $c = 3$
2. $a = 2$, $b = 3$, $c = 1$
3. $a = 4$, $b = 6$, $c = 5$
4. $a = 4$, $b = \frac{\pi}{3}$, $c = 3$

369 The voltage used by most households can be modeled by a sine function. The maximum voltage is 120 volts, and there are 60 cycles every second. Which equation best represents the value of the voltage as it flows through the electric wires, where t is time in seconds?

1. $V = 120 \sin(t)$
2. $V = 120 \sin(60t)$
3. $V = 120 \sin(60\pi t)$
4. $V = 120 \sin(120\pi t)$
F.IF.B.4: GRAPHING TRIGONOMETRIC FUNCTIONS

370 The Ferris wheel at the landmark Navy Pier in Chicago takes 7 minutes to make one full rotation. The height, \(H \), in feet, above the ground of one of the six-person cars can be modeled by
\[
H(t) = 70 \sin \left(\frac{2 \pi}{7} (t - 1.75) \right) + 80,
\]
in minutes. Using \(H(t) \) for one full rotation, this car's minimum height, in feet, is
1 150
2 70
3 10
4 0

371 Relative to the graph of \(y = 3 \sin x \), what is the shift of the graph of \(y = 3 \sin \left(x + \frac{\pi}{3} \right) \)?
1 \(\frac{\pi}{3} \) right
2 \(\frac{\pi}{3} \) left
3 \(\frac{\pi}{3} \) up
4 \(\frac{\pi}{3} \) down

372 Given the parent function \(p(x) = \cos x \), which phrase best describes the transformation used to obtain the graph of \(g(x) = \cos(x + a) - b \), if \(a \) and \(b \) are positive constants?
1 right \(a \) units, up \(b \) units
2 right \(a \) units, down \(b \) units
3 left \(a \) units, up \(b \) units
4 left \(a \) units, down \(b \) units

373 A sine function increasing through the origin can be used to model light waves. Violet light has a wavelength of 400 nanometers. Over which interval is the height of the wave decreasing, only?
1 (0, 200)
2 (100, 300)
3 (200, 400)
4 (300, 400)

374 As \(x \) increases from 0 to \(\frac{\pi}{2} \), the graph of the equation \(y = 2 \tan x \) will
1 increase from 0 to 2
2 decrease from 0 to \(-2 \)
3 increase without limit
4 decrease without limit

375 Which function's graph has a period of 8 and reaches a maximum height of 1 if at least one full period is graphed?
1 \(y = -4 \cos \left(\frac{\pi}{4} x \right) - 3 \)
2 \(y = -4 \cos \left(\frac{\pi}{4} x \right) + 5 \)
3 \(y = -4 \cos(8x) - 3 \)
4 \(y = -4 \cos(8x) + 5 \)

376 As \(\theta \) increases from \(-\frac{\pi}{2} \) to 0 radians, the value of \(\cos \theta \) will
1 decrease from 1 to 0
2 decrease from 0 to \(-1 \)
3 increase from \(-1 \) to 0
4 increase from 0 to 1
377 Based on climate data that have been collected in Bar Harbor, Maine, the average monthly temperature, in degrees F, can be modeled by the equation
\[B(x) = 23.914 \sin(0.508x - 2.116) + 55.300. \]
The same governmental agency collected average monthly temperature data for Phoenix, Arizona, and found the temperatures could be modeled by the equation
\[P(x) = 20.238 \sin(0.525x - 2.148) + 86.729. \]
Which statement can not be concluded based on the average monthly temperature models \(x \) months after starting data collection?
1. The average monthly temperature variation is more in Bar Harbor than in Phoenix.
2. The midline average monthly temperature for Bar Harbor is lower than the midline temperature for Phoenix.
3. The maximum average monthly temperature for Bar Harbor is 79°F, to the nearest degree.
4. The minimum average monthly temperature for Phoenix is 20°F, to the nearest degree.

378 The height, \(h(t) \) in cm, of a piston, is given by the equation
\[h(t) = 12 \cos \left(\frac{\pi}{3} t \right) + 8, \]
where \(t \) represents the number of seconds since the measurements began. Determine the average rate of change, in cm/sec, of the piston's height on the interval \(1 \leq t \leq 2 \). At what value(s) of \(t \), to the nearest tenth of a second, does \(h(t) = 0 \) in the interval \(1 \leq t \leq 5 \)? Justify your answer.

379 A person’s lung capacity can be modeled by the function
\[C(t) = 250 \sin \left(\frac{2\pi}{5} t \right) + 2450, \]
where \(C(t) \) represents the volume in mL present in the lungs after \(t \) seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

F.IF.C.7: GRAPHING TRIGONOMETRIC FUNCTIONS
380 Which graph represents a cosine function with no horizontal shift, an amplitude of 2, and a period of \(\frac{2\pi}{3} \)?
381 Which sinusoid has the greatest amplitude?

\[y = 3 \sin(\theta - 3) + 5 \]

1 2 4

3 4 2

382 The height above ground for a person riding a Ferris wheel after \(t \) seconds is modeled by

\[h(t) = 150 \sin \left(\frac{\pi}{45} t + 67.5 \right) + 160 \text{ feet.} \]

How many seconds does it take to go from the bottom of the wheel to the top of the wheel?

1 10

2 45

3 90

4 150

384 Tides are a periodic rise and fall of ocean water. On a typical day at a seaport, to predict the time of the next high tide, the most important value to have would be the

1 time between consecutive low tides

2 time when the tide height is 20 feet

3 average depth of water over a 24-hour period

4 difference between the water heights at low and high tide

385 The average monthly temperature of a city can be modeled by a cosine graph. Melissa has been living in Phoenix, Arizona, where the average annual temperature is 75°F. She would like to move, and live in a location where the average annual temperature is 62°F. When examining the graphs of the average monthly temperatures for various locations, Melissa should focus on the

1 amplitude

2 horizontal shift

3 period

4 midline

386 The volume of air in a person’s lungs, as the person breathes in and out, can be modeled by a sine graph. A scientist is studying the differences in this volume for people at rest compared to people told to take a deep breath. When examining the graphs, should the scientist focus on the amplitude, period, or midline? Explain your choice.

387 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of -2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of -0.1 ft at 5:31 a.m. The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.
388 The graph below represents the height above the ground, \(h \), in inches, of a point on a triathlete's bike wheel during a training ride in terms of time, \(t \), in seconds.

Identify the period of the graph and describe what the period represents in this context.

389 Visible light can be represented by sinusoidal waves. Three visible light waves are shown in the graph below. The midline of each wave is labeled \(\ell \).

Based on the graph, which light wave has the longest period? Justify your answer.
390 a) On the axes below, sketch at least one cycle of a sine curve with an amplitude of 2, a midline at $y = -\frac{3}{2}$, and a period of 2π.

b) Explain any differences between a sketch of $y = 2\sin\left(x - \frac{\pi}{3}\right) - \frac{3}{2}$ and the sketch from part a.

391 Graph $t(x) = 3\sin(2x) + 2$ over the domain $[0, 2\pi]$ on the set of axes below.
392 On the axes below, graph one cycle of a cosine function with amplitude 3, period $\frac{\pi}{2}$, midline $y = -1$, and passing through the point (0,2).

393 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$. On the grid below, sketch the graph of the equation in the interval 0 to 2π.
394 The ocean tides near Carter Beach follow a repeating pattern over time, with the amount of time between each low and high tide remaining relatively constant. On a certain day, low tide occurred at 8:30 a.m. and high tide occurred at 3:00 p.m. At high tide, the water level was 12 inches above the average local sea level; at low tide it was 12 inches below the average local sea level. Assume that high tide and low tide are the maximum and minimum water levels each day, respectively. Write a cosine function of the form $f(t) = A \cos(Bt)$, where A and B are real numbers, that models the water level, $f(t)$, in inches above or below the average Carter Beach sea level, as a function of the time measured in t hours since 8:30 a.m. On the grid below, graph one cycle of this function.

People who fish in Carter Beach know that a certain species of fish is most plentiful when the water level is increasing. Explain whether you would recommend fishing for this species at 7:30 p.m. or 10:30 p.m. using evidence from the given context.

395 The resting blood pressure of an adult patient can be modeled by the function P below, where $P(t)$ is the pressure in millimeters of mercury after time t in seconds.

$$P(t) = 24 \cos(3\pi t) + 120$$

On the set of axes below, graph $y = P(t)$ over the domain $0 \leq t \leq 2$.

Determine the period of P. Explain what this value represents in the given context. Normal resting blood pressure for an adult is 120 over 80. This means that the blood pressure oscillates between a maximum of 120 and a minimum of 80. Adults with high blood pressure (above 140 over 90) and adults with low blood pressure (below 90 over 60) may be at risk for health disorders. Classify the given patient's blood pressure as low, normal, or high and explain your reasoning.
396 Griffin is riding his bike down the street in Churchville, N.Y. at a constant speed, when a nail gets caught in one of his tires. The height of the nail above the ground, in inches, can be represented by the trigonometric function

\[f(t) = -13 \cos(0.8\pi t) + 13, \]

where \(t \) represents the time (in seconds) since the nail first became caught in the tire. Determine the period of \(f(t) \). Interpret what the period represents in this context. On the grid below, graph at least one cycle of \(f(t) \) that includes the \(y \)-intercept of the function.

Does the height of the nail ever reach 30 inches above the ground? Justify your answer.

397 The equation \(4x^2 - 24x + 4y^2 + 72y = 76 \) is equivalent to

1. \(4(x - 3)^2 + 4(y + 9)^2 = 76 \)
2. \(4(x - 3)^2 + 4(y + 9)^2 = 121 \)
3. \(4(x - 3)^2 + 4(y + 9)^2 = 166 \)
4. \(4(x - 3)^2 + 4(y + 9)^2 = 436 \)
400 Anne has a coin. She does not know if it is a fair coin. She flipped the coin 100 times and obtained 73 heads and 27 tails. She ran a computer simulation of 200 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Given the results of her coin flips and of her computer simulation, which statement is most accurate?
1 73 of the computer's next 100 coin flips will be heads.
2 50 of her next 100 coin flips will be heads.
3 Her coin is not fair.
4 Her coin is fair.

401 Robin flips a coin 100 times. It lands heads up 43 times, and she wonders if the coin is unfair. She runs a computer simulation of 750 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Do the results of the simulation provide strong evidence that Robin’s coin is unfair? Explain your answer.

402 A game spinner is divided into 6 equally sized regions, as shown in the diagram below.

For Miles to win, the spinner must land on the number 6. After spinning the spinner 10 times, and losing all 10 times, Miles complained that the spinner is unfair. At home, his dad ran 100 simulations of spinning the spinner 10 times, assuming the probability of winning each spin is $\frac{1}{6}$.

The output of the simulation is shown in the diagram below.

Which explanation is appropriate for Miles and his dad to make?
1 The spinner was likely unfair, since the number 6 failed to occur in about 20% of the simulations.
2 The spinner was likely unfair, since the spinner should have landed on the number 6 by the sixth spin.
3 The spinner was likely not unfair, since the number 6 failed to occur in about 20% of the simulations.
4 The spinner was likely not unfair, since in the output the player wins once or twice in the majority of the simulations.
403 The results of simulating tossing a coin 10 times, recording the number of heads, and repeating this 50 times are shown in the graph below.

Based on the results of the simulation, which statement is false?
1 Five heads occurred most often, which is consistent with the theoretical probability of obtaining a heads.
2 Eight heads is unusual, as it falls outside the middle 95% of the data.
3 Obtaining three heads or fewer occurred 28% of the time.
4 Seven heads is not unusual, as it falls within the middle 95% of the data.

404 In a random sample of 250 men in the United States, age 21 or older, 139 are married. The graph below simulated samples of 250 men, 200 times, assuming that 139 of the men are married.

a) Based on the simulation, create an interval in which the middle 95% of the number of married men may fall. Round your answer to the nearest integer.
b) A study claims "50 percent of men 21 and older in the United States are married." Do your results from part a contradict this claim? Explain.
405 A radio station claims to its advertisers that the mean number of minutes commuters listen to the station is 30. The station conducted a survey of 500 of their listeners who commute. The sample statistics are shown below.

<table>
<thead>
<tr>
<th>X</th>
<th>29.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_x</td>
<td>20.718</td>
</tr>
</tbody>
</table>

A simulation was run 1000 times based upon the results of the survey. The results of the simulation appear below.

Based on the simulation results, is the claim that commuters listen to the station on average 30 minutes plausible? Explain your response including an interval containing the middle 95% of the data, rounded to the nearest hundredth.
S.I.C.B.3: ANALYSIS OF DATA

406 Which statement(s) about statistical studies is true?
I. A survey of all English classes in a high school would be a good sample to determine the number of hours students throughout the school spend studying.
II. A survey of all ninth graders in a high school would be a good sample to determine the number of student parking spaces needed at that high school.
III. A survey of all students in one lunch period in a high school would be a good sample to determine the number of hours adults spend on social media websites.
IV. A survey of all Calculus students in a high school would be a good sample to determine the number of students throughout the school who don’t like math.
1 I, only
2 II, only
3 I and III
4 III and IV

407 Cheap and Fast gas station is conducting a consumer satisfaction survey. Which method of collecting data would most likely lead to a biased sample?
1 interviewing every 5th customer to come into the station
2 interviewing customers chosen at random by a computer at the checkout
3 interviewing customers who call an 800 number posted on the customers' receipts
4 interviewing every customer who comes into the station on a day of the week chosen at random out of a hat

408 Which statement about statistical analysis is false?
1 Experiments can suggest patterns and relationships in data.
2 Experiments can determine cause and effect relationships.
3 Observational studies can determine cause and effect relationships.
4 Observational studies can suggest patterns and relationships in data.

409 Which scenario is best described as an observational study?
1 For a class project, students in Health class ask every tenth student entering the school if they eat breakfast in the morning.
2 A social researcher wants to learn whether or not there is a link between attendance and grades. She gathers data from 15 school districts.
3 A researcher wants to learn whether or not there is a link between children's daily amount of physical activity and their overall energy level. During lunch at the local high school, she distributed a short questionnaire to students in the cafeteria.
4 Sixty seniors taking a course in Advanced Algebra Concepts are randomly divided into two classes. One class uses a graphing calculator all the time, and the other class never uses graphing calculators. A guidance counselor wants to determine whether there is a link between graphing calculator use and students' final exam grades.

410 Which investigation technique is most often used to determine if a single variable has an impact on a given population?
1 observational study
2 random survey
3 controlled experiment
4 formal interview
411 The operator of the local mall wants to find out how many of the mall's employees make purchases in the food court when they are working. She hopes to use these data to increase the rent and attract new food vendors. In total, there are 1023 employees who work at the mall. The best method to obtain a random sample of the employees would be to survey:
1. all 170 employees at each of the larger stores
2. 50% of the 90 employees of the food court
3. every employee
4. every 30th employee entering each mall entrance for one week

412 A researcher randomly divides 50 bean plants into two groups. He puts one group by a window to receive natural light and the second group under artificial light. He records the growth of the plants weekly. Which data collection method is described in this situation?
1. observational study
2. controlled experiment
3. survey
4. systematic sample

413 A random sample of 100 people that would best estimate the proportion of all registered voters in a district who support improvements to the high school football field should be drawn from registered voters in the district at a:
1. football game
2. supermarket
3. school fund-raiser
4. high school band concert

414 A sociologist reviews randomly selected surveillance videos from a public park over a period of several years and records the amount of time people spent on a smartphone. The statistical procedure the sociologist used is called:
1. a census
2. an experiment
3. an observational study
4. a sample survey

415 A veterinary pharmaceutical company plans to test a new drug to treat a common intestinal infection among puppies. The puppies are randomly assigned to two equal groups. Half of the puppies will receive the drug, and the other half will receive a placebo. The veterinarians monitor the puppies. This is an example of which study method?
1. census
2. observational study
3. survey
4. controlled experiment

416 According to a study, 45% of Americans have type O blood. If a random number generator produces three-digit values from 000 to 999, which values would represent those having type O blood?
1. between 000 and 045, inclusive
2. between 000 and 444, inclusive
3. between 000 and 449, inclusive
4. between 000 and 450, inclusive

417 Describe how a controlled experiment can be created to examine the effect of ingredient X in a toothpaste.
418 Chuck's Trucking Company has decided to initiate an Employee of the Month program. To determine the recipient, they put the following sign on the back of each truck.

The driver who receives the highest number of positive comments will win the recognition. Explain one statistical bias in this data collection method.

S.IC.B.4: ANALYSIS OF DATA

419 A study conducted in 2004 in New York City found that 212 out of 1334 participants had hypertension. Kim ran a simulation of 100 studies based on these data. The output of the simulation is shown in the diagram below.

At a 95% confidence level, the proportion of New York City residents with hypertension and the margin of error are closest to
1 proportion ≈ .16; margin of error ≈ .01
2 proportion ≈ .16; margin of error ≈ .02
3 proportion ≈ .01; margin of error ≈ .16
4 proportion ≈ .02; margin of error ≈ .16

420 A candidate for political office commissioned a poll. His staff received responses from 900 likely voters and 55% of them said they would vote for the candidate. The staff then conducted a simulation of 1000 more polls of 900 voters, assuming that 55% of voters would vote for their candidate. The output of the simulation is shown in the diagram below.

Given this output, and assuming a 95% confidence level, the margin of error for the poll is closest to
1 0.01
2 0.03
3 0.06
4 0.12
Stephen’s Beverage Company is considering whether to produce a new brand of cola. The company will launch the product if at least 25% of cola drinkers will buy the product. Fifty cola drinkers are randomly selected to take a blind taste-test of products \(A\), \(B\), and the new product. Nine out of fifty participants preferred Stephen’s new cola to products \(A\) and \(B\). The company then devised a simulation based on the requirement that 25% of cola drinkers will buy the product. Each dot in the graph shown below represents the proportion of people who preferred Stephen’s new product, each of sample size 50, simulated 100 times.

Assume the set of data is approximately normal and the company wants to be 95% confident of its results. Does the sample proportion obtained from the blind taste-test, nine out of fifty, fall within the margin of error developed from the simulation? Justify your answer. The company decides to continue developing the product even though only nine out of fifty participants preferred its brand of cola in the taste-test. Describe how the simulation data could be used to support this decision.
422 Some smart-phone applications contain "in-app" purchases, which allow users to purchase special content within the application. A random sample of 140 users found that 35 percent made in-app purchases. A simulation was conducted with 200 samples of 140 users assuming 35 percent of the samples make in-app purchases. The approximately normal results are shown below.

Considering the middle 95% of the data, determine the margin of error, to the nearest hundredth, for the simulated results. In the given context, explain what this value represents.
S.I.C.B.5: ANALYSIS OF DATA

423 A group of students was trying to determine the proportion of candies in a bag that are blue. The company claims that 24% of candies in bags are blue. A simulation was run 100 times with a sample size of 50, based on the premise that 24% of the candies are blue. The approximately normal results of the simulation are shown in the dot plot below.

The simulation results in a mean of 0.254 and a standard deviation of 0.060. Based on this simulation, what is a plausible interval containing the middle 95% of the data?

1. (0.194, 0.314)
2. (0.134, 0.374)
3. (−0.448, 0.568)
4. (0.254, 0.374)

424 The J& B candy company claims that 45% of the candies it produces are blue, 30% are brown, and 25% are yellow. Each bag holds 65 candies. A simulation was run 200 times, each of sample size 65, based on the premise that 45% of the candies are blue. The results of the simulation are shown below.

Bonnie purchased a bag of J& B's candy and counted 24 blue candies. What inference can be made regarding a bag of J& B's with only 24 blue candies?

1. The company is not meeting their production standard.
2. Bonnie's bag was a rarity and the company should not be concerned.
3. The company should change their claim to 37% blue candies are produced.
4. Bonnie's bag is within the middle 95% of the simulated data supporting the company's claim.
Gabriel performed an experiment to see if planting 13 tomato plants in black plastic mulch leads to larger tomatoes than if 13 plants are planted without mulch. He observed that the average weight of the tomatoes from tomato plants grown in black plastic mulch was 5 ounces greater than those from the plants planted without mulch. To determine if the observed difference is statistically significant, he rerandomized the tomato groups 100 times to study these random differences in the mean weights. The output of his simulation is summarized in the dotplot below.

Given these results, what is an appropriate inference that can be drawn?

1. There was no effect observed between the two groups.
2. There was an effect observed that could be due to the random assignment of plants to the groups.
3. There is strong evidence to support the hypothesis that tomatoes from plants planted in black plastic mulch are larger than those planted without mulch.
4. There is strong evidence to support the hypothesis that tomatoes from plants planted without mulch are larger than those planted in black plastic mulch.
Seventy-two students are randomly divided into two equally-sized study groups. Each member of the first group (group 1) is to meet with a tutor after school twice each week for one hour. The second group (group 2), is given an online subscription to a tutorial account that they can access for a maximum of two hours each week. Students in both groups are given the same tests during the year. A summary of the two groups’ final grades is shown below:

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>80.16</td>
<td>83.8</td>
</tr>
<tr>
<td>(s_x)</td>
<td>6.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Calculate the mean difference in the final grades (group 1 – group 2) and explain its meaning in the context of the problem. A simulation was conducted in which the students’ final grades were rerandomized 500 times. The results are shown below.

Use the simulation to determine if there is a significant difference in the final grades. Explain your answer.
427 Fifty-five students attending the prom were randomly selected to participate in a survey about the music choice at the prom. Sixty percent responded that a DJ would be preferred over a band. Members of the prom committee thought that the vote would have 50% for the DJ and 50% for the band. A simulation was run 200 times, each of sample size 55, based on the premise that 60% of the students would prefer a DJ. The approximate normal simulation results are shown below.

Using the results of the simulation, determine a plausible interval containing the middle 95% of the data. Round all values to the nearest hundredth. Members of the prom committee are concerned that a vote of all students attending the prom may produce a 50% – 50% split. Explain what statistical evidence supports this concern.

428 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within. Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.
Charlie's Automotive Dealership is considering implementing a new check-in procedure for customers who are bringing their vehicles for routine maintenance. The dealership will launch the procedure if 50% or more of the customers give the new procedure a favorable rating when compared to the current procedure. The dealership devises a simulation based on the minimal requirement that 50% of the customers prefer the new procedure. Each dot on the graph below represents the proportion of the customers who preferred the new check-in procedure, each of sample size 40, simulated 100 times.

Assume the set of data is approximately normal and the dealership wants to be 95% confident of its results. Determine an interval containing the plausible sample values for which the dealership will launch the new procedure. Round your answer to the nearest hundredth. Forty customers are selected randomly to undergo the new check-in procedure and the proportion of customers who prefer the new procedure is 32.5%. The dealership decides not to implement the new check-in procedure based on the results of the study. Use statistical evidence to explain this decision.
Ayva designed an experiment to determine the effect of a new energy drink on a group of 20 volunteer students. Ten students were randomly selected to form group 1 while the remaining 10 made up group 2. Each student in group 1 drank one energy drink, and each student in group 2 drank one cola drink. Ten minutes later, their times were recorded for reading the same paragraph of a novel. The results of the experiment are shown below.

<table>
<thead>
<tr>
<th>Group 1 (seconds)</th>
<th>Group 2 (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>23.3</td>
</tr>
<tr>
<td>18.1</td>
<td>18.8</td>
</tr>
<tr>
<td>18.2</td>
<td>22.1</td>
</tr>
<tr>
<td>19.6</td>
<td>12.7</td>
</tr>
<tr>
<td>18.6</td>
<td>16.9</td>
</tr>
<tr>
<td>16.2</td>
<td>24.4</td>
</tr>
<tr>
<td>16.1</td>
<td>21.2</td>
</tr>
<tr>
<td>15.3</td>
<td>21.2</td>
</tr>
<tr>
<td>17.8</td>
<td>16.3</td>
</tr>
<tr>
<td>19.7</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Mean = 17.7
Mean = 19.1

Ayva thinks drinking energy drinks makes students read faster. Using information from the experimental design or the results, explain why Ayva’s hypothesis may be incorrect. Using the given results, Ayva randomly mixes the 20 reading times, splits them into two groups of 10, and simulates the difference of the means 232 times.

Ayva has decided that the difference in mean reading times is not an unusual occurrence. Support her decision using the results of the simulation. Explain your reasoning.
Joseph was curious to determine if scent improves memory. A test was created where better memory is indicated by higher test scores. A controlled experiment was performed where one group was given the test on scented paper and the other group was given the test on unscented paper. The summary statistics from the experiment are given below.

<table>
<thead>
<tr>
<th></th>
<th>Scented Paper</th>
<th>Unscented Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x})</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>(s_x)</td>
<td>2.898</td>
<td>2.408</td>
</tr>
</tbody>
</table>

Calculate the difference in means in the experimental test grades (scented - unscented). A simulation was conducted in which the subjects' scores were rerandomized into two groups 1000 times. The differences of the group means were calculated each time. The results are shown below.

Use the simulation results to determine the interval representing the middle 95% of the difference in means, to the nearest hundredth. Is the difference in means in Joseph's experiment statistically significant based on the simulation? Explain.
To determine if the type of music played while taking a quiz has a relationship to results, 16 students were randomly assigned to either a room softly playing classical music or a room softly playing rap music. The results on the quiz were as follows:

Classical: 74, 83, 77, 77, 84, 82, 90, 89
Rap: 77, 80, 78, 74, 69, 72, 78, 69

John correctly rounded the difference of the means of his experimental groups as 7. How did John obtain this value and what does it represent in the given context? Justify your answer. To determine if there is any significance in this value, John rerandomized the 16 scores into two groups of 8, calculated the difference of the means, and simulated this process 250 times as shown below.

Does the simulation support the theory that there may be a significant difference in quiz scores? Explain.
S.I.C.B.6: ANALYSIS OF DATA

433 A public opinion poll was conducted on behalf of Mayor Ortega’s reelection campaign shortly before the election. 264 out of 550 likely voters said they would vote for Mayor Ortega; the rest said they would vote for his opponent. Which statement is least appropriate to make, according to the results of the poll?

1. There is a 48% chance that Mayor Ortega will win the election.
2. The point estimate (\(\hat{p}\)) of voters who will vote for Mayor Ortega is 48%.
3. It is most likely that between 44% and 52% of voters will vote for Mayor Ortega.
4. Due to the margin of error, an inference cannot be made regarding whether Mayor Ortega or his opponent is most likely to win the election.

S.I.D.B.6: REGRESSION

434 Elizabeth waited for 6 minutes at the drive thru at her favorite fast-food restaurant the last time she visited. She was upset about having to wait that long and notified the manager. The manager assured her that her experience was very unusual and that it would not happen again. A study of customers commissioned by this restaurant found an approximately normal distribution of results. The mean wait time was 226 seconds and the standard deviation was 38 seconds. Given these data, and using a 95% level of confidence, was Elizabeth’s wait time unusual? Justify your answer.

435 The price of a postage stamp in the years since the end of World War I is shown in the scatterplot below.

\[
y = 0.59x - 14.82
\]

The equation that best models the price, in cents, of a postage stamp based on these data is

1. \(y = 0.59x - 14.82\)
2. \(y = 1.04(1.43)^x\)
3. \(y = 1.43(1.04)^x\)
4. \(y = 24\sin(14x) + 25\)
436 A scatterplot showing the weight, w, in grams, of each crystal after growing t hours is shown below.

The relationship between weight, w, and time, t, is best modeled by

1. $w = 4^t + 5$
2. $w = (1.4)^t + 2$
3. $w = 5(2.1)^t$
4. $w = 8(.75)^t$

437 Using a microscope, a researcher observed and recorded the number of bacteria spores on a large sample of uniformly sized pieces of meat kept at room temperature. A summary of the data she recorded is shown in the table below.

<table>
<thead>
<tr>
<th>Hours (x)</th>
<th>Average Number of Spores (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>260</td>
</tr>
<tr>
<td>4</td>
<td>1130</td>
</tr>
<tr>
<td>6</td>
<td>16,380</td>
</tr>
</tbody>
</table>

Using these data, write an exponential regression equation, rounding all values to the nearest thousandth. The researcher knows that people are likely to suffer from food-borne illness if the number of spores exceeds 100. Using the exponential regression equation, determine the maximum amount of time, to the nearest quarter hour, that the meat can be kept at room temperature safely.
A runner is using a nine-week training app to prepare for a "fun run." The table below represents the amount of the program completed, A, and the distance covered in a session, D, in miles.

<table>
<thead>
<tr>
<th>A</th>
<th>4/9</th>
<th>5/9</th>
<th>6/9</th>
<th>8/9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2</td>
<td>2.25</td>
<td>3</td>
<td>3.25</td>
<td></td>
</tr>
</tbody>
</table>

Based on these data, write an exponential regression equation, rounded to the nearest thousandth, to model the distance the runner is able to complete in a session as she continues through the nine-week program.

The table below gives air pressures in kPa at selected altitudes above sea level measured in kilometers.

<table>
<thead>
<tr>
<th>x</th>
<th>Altitude (km)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Air Pressure (kPa)</td>
<td>101</td>
<td>90</td>
<td>79</td>
<td>70</td>
<td>62</td>
<td>54</td>
</tr>
</tbody>
</table>

Write an exponential regression equation that models these data rounding all values to the nearest thousandth. Use this equation to algebraically determine the altitude, to the nearest hundredth of a kilometer, when the air pressure is 29 kPa.

S.ID.A.4: NORMAL DISTRIBUTIONS

There are 440 students at Thomas Paine High School enrolled in U.S. History. On the April report card, the students’ grades are approximately normally distributed with a mean of 79 and a standard deviation of 7. Students who earn a grade less than or equal to 64.9 must attend summer school. The number of students who must attend summer school for U.S. History is closest to 1, 3, 5, 10.

The heights of women in the United States are normally distributed with a mean of 64 inches and a standard deviation of 2.75 inches. The percent of women whose heights are between 64 and 69.5 inches, to the nearest whole percent, is 6, 48, 68, 95.

The lifespan of a 60-watt lightbulb produced by a company is normally distributed with a mean of 1450 hours and a standard deviation of 8.5 hours. If a 60-watt lightbulb produced by this company is selected at random, what is the probability that its lifespan will be between 1440 and 1465 hours? 0.3803, 0.4612, 0.8415, 0.9612.
443 In 2013, approximately 1.6 million students took the Critical Reading portion of the SAT exam. The mean score, the modal score, and the standard deviation were calculated to be 496, 430, and 115, respectively. Which interval reflects 95% of the Critical Reading scores?
1 430 ± 115
2 430 ± 230
3 496 ± 115
4 496 ± 230

444 The distribution of the diameters of ball bearings made under a given manufacturing process is normally distributed with a mean of 4 cm and a standard deviation of 0.2 cm. What proportion of the ball bearings will have a diameter less than 3.7 cm?
1 0.0668
2 0.4332
3 0.8664
4 0.9500

445 The weights of bags of Graseck's Chocolate Candies are normally distributed with a mean of 4.3 ounces and a standard deviation of 0.05 ounces. What is the probability that a bag of these chocolate candies weighs less than 4.27 ounces?
1 0.2257
2 0.2743
3 0.7257
4 0.7757

446 The mean intelligence quotient (IQ) score is 100, with a standard deviation of 15, and the scores are normally distributed. Given this information, the approximate percentage of the population with an IQ greater than 130 is closest to
1 2%
2 31%
3 48%
4 95%

447 The scores on a mathematics college-entry exam are normally distributed with a mean of 68 and standard deviation 7.2. Students scoring higher than one standard deviation above the mean will not be enrolled in the mathematics tutoring program. How many of the 750 incoming students can be expected to be enrolled in the tutoring program?
1 631
2 512
3 238
4 119

448 There are 400 students in the senior class at Oak Creek High School. All of these students took the SAT. The distribution of their SAT scores is approximately normal. The number of students who scored within 2 standard deviations of the mean is approximately
1 75
2 95
3 300
4 380

449 Suppose two sets of test scores have the same mean, but different standard deviations, σ_1 and σ_2, with $\sigma_2 > \sigma_1$. Which statement best describes the variability of these data sets?
1 Data set one has the greater variability.
2 Data set two has the greater variability.
3 The variability will be the same for each data set.
4 No conclusion can be made regarding the variability of either set.

450 The scores of a recent test taken by 1200 students had an approximately normal distribution with a mean of 225 and a standard deviation of 18. Determine the number of students who scored between 200 and 245.
451 The weight of a bag of pears at the local market averages 8 pounds with a standard deviation of 0.5 pound. The weights of all the bags of pears at the market closely follow a normal distribution. Determine what percentage of bags, to the nearest integer, weighed less than 8.25 pounds.

452 Two versions of a standardized test are given, an April version and a May version. The statistics for the April version show a mean score of 480 and a standard deviation of 24. The statistics for the May version show a mean score of 510 and a standard deviation of 20. Assume the scores are normally distributed. Joanne took the April version and scored in the interval 510-540. What is the probability, to the nearest ten thousandth, that a test paper selected at random from the April version scored in the same interval? Maria took the May version. In what interval must Maria score to claim she scored as well as Joanne?

453 The probability that Gary and Jane have a child with blue eyes is 0.25, and the probability that they have a child with blond hair is 0.5. The probability that they have a child with both blue eyes and blond hair is 0.125. Given this information, the events blue eyes and blond hair are

I: dependent
II: independent
III: mutually exclusive

1 I, only
2 II, only
3 I and III
4 II and III

454 A suburban high school has a population of 1376 students. The number of students who participate in sports is 649. The number of students who participate in music is 433. If the probability that a student participates in either sports or music is \(\frac{974}{1376} \), what is the probability that a student participates in both sports and music?

455 On a given school day, the probability that Nick oversleeps is 48% and the probability he has a pop quiz is 25%. Assuming these two events are independent, what is the probability that Nick oversleeps and has a pop quiz on the same day?

1 73%
2 36%
3 23%
4 12%

456 Given events \(A \) and \(B \), such that \(P(A) = 0.6 \), \(P(B) = 0.5 \), and \(P(A \cup B) = 0.8 \), determine whether \(A \) and \(B \) are independent or dependent.

457 In contract negotiations between a local government agency and its workers, it is estimated that there is a 50% chance that an agreement will be reached on the salaries of the workers. It is estimated that there is a 70% chance that there will be an agreement on the insurance benefits. There is a 20% chance that no agreement will be reached on either issue. Find the probability that an agreement will be reached on both issues. Based on this answer, determine whether the agreement on salaries and the agreement on insurance are independent events. Justify your answer.
S.C.P.A.1: VENN DIAGRAMS

Data for the students enrolled in a local high school are shown in the Venn diagram below.

If a student from the high school is selected at random, what is the probability that the student is a sophomore given that the student is enrolled in Algebra II?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>295</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>405</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>1600</td>
</tr>
</tbody>
</table>

S.C.P.A.3: CONDITIONAL PROBABILITY

Consider the probability statements regarding events A and B below.

$$P(A \text{ or } B) = 0.3;$$
$$P(A \text{ and } B) = 0.2;$$ and
$$P(A|B) = 0.8$$

What is $P(B)$?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
</tr>
<tr>
<td>4</td>
<td>0.667</td>
</tr>
</tbody>
</table>

460 A fast-food restaurant analyzes data to better serve its customers. After its analysis, it discovers that the events D, that a customer uses the drive-thru, and F, that a customer orders French fries, are independent. The following data are given in a report:

$$P(F) = 0.8$$
$$P(F \cap D) = 0.456$$

Given this information, $P(F|D)$ is

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.344</td>
</tr>
<tr>
<td>2</td>
<td>0.3648</td>
</tr>
<tr>
<td>3</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

461 Sean's team has a baseball game tomorrow. He pitches 50% of the games. There is a 40% chance of rain during the game tomorrow. If the probability that it rains given that Sean pitches is 40%, it can be concluded that these two events are

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>independent</td>
</tr>
<tr>
<td>2</td>
<td>dependent</td>
</tr>
<tr>
<td>3</td>
<td>mutually exclusive</td>
</tr>
<tr>
<td>4</td>
<td>complements</td>
</tr>
</tbody>
</table>

462 Suppose events A and B are independent and $P(A \text{ and } B)$ is 0.2. Which statement could be true?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P(A) = 0.4$, $P(B) = 0.3$, $P(A \text{ or } B) = 0.5$</td>
</tr>
<tr>
<td>2</td>
<td>$P(A) = 0.8$, $P(B) = 0.25$</td>
</tr>
<tr>
<td>3</td>
<td>$P(A</td>
</tr>
<tr>
<td>4</td>
<td>$P(A) = 0.15$, $P(B) = 0.05$</td>
</tr>
</tbody>
</table>
463 Which situation best describes conditional probability?
1 finding the probability of an event occurring two or more times
2 finding the probability of an event occurring only once
3 finding the probability of two independent events occurring at the same time
4 finding the probability of an event occurring given another event had already occurred

464 The probability that a resident of a housing community opposes spending money for community improvement on plumbing issues is 0.8. The probability that a resident favors spending money on improving walkways given that the resident opposes spending money on plumbing issues is 0.85. Determine the probability that a randomly selected resident opposes spending money on plumbing issues and favors spending money on walkways.

465 A student is chosen at random from the student body at a given high school. The probability that the student selects Math as the favorite subject is $\frac{1}{4}$. The probability that the student chosen is a junior is $\frac{116}{459}$. If the probability that the student selected is a junior or that the student chooses Math as the favorite subject is $\frac{47}{108}$, what is the exact probability that the student selected is a junior whose favorite subject is Math? Are the events "the student is a junior" and "the student's favorite subject is Math" independent of each other? Explain your answer.

S.CP.A.4: CONDITIONAL PROBABILITY

466 The set of data in the table below shows the results of a survey on the number of messages that people of different ages text on their cell phones each month.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>0-10</th>
<th>11-50</th>
<th>Over 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-18</td>
<td>4</td>
<td>37</td>
<td>68</td>
</tr>
<tr>
<td>19-22</td>
<td>6</td>
<td>25</td>
<td>87</td>
</tr>
<tr>
<td>23-60</td>
<td>25</td>
<td>47</td>
<td>157</td>
</tr>
</tbody>
</table>

If a person from this survey is selected at random, what is the probability that the person texts over 50 messages per month given that the person is between the ages of 23 and 60?

1 $\frac{157}{229}$
2 $\frac{157}{312}$
3 $\frac{157}{384}$
4 $\frac{157}{456}$
467 Consider the data in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Right Handed</th>
<th>Left Handed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>89</td>
<td>11</td>
</tr>
</tbody>
</table>

What is the probability that a randomly selected person is male given the person is left handed?

1 \[\frac{13}{200} \]

2 \[\frac{13}{100} \]

3 \[\frac{13}{50} \]

4 \[\frac{13}{24} \]

468 The results of a poll of 200 students are shown in the table below:

<table>
<thead>
<tr>
<th>Preferred Music Style</th>
<th>Techno</th>
<th>Rap</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>54</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Male</td>
<td>36</td>
<td>40</td>
<td>18</td>
</tr>
</tbody>
</table>

For this group of students, do these data suggest that gender and preferred music styles are independent of each other? Justify your answer.

469 The results of a survey of the student body at Central High School about television viewing preferences are shown below.

<table>
<thead>
<tr>
<th></th>
<th>Comedy Series</th>
<th>Drama Series</th>
<th>Reality Series</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>95</td>
<td>65</td>
<td>70</td>
<td>230</td>
</tr>
<tr>
<td>Females</td>
<td>80</td>
<td>70</td>
<td>110</td>
<td>260</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>135</td>
<td>180</td>
<td>490</td>
</tr>
</tbody>
</table>

Are the events “student is a male” and “student prefers reality series” independent of each other? Justify your answer.
470 Data collected about jogging from students with two older siblings are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Neither Sibling Jogs</th>
<th>One Sibling Jogs</th>
<th>Both Siblings Jog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Does Not Jog</td>
<td>1168</td>
<td>1823</td>
<td>1380</td>
</tr>
<tr>
<td>Student Jogs</td>
<td>188</td>
<td>416</td>
<td>400</td>
</tr>
</tbody>
</table>

Using these data, determine whether a student with two older siblings is more likely to jog if one sibling jogs or if both siblings jog. Justify your answer.

471 A survey about television-viewing preferences was given to randomly selected freshmen and seniors at Fairport High School. The results are shown in the table below.

<table>
<thead>
<tr>
<th>Favorite Type of Program</th>
<th>Sports</th>
<th>Reality Show</th>
<th>Comedy Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td>83</td>
<td>110</td>
<td>67</td>
</tr>
<tr>
<td>Freshmen</td>
<td>119</td>
<td>103</td>
<td>54</td>
</tr>
</tbody>
</table>

A student response is selected at random from the results. State the exact probability the student response is from a freshman, given the student prefers to watch reality shows on television.

472 Juan and Filipe practice at the driving range before playing golf. The number of wins and corresponding practice times for each player are shown in the table below.

<table>
<thead>
<tr>
<th>Practice Time</th>
<th>Juan Wins</th>
<th>Filipe Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Practice Time</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Long Practice Time</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

Given that the practice time was long, determine the exact probability that Filipe wins the next match. Determine whether or not the two events “Filipe wins” and “long practice time” are independent. Justify your answer.
473 The guidance department has reported that of the senior class, 2.3% are members of key club, K, 8.6% are enrolled in AP Physics, P, and 1.9% are in both. Determine the probability of P given K, to the nearest tenth of a percent. The principal would like a basic interpretation of these results. Write a statement relating your calculated probabilities to student enrollment in the given situation.

474 A study was designed to test the effectiveness of a new drug. Half of the volunteers received the drug. The other half received a sugar pill. The probability of a volunteer receiving the drug and getting well was 40%. What is the probability of a volunteer getting well, given that the volunteer received the drug?

475 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.
Algebra II Regents Exam Questions by State Standard: Topic
Answer Section

1 ANS: 4
(1) \(\frac{B(60) - B(10)}{60 - 10} \approx 28\% \) (2) \(\frac{B(69) - B(19)}{69 - 19} \approx 33\% \) (3) \(\frac{B(72) - B(36)}{72 - 36} \approx 38\% \) (4) \(\frac{B(73) - B(60)}{73 - 60} \approx 46\%

PTS: 2
REF: 011721aii
NAT: F.IF.B.6
TOP: Rate of Change

2 ANS:
\[\frac{306.25 - 156.25}{70 - 50} = \frac{150}{20} = 7.5 \] Between 50-70 mph, each additional mph in speed requires 7.5 more feet to stop.

PTS: 2
REF: 081631aii
NAT: F.IF.B.6
TOP: Rate of Change

3 ANS: 1
(1) \(\frac{9 - 0}{2 - 1} = 9 \) (2) \(\frac{17 - 0}{3.5 - 1} = 6.8 \) (3) \(\frac{0 - 0}{5 - 1} = 0 \) (4) \(\frac{17 - 5}{3.5 - 1} \approx 6.3 \)

PTS: 2
REF: 011724aii
NAT: F.IF.B.6
TOP: Rate of Change

4 ANS: 1
PTS: 2
REF: 061904aii
NAT: F.IF.B.6
TOP: Rate of Change

5 ANS: 3
\[\frac{f(7) - f(-7)}{7 - (-7)} = \frac{2^{-0.25(7)} \cdot \sin\left(\frac{\pi}{2}(7)\right) - 2^{-0.25(-7)} \cdot \sin\left(\frac{\pi}{2}(-7)\right)}{14} \approx -0.26 \]

PTS: 2
REF: 061721aii
NAT: F.IF.B.6
TOP: Rate of Change

6 ANS: 3
\[\log_{0.8}\left(\frac{V}{17000}\right) = t \]
\[\frac{17,000(0.8)^3 - 17,000(0.8)^1}{3 - 1} \approx -2450 \]

\[0.8^t = \frac{V}{17000} \]
\[V = 17000(0.8)^t \]

PTS: 2
REF: 081709aii
NAT: F.IF.B.6
TOP: Rate of Change

7 ANS: 1
\[\frac{N(10) - N(1)}{10 - 1} \approx -2.03, \quad \frac{N(20) - N(10)}{20 - 10} \approx -1.63, \quad \frac{N(25) - N(15)}{25 - 15} \approx -1.46, \quad \frac{N(30) - N(1)}{30 - 1} \approx -1.64 \]

PTS: 2
REF: 061807aii
NAT: F.IF.B.6
TOP: Rate of Change

8 ANS: 1
\[\frac{N(6) - N(0)}{6 - 0} \approx -8.93 \]

PTS: 2
REF: 012012aii
NAT: F.IF.B.6
TOP: Rate of Change
9. ANS: 3

10. ANS:
 \[\frac{p(8) - p(4)}{8 - 4} \approx 48.78 \]

11. ANS:
 \[\frac{B(11) - B(8)}{11 - 8} \approx -10.1 \]
 The average monthly high temperature decreases 10.1º each month from August to November.

12. ANS:
 \[\frac{13.9 - 9.4}{4 - 1} = 1.5 \]
 The average rate of change in the number of hours of daylight from January 1-April 1 is 1.5.

13. ANS: 3

 \[-2 \left(\frac{1}{2} x^2 + 6x + 20 \right) \]
 \[x^2 - 12x = -40 \]
 \[x^2 - 12x + 36 = -40 + 36 \]
 \[(x - 6)^2 = -4 \]
 \[x - 6 = \pm 2i \]
 \[x = 6 \pm 2i \]
14 ANS: 1

\[x = \frac{-3 \pm \sqrt{3^2 - 4(2)(2)}}{2(2)} = \frac{-3 \pm \sqrt{-7}}{4} = \frac{-3}{4} \pm \frac{i\sqrt{7}}{4} \]

PTS: 2 REF: 061612aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

15 ANS: 4

\[x = \frac{8 \pm \sqrt{(-8)^2 - 4(6)(29)}}{2(6)} = \frac{8 \pm \sqrt{-632}}{12} = \frac{8 \pm i\sqrt{4 \cdot 158}}{12} = \frac{2}{3} \pm \frac{1}{6}i\sqrt{158} \]

PTS: 2 REF: 011711aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

16 ANS: 4

\[4x^2 = -98 \]

\[x^2 = \frac{-98}{4} \]

\[x^2 = \frac{-49}{2} \]

\[x = \pm \frac{-49}{2} = \pm \frac{7i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \pm \frac{7i\sqrt{2}}{2} \]

PTS: 2 REF: 061707aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots

17 ANS: 3

\[x^2 + 2x + 1 = -5 + 1 \]

\[(x + 1)^2 = -4 \]

\[x + 1 = \pm 2i \]

\[x = -1 \pm 2i \]

PTS: 2 REF: 081703aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | completing the square

18 ANS: 3

\[x = \frac{-2 \pm \sqrt{2^2 - 4(3)(7)}}{2(3)} = \frac{-2 \pm \sqrt{-80}}{6} = \frac{-2 \pm i\sqrt{16 \cdot 5}}{6} = \frac{-1}{3} \pm \frac{2i\sqrt{5}}{3} \]

PTS: 2 REF: 081809aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
19 ANS: 2

\[x = \frac{2 \pm \sqrt{(-2)^2 - 4(5)(4)}}{2(5)} = \frac{2 \pm \sqrt{-76}}{10} = \frac{2 \pm i \sqrt{19}}{10} = \frac{1}{5} \pm \frac{i \sqrt{19}}{5} \]

PTS: 2 REF: 011905aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

20 ANS: 4

\[wx^2 + w = 0 \]
\[w(x^2 + 1) = 0 \]
\[x^2 = -1 \]
\[x = \pm i \]

PTS: 2 REF: 061912aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots

21 ANS: 2

\[5x^2 - 4x + 2 = 0 \]
\[\frac{4 \pm \sqrt{(-4)^2 - 4(5)(2)}}{2(5)} = \frac{4 \pm \sqrt{-24}}{10} = \frac{4 \pm 2i \sqrt{6}}{10} = \frac{2 \pm i \sqrt{6}}{5} \]

PTS: 2 REF: 012020aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

22 ANS:

\[x = \frac{-5 \pm \sqrt{5^2 + 4(2)(8)}}{2(2)} = \frac{-5 \pm i \sqrt{39}}{4} \]

PTS: 2 REF: 061827aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

23 ANS:

\[x^2 - 6x = -17 \]
\[\text{The solution is imaginary because the parabola and line do not intersect.} \]
\[x^2 - 6x + 9 = -17 + 9 \]
\[(x - 3)^2 = -8 \]
\[x - 3 = \pm 2i \sqrt{2} \]
\[x = 3 \pm 2i \sqrt{2} \]

PTS: 4 REF: 081936aii NAT: A.REI.B.4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
24 ANS: 4
(1) quadratic has two roots and both are real \((-2,0)\) and \((-0.5,0)\), (2) \(x = \pm\sqrt{32} - 3\), (3) the real root is 3, with a multiplicity of 2, (4) \(x = \pm 4i\)

PTS: 2 REF: 011909a ii NAT: A.REI.B.4 TOP: Using the Discriminant
KEY: determine nature of roots given equation, graph, table

25 ANS: 4
If \(1 - i\) is one solution, the other is \(1 + i\).
\[
(x - (1 - i))(x - (1 + i)) = 0
\]
\[
x^2 - x - ix - x + ix + (1 - i^2) = 0
\]
\[
x^2 - 2x + 2 = 0
\]

PTS: 2 REF: 081601a ii NAT: A.REI.B.4 TOP: Complex Conjugate Root Theorem

26 ANS: 4
The vertex is \((2,-1)\) and \(p = 2\).
\[
y = -\frac{1}{4(2)} (x - 2)^2 - 1
\]

PTS: 2 REF: 081619a ii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions

27 ANS: 1
In vertex form, the parabola is \(y = -\frac{1}{4(2)} (x + 4)^2 + 3\). The vertex is \((-4,3)\) and \(p = 2\).
\[3 + 2 = 5\]

PTS: 2 REF: 011816a ii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions

28 ANS: 4
The vertex is \((2,2)\) and \(p = 3\).
\[3 + 2 = 5\]

PTS: 2 REF: 081823a ii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions
A parabola with a focus of \((0,4)\) and a directrix of \(y = 2\) is sketched as follows:

By inspection, it is determined that the vertex of the parabola is \((0,3)\). It is also evident that the distance, \(p\), between the vertex and the focus is 1. It is possible to use the formula \((x-h)^2 = 4p(y-k)\) to derive the equation of the parabola as follows:

\[
(x-0)^2 = 4(1)(y-3)
\]

\[
x^2 = 4y - 12
\]

\[
x^2 + 12 = 4y
\]

\[
x^2/4 + 3 = y
\]

or A point \((x,y)\) on the parabola must be the same distance from the focus as it is from the directrix. For any such point \((x,y)\), the distance to the focus is \(\sqrt{(x-0)^2 + (y-4)^2}\) and the distance to the directrix is \(y - 2\). Setting this equal leads to:

\[
x^2 + y^2 - 8y + 16 = y^2 - 4y + 4
\]

\[
x^2 + 16 = 4y + 4
\]

\[
x^2/4 + 3 = y
\]
32 ANS: 4
\[
\frac{5 + 9}{2} = 7, \text{ vertex: } (-2,7); \ p = 7 - 9 = -2, \ y = \frac{1}{4(-2)}(x + 2)^2 + 7 \\
\]
\[
y - 7 = \frac{1}{-8}(x + 2)^2 \\
-8(y - 7) = (x + 2)^2
\]

PTS: 2 REF: 061821aii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions

33 ANS: 3
The vertex is \((-3,5)\) and \(p = 2\). \(y = \frac{-1}{4(2)}(x + 3)^2 + 5\)

PTS: 2 REF: 011914aii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions

34 ANS:

![Graph of a parabola]

The vertex of the parabola is \((4,-3)\). The \(x\)-coordinate of the focus and the vertex is the same. Since the distance from the vertex to the directrix is 3, the distance from the vertex to the focus is 3, so the \(y\)-coordinate of the focus is 0. The coordinates of the focus are \((4,0)\).

PTS: 2 REF: 061630aii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions

35 ANS:

![Graph of a parabola]

\[
y = \frac{1}{4(2)}(x - 4)^2 - 3 \quad y = \frac{-1+5}{2} = -3. \ \text{The vertex is } (4,-3) \ \text{and } p = 2.
\]

PTS: 4 REF: 061935aii NAT: G.GPE.A.2 TOP: Graphing Quadratic Functions
36 ANS: vertex (3, 6), focus (3, 1), \(p = 5 \), directrix \(y = 6 + 5 = 11 \)

37 ANS: 2

\[
B(t) = 750 \left(1.16 \right)^{\frac{t}{12}} \approx 750 (1.012)^{12t} \quad B(t) = 750 \left(1 + \frac{0.16}{12} \right)^{12t}
\]

is wrong, because the growth is an annual rate that is not compounded monthly.

38 ANS: 3

\[
\left(\frac{1}{2} \right)^{73.83} \approx 0.990656
\]

39 ANS: 3

\[
\left(\frac{1}{2} \right)^{10} = 0.9716
\]

40 ANS: 4

1 year = 365 days

41 ANS: 1

\[
100 \left(\frac{1}{2} \right)^{\frac{d}{x}} = 100e^{kd}
\]

\[
\left(\frac{1}{2} \right)^{\frac{1}{x}} = e^k
\]

\[
k \approx -0.087
\]
42 ANS: 2
\[1.0064312^{12} \approx 1.08 \]
PTS: 2 REF: 081808aii NAT: A.SSE.B.3 TOP: Modeling Exponential Functions

43 ANS: 3
\[\sqrt[12]{1.04} \approx 1.0032737 \]
PTS: 2 REF: 011906aii NAT: A.SSE.B.3 TOP: Modeling Exponential Functions

44 ANS: 4
\[1 + \frac{0.009}{12} = 1.00075 \]
PTS: 2 REF: 011918aii NAT: A.SSE.B.3 TOP: Modeling Exponential Functions

45 ANS: 1
\[\sqrt[12]{1.025} \approx 1.00206 \]
PTS: 2 REF: 081924aii NAT: A.SSE.B.3 TOP: Modeling Exponential Functions

46 ANS: 4
\[A = Pe^{rt} \]
\[0.42 = e^{rt} \]
\[\ln 0.42 = \ln e^{rt} \]
\[-0.87 \approx rt \]
PTS: 2 REF: 061621aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions

47 ANS: 3
\[\sqrt[12]{1.0525} \approx 1.00427 \]
PTS: 2 REF: 011723aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions

48 ANS: 1
\[\frac{A}{P} = e^{rt} \]
\[0.42 = e^{rt} \]
\[\ln 0.42 = \ln e^{rt} \]
\[-0.87 \approx rt \]
PTS: 2 REF: 011723aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions

49 ANS: 4
PTS: 2 REF: 081622aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions

50 ANS: 4
\[\sqrt[52]{1.06} \]
PTS: 2 REF: 061924aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions
51 ANS: 1

\[2000 \left(1 + \frac{0.032}{12}\right)^{12t} \approx 2000(1.003)^{12t} \]

PTS: 2 REF: 012004aii NAT: F.BF.A.1 TOP: Modeling Exponential Functions

52 ANS: 3

\[y = 278(0.5)^{\frac{18}{18}} \approx 0.271 \]

PTS: 2 REF: 011920aii NAT: F.LE.A.2 TOP: Modeling Exponential Functions

53 ANS: 1

\[P(28) = 5(2)^{\frac{98}{28}} \approx 56 \]

PTS: 2 REF: 011702aii NAT: F.LE.A.2 TOP: Modeling Exponential Functions

54 ANS:

\[B(t) = 100(2)^{\frac{t}{30}} \]

PTS: 2 REF: 012031aii NAT: F.LE.A.2 TOP: Modeling Exponential Functions

55 ANS:

\[N(t) = 950e^{0.0475t} \text{ The base is } e \text{ because growth is continuous. } N\left(\frac{36}{24}\right) \approx 1020 \]

PTS: 4 REF: 081933aii NAT: F.LE.A.2 TOP: Modeling Exponential Functions

56 ANS:

\[A(t) = 100(0.5)^{\frac{t}{63}}, \text{ where } t \text{ is time in years, and } A(t) \text{ is the amount of titanium-44 left after } t \text{ years.} \]

\[\frac{A(t) - A(0)}{10 - 0} = \frac{89.58132 - 100}{10} = -1.041868 \text{ The estimated mass at } t = 40 \text{ is } 100 - 40(-1.041868) \approx 58.3. \text{ The actual mass is } A(40) = 100(0.5)^{\frac{40}{63}} \approx 64.3976. \text{ The estimated mass is less than the actual mass.} \]

PTS: 6 REF: fall1517aii NAT: F.LE.A.2 TOP: Modeling Exponential Functions

57 ANS: 4 PTS: 2 REF: 011805aii NAT: F.LE.B.5 TOP: Modeling Exponential Functions

58 ANS: 2

The 2010 population is 110 million.

PTS: 2 REF: 061718aii NAT: F.LE.B.5 TOP: Modeling Exponential Functions

59 ANS: 1

The car lost approximately 19% of its value each year.

PTS: 2 REF: 081613aii NAT: F.LE.B.5 TOP: Modeling Exponential Functions

60 ANS: 2 PTS: 2 REF: 061917aii NAT: F.LE.B.5 TOP: Modeling Exponential Functions
61 ANS: 3
\[d = 10 \log \frac{6.3 \times 10^{-3}}{1.0 \times 10^{-12}} \approx 98 \]

PTS: 2 REF: 011715aii NAT: F.IF.B.4 TOP: Evaluating Logarithmic Expressions

62 ANS: 4
\[y = 5^{-t} = \left(\frac{1}{5} \right)^t \]

PTS: 2 REF: 061615aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions

63 ANS: 2 PTS: 2 REF: 061802aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions

64 ANS: 4
There is no \(x \)-intercept.

PTS: 2 REF: 011823aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions

65 ANS:
\[\left(\frac{\ln \frac{1}{2}}{1590} \right) \text{ is negative, so } M(t) \text{ represents decay.} \]

PTS: 2 REF: 011728aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions

66 ANS:
Translation 3 units right and 4 units up

PTS: 2 REF: 012027aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions

67 ANS:

PTS: 2 REF: 061729aii NAT: F.IF.C.7 TOP: Graphing Exponential Functions
68 ANS: 1

PTS: 2 REF: 061618aii NAT: F.IF.C.7 TOP: Graphing Logarithmic Functions

69 ANS: 2 PTS: 2 REF: 081816aii NAT: F.IF.C.7
TOP: Graphing Logarithmic Functions KEY: bimodalgraph

70 ANS: 4
log₂(x - 1) - 1 = 0

log₂(x - 1) = 1

x - 1 = 2¹

x = 3

PTS: 2 REF: 061819aii NAT: F.IF.C.7 TOP: Graphing Logarithmic Functions

71 ANS: 1 PTS: 2 REF: 011902aii NAT: F.IF.C.7
TOP: Graphing Logarithmic Functions

72 ANS:

As x → -3, y → -∞. As x → ∞, y → ∞.

PTS: 4 REF: 061735aii NAT: F.IF.C.7 TOP: Graphing Logarithmic Functions

73 ANS:

PTS: 2 REF: 061927aii NAT: F.IF.C.7 TOP: Graphing Logarithmic Functions
Domain: $x < 2$, Asymptote $x = 2$

PTS: 4 \hspace{1em} \text{REF: 012034aii} \hspace{1em} \text{NAT: F.IF.C.7} \hspace{1em} \text{TOP: Graphing Logarithmic Functions}

$C(t) = 63000\left(1 + \frac{0.0255}{12}\right)^{12t}$

$5000\left(1 + \frac{0.035}{12}\right)^{12 \cdot 6} \approx 6166.50$

PTS: 2 \hspace{1em} \text{REF: 081917aii} \hspace{1em} \text{NAT: A.CED.A.1} \hspace{1em} \text{TOP: Exponential Growth}

$63000\left(1 + \frac{0.0255}{12}\right)^{12t} = 100000$

$12t\log(1.002125) = \log\frac{100}{63}$

$t \approx 18.14$
78 ANS:

\[720 = \frac{120000 \left(\frac{0.048}{12} \right) \left(1 + \frac{0.048}{12} \right)^n}{\left(1 + \frac{0.048}{12} \right)^n - 1} \]

\[
\frac{275.2}{12} \approx 23 \text{ years}
\]

\[
720(1.004)^n - 720 = 480(1.004)^n
\]

\[
240(1.004)^n = 720
\]

\[
1.004^n = 3
\]

\[
n \log 1.004 = \log 3
\]

\[
n \approx 275.2 \text{ months}
\]

PTS: 4 REF: spr1509a1i NAT: A.CED.A.1 TOP: Exponential Growth

79 ANS:

\[A = 5000(1.045)^n \]

\[
5000 \left(1 + \frac{0.046}{4} \right)^{4n} - 5000(1.045)^6 \approx 6578.87 - 6511.30 \approx 67.57 \quad 10000 = 5000 \left(1 + \frac{0.046}{4} \right)^{4n}
\]

\[B = 5000 \left(1 + \frac{0.046}{4} \right)^{4n} \]

\[
2 = 1.0115^{4n}
\]

\[
\log 2 = 4n \cdot \log 1.0115
\]

\[
n = \frac{\log 2}{4 \log 1.0115}
\]

\[
n \approx 15.2
\]

PTS: 6 REF: 081637a1i NAT: A.CED.A.1 TOP: Exponential Growth
The graph of $A(t)$ nearly intersects the point $(17, 1000000)$.

$$A(t) = 318000(1.07)^t$$

$318000(1.07)^t = 1000000$

$$t \log 1.07 = \log \frac{1000}{318}$$

$$t = \frac{\log 1000}{\log 1.07}$$

$$t \approx 17$$
82 ANS: 1
\[8(2^{x+3}) = 48\]
\[2^{x+3} = 6\]
\[(x + 3) \ln 2 = \ln 6\]
\[x + 3 = \frac{\ln 6}{\ln 2}\]
\[x = \frac{\ln 6}{\ln 2} - 3\]

PTS: 2 REF: 061702aii NAT: F.LE.A.4 TOP: Exponential Equations
KEY: without common base

83 ANS: 4
\[\ln e^{0.3r} = \ln \frac{5918}{87}\]
\[x = \frac{\ln \frac{5918}{87}}{0.3}\]

PTS: 2 REF: 081801aii NAT: F.LE.A.4 TOP: Exponential Equations
KEY: without common base

84 ANS: 4
\[\log 2^t = \log \sqrt[30]{10}\]
\[2) \frac{\log \sqrt[30]{10}}{\log 2} = \log_2 \sqrt[30]{10}, 1) \log_2 \sqrt[30]{10} = \log_2 10^{\frac{1}{30}} = \frac{1}{2} \log_2 10, 3) \log_4 10 = \frac{\log_2 10}{\log_2 4} = \frac{1}{2} \log_2 10\]
\[t \log 2 = \log \sqrt[30]{10}\]
\[t = \frac{\log \sqrt[30]{10}}{\log 2}\]

PTS: 2 REF: 012009aii NAT: F.LE.A.4 TOP: Exponential Equations
KEY: without common base

85 ANS: 1
\[9110 = 5000e^{30r}\]
\[\ln \frac{911}{500} = \ln e^{30r}\]
\[\ln \frac{911}{500} = \frac{30r}{30}\]
\[r \approx 0.02\]

PTS: 2 REF: 011810aii NAT: F.LE.A.4 TOP: Exponential Growth
86 ANS:
\[A = Pe^{rt} \]

135000 = 100000e^{5r}

1.35 = e^{5r}

\ln 1.35 = \ln e^{5r}

\ln 1.35 = 5r

.06 \approx r \text{ or } 6%

PTS: 2 REF: 061632aii NAT: F.LE.A.4 TOP: Exponential Growth

87 ANS:
4% 8.75 = 1.25(1 + r)^{49} \text{ or } 8.75 = 1.25e^{49r}

\[7 = (1 + r)^{49} \quad \ln 7 = \ln e^{49r} \]

\[r + 1 = \sqrt[49]{7} \quad \ln 7 = 49r \]

\[r \approx .04 \quad r = \frac{\ln 7}{49} \]

\[r \approx .04 \]

PTS: 2 REF: 081730aii NAT: F.LE.A.4 TOP: Exponential Growth

88 ANS:
\[2 = e^{0.0375t} \]

\[t \approx 18.5 \]

PTS: 4 REF: 081835aii NAT: F.LE.A.4 TOP: Exponential Growth

89 ANS:
\[100 = 325 + (68 - 325)e^{-2k} \quad T = 325 - 257e^{-0.066t} \]

\[-225 = -257e^{-2k} \quad T = 325 - 257e^{-0.066(7)} \approx 163 \]

\[k = \frac{\ln \left(\frac{-225}{-257} \right)}{-2} \]

\[k \approx 0.066 \]

PTS: 4 REF: fall1513aii NAT: F.LE.A.4 TOP: Exponential Growth
90 ANS: 4
\[120 = 68 + (195 - 68)e^{-0.05t} \]
\[52 = 127e^{-0.05t} \]
\[\frac{\ln 52}{127} = \ln e^{-0.05t} \]
\[\frac{\ln 52}{127} = -0.05t \]
\[\ln \frac{52}{127} = t \]
\[\frac{\ln 52}{-0.05} = t \]
\[18 \approx t \]

PTS: 2 REF: 081918aii NAT: F.LE.A.4 TOP: Exponential Decay

91 ANS:
\[7 = 20(0.5)^{\frac{t}{8.02}} \]
\[\log 0.35 = \log 0.5^{\frac{t}{8.02}} \]
\[\log 0.35 = \frac{t \log 0.5}{8.02} \]
\[\frac{8.02 \log 0.35}{\log 0.5} = t \]
\[t \approx 12 \]

PTS: 4 REF: 081634aii NAT: F.LE.A.4 TOP: Exponential Decay

92 ANS:
\[100 = 140 \left(\frac{1}{2} \right)^{\frac{s}{h}} \]
\[\log 100 = \log \left(\frac{1}{2} \right)^{\frac{s}{h}} \]
\[40 = 140 \left(\frac{1}{2} \right)^{\frac{t}{10.3002}} \]
\[\log 5 = \frac{5}{h} \log \frac{1}{2} \]
\[\log \frac{2}{7} = \log \left(\frac{1}{2} \right)^{\frac{t}{10.3002}} \]
\[\frac{5 \log \frac{1}{2}}{\log 5} \approx 10.3002 \]
\[\frac{2}{7} = \log \left(\frac{1}{2} \right)^{\frac{t}{10.3002}} \]
\[t = \frac{10.3002 \log \frac{2}{7}}{\log \frac{1}{2}} \approx 18.6 \]

PTS: 6 REF: 061737aii NAT: F.LE.A.4 TOP: Exponential Decay
93 ANS:

\[s(t) = 200(0.5)^{\frac{t}{15}} \]

\[\frac{1}{10} = (0.5)^{\frac{15}{t}} \]

\[\log \frac{1}{10} = \log(0.5)^{\frac{15}{t}} \]

\[-1 = \frac{t \cdot \log(0.5)}{15} \]

\[t = \frac{-15}{\log(0.5)} \approx 50 \]

PTS: 4 REF: 061934aii NAT: F.LE.A.4 TOP: Exponential Decay

94 ANS: 4

\[k^4 - 4k^2 + 8k^3 - 32k + 12k^2 - 48 \]

\[k^2(k^2 - 4) + 8k(k^2 - 4) + 12(k^2 - 4) \]

\[(k^2 - 4)(k^2 + 8k + 12) \]

\[(k + 2)(k - 2)(k + 6)(k + 2) \]

PTS: 2 REF: fall1505aii NAT: A.SSE.A.2 TOP: Factoring Polynomials

KEY: factoring by grouping

95 ANS: 3

\[2d(d^3 + 3d^2 - 9d - 27) \]

\[2d(d^2(d + 3) - 9(d + 3)) \]

\[2d(d^2 - 9)(d + 3) \]

\[2d(d + 3)(d - 3)(d + 3) \]

\[2d(d + 3)^2(d - 3) \]

PTS: 2 REF: 081615aii NAT: A.SSE.A.2 TOP: Factoring Polynomials

KEY: factoring by grouping

96 ANS: 4

\[m^5 + m^3 - 6m = m(m^4 + m^2 - 6) = m(m^2 + 3)(m^2 - 2) \]

PTS: 2 REF: 011703aii NAT: A.SSE.A.2 TOP: Factoring Polynomials

KEY: higher power
97 ANS: 2
\[n^2 \left(n^2 - 9 \right) + 4n \left(n^2 - 9 \right) - 12 \left(n^2 - 9 \right) \]
\[\left(n^2 + 4n - 12 \right) \left(n^2 - 9 \right) \]
\[(n + 6)(n - 2)(n + 3)(n - 3) \]

PTS: 2 REF: 061911aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: factoring by grouping

98 ANS: 2
\[u = x + 2 \]
\[u^2 + 4u + 3 \]
\[(u + 3)(u + 1) \]
\[(x + 2 + 3)(x + 2 + 1) \]
\[(x + 5)(x + 3) \]

PTS: 2 REF: 081901aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: higher power

99 ANS: 2 PTS: 2
REF: 081904aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: higher power

100 ANS: 3
\[(m - 2)^2(m + 3) = (m^2 - 4m + 4)(m + 3) = m^3 + 3m^2 - 4m^2 - 12m + 4m + 12 = m^3 - m^2 - 8m + 12 \]

PTS: 2 REF: 081605aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: factoring by grouping

101 ANS: 1
1) let \(y = x + 2 \), then \(y^2 + 2y - 8 \)
\[(y + 4)(y - 2) \]
\[(x + 2 + 4)(x + 2 - 2) \]
\[(x + 6)x \]

PTS: 2 REF: 081715aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: multivariable

102 ANS: 4
\[(x^6y^4 - 9)(x^4 - 16) \]
\[(x^3y^2 + 3)(x^3y^2 - 3)(x^2 + 4)(x^2 - 4) \]

PTS: 2 REF: 081814aii NAT: A.SSE.A.2 TOP: Factoring Polynomials
KEY: factoring by grouping
103 ANS: 3

\[(x + a)^2 + 5(x + a) + 4\] let \(u = x + a\)

\[u^2 + 5u + 4\]

\[(u + 4)(u + 1)\]

\[(x + a + 4)(x + a + 1)\]

PTS: 2 REF: 012006aii NAT: A.SSE.A.2 TOP: Factoring Polynomials KEY: multivariable

104 ANS:
The expression is of the form \(y^2 - 5y - 6\) or \((y - 6)(y + 1)\). Let \(y = 4x^2 + 5x:\)

\[\left(4x^2 + 5x - 6\right)\left(4x^2 + 5x + 1\right)\]

\[(4x - 3)(x + 2)(4x + 1)(x + 1)\]

PTS: 2 REF: fall1512aii NAT: A.SSE.A.2 TOP: Factoring Polynomials KEY: a>1

105 ANS:

\[x^2(4x - 1) + 4(4x - 1) = (x^2 + 4)(4x - 1)\]

PTS: 2 REF: 061727aii NAT: A.SSE.A.2 TOP: Factoring Polynomials KEY: factoring by grouping

106 ANS:

\[3x^3 + x^2 + 3xy + y = x^2(3x + 1) + y(3x + 1) = \left(x^2 + y\right)(3x + 1)\]

PTS: 2 REF: 011828aii NAT: A.SSE.A.2 TOP: Factoring Polynomials KEY: factoring by grouping

107 ANS:

\[\left(x^2 - 6\right)\left(x^2 + 2\right)\]

PTS: 2 REF: 081825aii NAT: A.SSE.A.2 TOP: Factoring Polynomials KEY: higher power
\[x^4 - 4x^3 - 9x^2 + 36x = 0 \]
\[x^3(x - 4) - 9x(x - 4) = 0 \]
\[(x^3 - 9x)(x - 4) = 0 \]
\[x(x^2 - 9)(x - 4) = 0 \]
\[x(x + 3)(x - 3)(x - 4) = 0 \]

\[x = 0, \pm 3, 4 \]

\[m^3 - 2m^2 + 4m - 8 = 0 \]
\[m^2(m - 2) + 4(m - 2) = 0 \]
\[(m^2 + 4)(m - 2) = 0 \]

\[x^3 + 2x^2 - 9x - 18 = 0 \quad x^3 - 9x + 2x^2 - 18 = 0 \quad x^3 - 9x + 2x^2 - 18 = 0 \]
\[x^2(x + 2) - 9(x + 2) = 0 \quad x(x^2 - 9) + 2(x^2 - 9) = 0 \quad x(x^2 - 9) + 2(x^2 - 9) = 0 \]
\[(x + 2)(x^2 - 9) = 0 \]

\[f(x) = (x + 1)(x - 1)(x - 2) = (x^2 - 1)(x - 2) = x^3 - 2x^2 - x + 2 \]
115 ANS: 4 PTS: 2 REF: 061921aii NAT: A.APR.B.3
TOP: Graphing Polynomial Functions

116 ANS: 1
\[x^2 + 2x + 1 = (x + 1)^2 \]

PTS: 2 REF: 011919aii NAT: A.APR.B.3 TOP: Graphing Polynomial Functions

117 ANS:
\[f(x) = x^2(x + 4)(x - 3); \ g(x) = (x + 2)^2(x + 6)(x - 1) \]

PTS: 4 REF: 011836aii NAT: A.APR.B.3 TOP: Graphing Polynomial Functions

118 ANS: 3 PTS: 2 REF: 012005aii NAT: F.IF.B.4
TOP: Graphing Polynomial Functions

119 ANS: 2 PTS: 2 REF: 061620aii NAT: F.IF.B.4
TOP: Graphing Polynomial Functions

120 ANS: 4
The maximum volume of \(p(x) = -(x + 2)(x - 10)(x - 14) \) is about 56, at \(x = 12.1 \)

PTS: 2 REF: 081712aii NAT: F.IF.B.4 TOP: Graphing Polynomial Functions

121 ANS: 3

PTS: 2 REF: 011817aii NAT: F.IF.B.4 TOP: Graphing Polynomial Functions

122 ANS: 1

PTS: 2 REF: 011908aii NAT: F.IF.B.4 TOP: Graphing Polynomial Functions

123 ANS: 2 PTS: 2 REF: 081908aii NAT: F.IF.B.4
TOP: Graphing Polynomial Functions
124 ANS:

16x^4 - 81 = (4x^2 + 9)(4x^2 - 9) = (4x^2 + 9)(2x + 3)(2x - 3). No, because ±\frac{3i}{2} are roots.

PTS: 4 REF: 061933aii NAT: F.IF.B.4 TOP: Graphing Polynomial Functions

125 ANS: 1

The zeros of the polynomial are at −b, and c. The sketch of a polynomial of degree 3 with a negative leading coefficient should have end behavior showing as x goes to negative infinity, f(x) goes to positive infinity. The multiplicities of the roots are correctly represented in the graph.

PTS: 2 REF: spr1501aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

126 ANS: 3

The graph shows three real zeros, and has end behavior matching the given end behavior.

PTS: 2 REF: 061604aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

127 ANS: 2

PTS: 2 REF: 061816aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

128 ANS:

PTS: 2 REF: 011926aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

129 ANS:

PTS: 2 REF: 081732aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

130 ANS:

PTS: 2 REF: 011729aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions
\[0 = x^2(x + 1) - 4(x + 1) \]
\[0 = (x^2 - 4)(x + 1) \]
\[0 = (x + 2)(x - 2)(x + 1) \]
\[x = -2, -1, 2 \]

PTS: 4 REF: 081633aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

PTS: 2 REF: 011831aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions

PTS: 2 REF: 061826aii NAT: F.IF.C.7 TOP: Graphing Polynomial Functions
$P(x) = R(x) - C(x) = -330x^3 + 9000x^2 - 67000x + 167000$

Least profitable at year 5 because there is a minimum in $P(x)$. Most profitable at year 13 because there is a maximum in $P(x)$.

134 ANS:

135 ANS:

136 ANS: 3

137 ANS: 4

138 ANS: 3

139 ANS: 2

PTS: 2

REF: 012032a1i

NAT: F.I.F.C.7

TOP: Graphing Polynomial Functions

PTS: 6

REF: 081837a1i

NAT: F.I.F.C.7

TOP: Graphing Polynomial Functions

PTS: 2

REF: 081621a1i

NAT: A.APR.B.2

TOP: Remainder Theorem

PTS: 2

REF: 011819a1i

NAT: A.APR.B.2

TOP: Remainder Theorem

PTS: 2

REF: 061812a1i

NAT: A.APR.B.2

TOP: Remainder Theorem

PTS: 2

REF: 011720a1i

NAT: A.APR.B.2

TOP: Remainder Theorem
Since there is no remainder when the quartic is divided by $x - 2$, this binomial is a factor.

\[
\begin{array}{c|cccc}
2 & 1 & 0 & -4 & -8 \\
 & 2 & 4 & 0 & -8 \\
\hline
1 & 2 & 0 & -4 & 0 \\
\end{array}
\]

Since there is a remainder when the cubic is divided by $x + 4$, this binomial is not a factor.

\[
\begin{array}{c|cccc}
-4 & 1 & -11 & 16 & 84 \\
 & -4 & 60 & -304 & \\
\hline
1 & -15 & 76 & \\
\end{array}
\]

$f(4) = 2(4)^3 - 5(4)^2 - 11(4) - 4 = 128 - 80 - 44 - 4 = 0$ Any method that demonstrates 4 is a zero of $f(x)$ confirms that $x - 4$ is a factor, as suggested by the Remainder Theorem.

\[
\begin{array}{c|cccc}
-5 & 6 & 19 & -52 & 15 \\
 & -30 & 55 & 15 & \\
\hline
6 & -11 & 3 & 0 \\
\end{array}
\]

$6x^2 - 11x + 3 = 0$

$(2x - 3)(3x - 1) = 0$

\[x = \frac{3}{2} \cdot \frac{1}{3}, -5\]
Since there is a remainder, $x - 5$ is not a factor.

\[
\begin{array}{rrrr}
2x^3 - 10x^2 & 6x^2 - 7x & 6x^2 - 30x & 23x - 10 \\
2x^3 & - 3x^2 & - 32x & + 48 \\
2x^3 & - 4x^2 & - 7x & - 10
\end{array}
\]

\[
\begin{array}{rrr}
105 & 23x & - 115
\end{array}
\]

Since there is a remainder when the cubic is divided by $x - 2$, this binomial is not a factor.

\[
\begin{array}{rrrr}
2 & 1 & -4 & 4 & 6 \\
2 & & 4 & 6 \\
1 & -2 & 0 & -6
\end{array}
\]

$x = \pm 4, \frac{3}{2}$

Since $m(3) = 0$, there is no remainder when $m(x)$ is divided by $x - 3$, and so $x - 3$ is a factor.
\[(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \neq x^3 + 3xy + y^3 \]

PTS: 2 \hspace{1cm} REF: 081620aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities

\[(x - y)^2 = x^2 - 2xy + y^2 \quad (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \]

PTS: 2 \hspace{1cm} REF: 061902aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities

\[(x + 7)(x - 1) = x^2 + 6x - 7 = x^2 + 6x + 9 - 7 - 9 = (x + 3)^2 - 16 \]

PTS: 2 \hspace{1cm} REF: 061808aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities

\[(a + b + c)^2 = a^2 + ab + ac + ab + b^2 + bc + ac + ab + c^2 \]
\[x = a^2 + b^2 + c^2 + 2(ab + bc + ac) \]
\[x = y + 2z \]

PTS: 2 \hspace{1cm} REF: 061822aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities

\[\frac{x^3 + 9}{x^3 + 8} = \frac{x^3 + 8}{x^3 + 8} + \frac{1}{x^3 + 8} \]
\[\frac{x^3 + 9}{x^3 + 8} = \frac{x^3 + 9}{x^3 + 8} \]

PTS: 2 \hspace{1cm} REF: 061631aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities

\[2x^3 - 10x^2 + 11x - 7 = 2x^3 + hx^2 + 3x - 8x^2 - 4hx - 12 + k \quad h = -2 \]
\[-2x^2 + 8x + 5 = hx^2 - 4hx + k \quad k = 5 \]

PTS: 4 \hspace{1cm} REF: 011733aii \hspace{1cm} NAT: A.APR.C.4 \hspace{1cm} TOP: Polynomial Identities
ANS:
\[(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2\]
\[x^4 + 2x^2y^2 + y^4 = x^4 - 2x^2y^2 + y^4 + 4x^2y^2\]
\[x^4 + 2x^2y^2 + y^4 = x^4 + 2x^2y^2 + y^4\]

PTS: 2 REF: 081727aii NAT: A.APR.C.4 TOP: Polynomial Identities

ANS:
\[(a + b)^3 = a^3 + b^3\]
No. Erin’s shortcut only works if \(a = 0, b = 0\) or \(a = -b\).
\[a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3\]
\[3ab^2 + 3a^2b = 0\]
\[3ab(b + a) = 0\]
\[a = 0, b = 0, a = -b\]

PTS: 2 REF: 011927aii NAT: A.APR.C.4 TOP: Polynomial Identities

ANS: 2
\[4x \cdot x^{\frac{2}{3}} + 2x^{\frac{5}{3}} = 4x^{\frac{5}{3}} + 2x^{\frac{5}{3}} = 6x^{\frac{5}{3}} = 6\sqrt[3]{x^5}\]

KEY: with variables, index > 2

ANS: 3
\[\frac{\frac{2}{3} \cdot \frac{5}{2}}{\frac{1}{6}} = \frac{\frac{4}{6} \cdot \frac{15}{6}}{\frac{6}{6}} = \frac{18}{6} = x^3\]

KEY: with variables, index > 2

ANS: 4
\[\sqrt[3]{3x^2y} \cdot \sqrt[3]{27x^3y^2} = \frac{1}{3} xy^{\frac{1}{3}} \cdot \frac{1}{3} xy^{\frac{2}{3}} = \frac{3}{3} x^2 y^\frac{7}{3}\]

PTS: 2 REF: 081914aii NAT: N.RN.A.2 TOP: Operations with Radicals
KEY: with variables, index > 2

ANS:
\[\sqrt[3]{x} \cdot \sqrt[3]{x} = x^{\frac{1}{3}} \cdot x^{\frac{1}{3}} = x^{\frac{2}{3}} \cdot x^{\frac{1}{3}} = x^\frac{5}{6}\]

KEY: with variables, index > 2
165 ANS: 3
\[\sqrt{56-x} = x \quad \text{–8 is extraneous.} \]
\[56-x = x^2 \]
\[0 = x^2 + x - 56 \]
\[0 = (x + 8)(x - 7) \]
\[x = 7 \]

166 ANS: 2
\[\sqrt{x+14} = \sqrt{2x+5} + 1 \quad \sqrt{22+14} - \sqrt{2(22) + 5} = 1 \]
\[x + 14 = 2x + 5 + 2\sqrt{2x+5} + 1 \quad 6 - 7 \neq 1 \]
\[-x + 8 = 2\sqrt{2x+5} \]
\[x^2 - 16x + 64 = 8x + 20 \]
\[x^2 - 24x + 44 = 0 \]
\[(x - 22)(x - 2) = 0 \]
\[x = 2, 22 \]

167 ANS: 3
\[\sqrt{x+1} = x + 1 \]
\[x + 1 = x^2 + 2x + 1 \]
\[0 = x^2 + x \]
\[0 = x(x + 1) \]
\[x = -1, 0 \]

168 ANS: 3
\[x^2 - 4x - 5 = 4x^2 - 40x + 100 \]
\[3x^2 - 36x + 105 = 0 \]
\[x^2 - 12x + 35 = 0 \]
\[(x - 7)(x - 5) = 0 \]
\[x = 5, 7 \]

PTS: 2 REF: 081807aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

169 ANS: 2
\[b^2 = 2b^2 - 64 \] -8 is extraneous.
\[-b^2 = -64 \]
\[b = \pm 8 \]

PTS: 2 REF: 061919aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

170 ANS: 2
\[x^2 = 3x + 40. \] \(x = -5 \) is an extraneous solution.
\[x^2 - 3x - 40 = 0 \]
\[(x - 8)(x + 5) = 0 \]
\[x = 8, -5 \]

PTS: 2 REF: 012010aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

171 ANS:
\[\sqrt{x - 5} = -x + 7 \]
\[\sqrt{x - 5} = -9 + 7 = -2 \] is extraneous.
\[x - 5 = x^2 - 14x + 49 \]
\[0 = x^2 - 15x + 54 \]
\[0 = (x - 6)(x - 9) \]
\[x = 6, 9 \]

PTS: 2 REF: spr1508aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions
172 ANS:
\[
\left(\sqrt{2x - 7} \right)^2 = (5 - x)^2 \quad \sqrt{2(4) - 7 + 4} = 5 \quad \sqrt{2(8) - 7 + 8} = 5
\]
\[
2x - 7 = 25 - 10x + x^2 \quad \sqrt{1} = 1 \quad \sqrt{9} \neq -3
\]
\[
0 = x^2 - 12x + 32 \quad 0 = (x - 8)(x - 4) \quad x = 4, 8
\]

PTS: 4 REF: 081635aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

173 ANS:
\[
\sqrt{x - 4} = -x + 6 \quad \sqrt{x - 4} = -8 + 6 = -2 \text{ is extraneous.}
\]
\[
x - 4 = x^2 - 12x + 36
\]
\[
0 = x^2 - 13x + 40
\]
\[
0 = (x - 8)(x - 5) \quad x = 5, 8
\]

PTS: 2 REF: 061730aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

174 ANS:
\[
\sqrt{6 - 2x + x} = 2x + 30 - 9 \quad \sqrt{6 - 2(-29)} \neq -29 + 21, \text{ so } -29 \text{ is extraneous.}
\]
\[
\sqrt{6 - 2x} = x + 21 \quad \sqrt{64} = -8
\]
\[
6 - 2x = x^2 + 42x + 441
\]
\[
x^2 + 44x + 435 = 0
\]
\[
(x + 29)(x + 15) = 0 \quad x = -29, -15
\]

PTS: 4 REF: 061833aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions
175 ANS:
\[3\sqrt{x} - 2x = -5\]
1 is extraneous.
\[3\sqrt{x} = 2x - 5\]
\[9x = 4x^2 - 20x + 25\]
\[4x^2 - 29x + 25 = 0\]
\[(4x - 25)(x - 1) = 0\]
\[x = \frac{25}{4}, 1\]

PTS: 4 REF: 011936aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: extraneous solutions

176 ANS:
\[0 = \sqrt{t} - 2t + 6 - 2\left(\frac{9}{4}\right) - 6 < 0,\] so \[\frac{9}{4}\] is extraneous.
\[2t - 6 = \sqrt{t}\]
\[4t^2 - 24t + 36 = t\]
\[4t^2 - 25t + 36 = 0\]
\[(4t - 9)(t - 4) = 0\]
\[t = \frac{9}{4}, 4\]
\[\sqrt{1 - 2(1) + 6} - (\sqrt{3} - 2(3) + 6) = 5 - \sqrt{3} \approx 3.268\] 327 mph

PTS: 6 REF: 011737aii NAT: A.REI.A.2 TOP: Solving Radicals
KEY: context
ANS:

\[B = 1.69 \sqrt{30 + 4.45} - 3.49 \approx 6, \text{ which is a steady breeze.} \]

\[15 = 1.69 \sqrt{s + 4.45} - 3.49 \]

\[18.49 = 1.69 \sqrt{s + 4.45} \]

\[\frac{18.49}{1.69} = \sqrt{s + 4.45} \]

\[\left(\frac{18.49}{1.69} \right)^2 = s + 4.45 \]

\[s = \left(\frac{18.49}{1.69} \right)^2 - 4.45 \]

\[s \approx 64 \]

178 ANS:

Applying the commutative property, \[\left(\frac{1}{3} \right)^2 \] can be rewritten as \[\left(\frac{1}{3^2} \right)^{\frac{1}{5}} \] or \[9^{\frac{1}{5}} \]. A fractional exponent can be rewritten as a radical with the denominator as the index, or \[9^{\frac{1}{5}} = \sqrt[5]{9} \].

179 ANS:

Rewrite \[\frac{4}{3} \text{ as } \frac{1}{3} \cdot \frac{4}{1} \text{, using the power of a power rule.} \]

180 ANS:

The denominator of the rational exponent represents the index of a root, and the 4th root of 81 is 3 and \[3^3 \] is 27.
181 ANS:
The denominator of the rational exponent represents the index of a root, and the numerator of the rational exponent represents the power of the base. \(\left(\sqrt{9} \right)^5 = 243 \)

PTS: 2 REF: 081926aii NAT: N.RN.A.1 TOP: Radicals and Rational Exponents

182 ANS: 4 PTS: 2 REF: 061716aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

183 ANS: 4 PTS: 2 REF: 061601aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

184 ANS: 2
\[
\left(\frac{\frac{5}{3}}{m} \right)^{-\frac{1}{2}} = m^{-\frac{5}{6}} = \frac{1}{\sqrt[5]{m^6}}
\]

PTS: 2 REF: 011707aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

185 ANS: 4
\[
\frac{n}{m} = \frac{\sqrt{a}}{a} = \frac{\frac{5}{2}}{\frac{3}{2}} = a^{\frac{3}{2}} = \sqrt{a^3}
\]

PTS: 2 REF: 011811aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

186 ANS: 4
\[
\left(\frac{-54x^9}{y^4} \right)^{\frac{2}{3}} = \left(2 \cdot -27 \right)^{\frac{2}{3}} = \frac{2^{\frac{2}{3}} \cdot 9x^6}{y^{\frac{8}{3}}} = \frac{9x^6 \cdot \sqrt[3]{4}}{y^{\frac{2}{3}}}
\]

PTS: 2 REF: 081723aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

187 ANS: 1
\[
\left(x^{\frac{1}{2}} \right)^2 = x^3
\]

PTS: 2 REF: 061908aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables

188 ANS: 1
\[
4\sqrt[3]{81x^8y^6} = 81^{\frac{1}{4}} x^{\frac{8}{4}} y^{\frac{6}{4}} = 3x^2y^2
\]

PTS: 2 REF: 012001aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents KEY: variables
189 ANS:
\[
\frac{8}{3} \cdot \frac{x^4}{x^3} = x^y
\]
\[
\frac{4}{3} = y
\]

PTS: 2
REF: spr1505aii
NAT: N.RN.A.2
TOP: Radicals and Rational Exponents
KEY: numbers

190 ANS:
\[
\left(\frac{5}{3} \right) \frac{\frac{2}{3}}{x^5} \cdot \left(\frac{5}{6} \right)^{\frac{6}{5}} = \left(\frac{5}{6} \right)^{\frac{6}{5}}
\]
\[
x^2 = y
\]

PTS: 2
REF: 011730aii
NAT: N.RN.A.2
TOP: Radicals and Rational Exponents
KEY: variables

191 ANS:
\[
\frac{\frac{3}{7}}{\frac{2}{x^2}} = \frac{\frac{1}{2}}{x} = \sqrt{x}
\]
\[
2x^2
\]

PTS: 2
REF: 081826aii
NAT: N.RN.A.2
TOP: Radicals and Rational Exponents
KEY: variables

192 ANS:
\[
\frac{\frac{3}{\sqrt[4]{x^3y^4}}}{\frac{2}{\sqrt[3]{x^3y^3}}} = \frac{\frac{8}{x^{12}y^{12}}}{\frac{9}{x^{12}y^{12}}} = x^{\frac{2}{3}} y^{\frac{2}{3}}
\]

PTS: 2
REF: 011925aii
NAT: N.RN.A.2
TOP: Radicals and Rational Exponents
KEY: variables

193 ANS:
\[
\text{No.} \left(\frac{\sqrt[5]{x^2}}{\sqrt[3]{x^3}} \right) = x^\frac{2}{5} \cdot x^\frac{5}{3} = x^{\frac{31}{15}} = \sqrt[15]{x^{31}}
\]

PTS: 2
REF: 061929aii
NAT: N.RN.A.2
TOP: Radicals and Rational Exponents
KEY: variables
194 ANS:
\[
\left(p^2 n^3 \right)^{\frac{1}{2}} \sqrt[p]{p^5 n^4} = \left(p^{16} n^4 \right) p^{2} n^2 \sqrt[p]{p} = p^{18} n^6 \sqrt[p]{p}
\]

PTS: 2 REF: 012025aii NAT: N.RN.A.2 TOP: Radicals and Rational Exponents

195 ANS: 2

\[(2 - yi)(2 - yi) = 4 - 4yi + y^2 i^2 = -y^2 - 4yi + 4\]

PTS: 2 REF: 061603aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

196 ANS: 2

\[6xi^2(-4xi + 5) = -24x^2 i^4 + 30xi^3 = -24x^2 (1) + 30x(-1) = -24x^2 - 30xi\]

PTS: 2 REF: 061704aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

197 ANS: 3

\[(3k - 2i)^2 = 9k^2 - 12ki + 4i^2 = 9k^2 - 12ki - 4\]

PTS: 2 REF: 081702aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

198 ANS: 1

\[6 - (3x - 2i)(3x - 2i) = 6 - \left(9x^2 - 12xi + 4i^2 \right) = 6 - 9x^2 + 12xi + 4 = -9x^2 + 12xi + 10\]

PTS: 2 REF: 061915aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

199 ANS: 3

\[(x + 3i)^2 - (2x - 3i)^2 = x^2 + 6xi + 9i^2 - \left(4x^2 - 12xi + 9i^2 \right) = -3x^2 + 18xi\]

PTS: 2 REF: 061805aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

200 ANS: 3

\[-3 + 5i - \left(4 + 24i - 2i - 12i^2 \right) = -3 + 5i - (16 + 22i) = -19 - 17i\]

PTS: 2 REF: 081815aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

201 ANS: 1

\[(2x - i)^2 - (2x - i)(2x + 3i)\]

\[(2x - i)(2x - i) - (2x + 3i)(2x - i)\]

\[(2x - i)(-4i)\]

\[-8xi + 4i^2\]

\[-8xi - 4\]

PTS: 2 REF: 011911aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers
202 ANS: 1
\[7 - 3i + x^2 - 4xi + 4i^2 - 4i - 2x^2 = 7 - 7i - x^2 - 4xi - 4 = 3 - x^2 - 4xi - 7i = (3 - x^2) - (4x + 7)i\]

PTS: 2 REF: 012022aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

203 ANS:
\[(4 - 3i)(5 + 2yi - 5 + 2yi)\]
\[(4 - 3i)(4yi)\]
\[16yi - 12yi^2\]
\[12y + 16yi\]

PTS: 2 REF: spr1506aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

204 ANS:
\[x(i(-6i))^2 = xi(36i^2) = 36xi^3 = -36xi\]

PTS: 2 REF: 081627aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

205 ANS:
\[(1 - i)(1 - i)(1 - i) = (1 - 2i + i^2)(1 - i) = -2i(1 - i) = -2i + 2i^2 = -2 - 2i\]

PTS: 2 REF: 011725aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

206 ANS:
\[i^2 = -1, \text{ and not } 1; \ 10 + 10i\]

PTS: 2 REF: 011825aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

207 ANS:
\[-\frac{1}{2}i^3(3i - 4) - 3i^2 = -\frac{3}{2}i^4 + 2i^3 - 3i^2 = -\frac{3}{2} - 2i + 3 = \frac{3}{2} - 2i\]

PTS: 2 REF: 081927aii NAT: N.CN.A.2 TOP: Operations with Complex Numbers

208 ANS: 1
\[x^2 + 2x - 8 = 0\]
\[(x + 4)(x - 2) = 0\]
\[x = -4, 2\]

PTS: 2 REF: 081701aii NAT: A.APR.D.6 TOP: Undefined Rationals

209 ANS: 4
\[-3x^2 - 5x + 2 \quad \frac{x^2 + 2x^2}{x^2} = \frac{(-3x + 1)(x + 2)}{x^2(x + 2)} = \frac{-3x + 1}{x^2} = -3x^{-1} + x^{-2}\]

PTS: 2 REF: 061723aii NAT: A.APR.D.6 TOP: Expressions with Negative Exponents

KEY: variables
\[
\frac{c^2 - d^2}{d^2 + cd - 2c^2} = \frac{(c + d)(c - d)}{(d + 2c)(d - c)} = \frac{-(c + d)}{d + 2c} = \frac{-c - d}{d + 2c}
\]

PTS: 2 REF: 011818aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: factoring

211 ANS: 3

\[
\frac{x^2(x + 2) - 9(x + 2)}{x\left(x^2 - x - 6\right)} = \frac{(x^2 - 9)(x + 2)}{x(x - 3)(x + 2)} = \frac{(x + 3)(x - 3)}{x(x - 3)} = \frac{x + 3}{x}
\]

PTS: 2 REF: 061803aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: factoring

212 ANS: 4

\[
\frac{x^2 - 4x}{2x} = \frac{x(x - 4)}{2x} = \frac{x - 4}{2} = \frac{x}{2} - 2 \quad \frac{x - 1}{2} - \frac{3}{2} = \frac{x - 1 - 3}{2} = \frac{x - 4}{2}
\]

PTS: 2 REF: 011921aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: factoring

213 ANS: 1

\[
\frac{x(x^2 - 9)}{-(x^2 - 9)} = -x
\]

PTS: 2 REF: 012023aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: factoring

214 ANS: 2

\[
\frac{x^2 + 0x + 1}{x + 2}\left(x^3 + 2x^2 + x + 6\right)
\]

\[
\frac{x^3 + 2x^2}{0x^2 + x} \quad \frac{0x^2 + 0x}{x + 6} \quad \frac{x + 2}{4}
\]

PTS: 2 REF: 081611aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division
\[
\begin{align*}
215 \quad \text{ANS: 1} \\
\frac{3x^2 + 4x - 1}{2x + 3} & \quad \text{ANS: 1} \\
\frac{6x^2 + 9x^2}{8x^2 + 10x} & \quad \text{ANS: 1} \\
\frac{8x^2 + 12x}{-2x + 2} & \quad \text{ANS: 1} \\
\frac{-2x - 3}{5} & \quad \text{ANS: 1}
\end{align*}
\]

PTS: 2
REF: fall1503aii
NAT: A.APR.D.6
TOP: Rational Expressions
KEY: division

\[
\begin{align*}
216 \quad \text{ANS: 2} \\
\frac{2x^2 - 3x + 7}{2x + 3} & \quad \text{ANS: 2} \\
\frac{4x^3 + 6x^2}{-6x^2 + 5x} & \quad \text{ANS: 2} \\
\frac{-6x^2 - 9x}{14x + 10} & \quad \text{ANS: 2} \\
\frac{14x + 21}{-11} & \quad \text{ANS: 2}
\end{align*}
\]

PTS: 2
REF: 061614aii
NAT: A.APR.D.6
TOP: Rational Expressions
KEY: division

\[
\begin{align*}
217 \quad \text{ANS: 1} \\
\frac{2x^2 + x + 5}{2x - 1} & \quad \text{ANS: 1} \\
\frac{4x^3 - 2x^2}{2x^2 + 9x} & \quad \text{ANS: 1} \\
\frac{2x^2 - x}{10x - 5} & \quad \text{ANS: 1}
\end{align*}
\]

PTS: 2
REF: 081713aii
NAT: A.APR.D.6
TOP: Rational Expressions
KEY: division
218 ANS: 3
\[
2x^3 - 4x^2 - x + \frac{14}{x + 6} \\
\]
\[
x + 6 \left(\frac{2x^4 + 8x^3 - 25x^2 - 6x + 14}{2x^4 + 12x^3} \right) \\
\]
\[
- 4x^3 - 25x^2 \\
- 4x^3 - 24x^2 \\
-x^2 - 6x \\
-x^2 - 6x
\]

PTS: 2 REF: 081805aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division

219 ANS: 1
\[
3x - 1 \\
3x + 1 \left(\frac{9x^2 + 0x - 2}{3x^2 + 3x} \right) \\
\]
\[
- 3x - 2 \\
- 3x - 1 \\
- 1
\]

PTS: 2 REF: 081910aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division

220 ANS: 3
\[
2x + 1 \\
x + 2 \left(\frac{2x^2 + 5x + 8}{2x^2 + 4x} \right) \\
\]
\[
x + 8 \\
x + 2 \\
6
\]

PTS: 2 REF: 012007aii NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division
221 ANS: 4
\[
\frac{5x^2 + x - 3}{2x - 1} \left(\frac{10x^3 - 3x^2 - 7x + 3}{10x^3 - 5x^2} \right)
\]
\[
\frac{2x^2 - 7x}{2x^2 - x} \quad - 6x + 3
\]
\[
-6x + 3
\]

PTS: 2 REF: 011809aii NAT: A.APR.D.6 TOP: Rational Expressions KEY: division

222 ANS:
\[
\frac{3x + 13}{x - 2} \left(\frac{3x^2 + 7x - 20}{3x^2 + 7x - 20} + \frac{6}{x - 2} \right)
\]
\[
\frac{3x^2 - 6x}{13x - 20} \quad 13x - 20
\]
\[
13x - 26
\]
\[
6
\]

PTS: 2 REF: 011732aii NAT: A.APR.D.6 TOP: Rational Expressions KEY: division

223 ANS:
\[
\frac{2a^2 + 5a + 2}{3a - 2} \left(\frac{6a^3 + 11a^2 - 4a - 9}{6a^3 + 11a^2 - 4a - 9} + \frac{2a^2 + 5a + 2 - \frac{5}{3a} - 2}{6a^3 + 4a^2} \right)
\]
\[
15a^2 - 4a \quad 15a^2 - 10a
\]
\[
6a - 9 \quad 6a - 4
\]
\[
- 5
\]

PTS: 2 REF: 061829aii NAT: A.APR.D.6 TOP: Rational Expressions KEY: division
224 ANS:
\[
\frac{x^3 + 4}{x + 2} = x^4 + 2x^3 + 4x - 10 \quad x^3 + 4 - \frac{18}{x + 2}.
\]
No, because there is a remainder.

\[
x^4 + 2x^3
\]
\[
4x - 10
\]
\[
4x + 8
\]
\[
-18
\]

PTS: 4 REF: 011934a1i NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division

225 ANS:
\[
p(x) = x^2 + 7 + \frac{5}{x - 1}
\]
\[
p(x) = x^3 - x^2 + 7x - 7 + 5
\]
\[
p(x) = x^3 - x^2 + 7x - 2
\]

PTS: 2 REF: 061930a1i NAT: A.APR.D.6 TOP: Rational Expressions
KEY: division

226 ANS:
\[
2 - \frac{x - 1}{x + 2}
\]
\[
1 + \frac{x + 2}{x + 2} - \frac{x - 1}{x + 2}
\]
\[
1 + \frac{x + 2 - (x - 1)}{x + 2}
\]
\[
1 + \frac{3}{x + 2}
\]

PTS: 2 REF: 081907a1i NAT: A.APR.D.7 TOP: Addition and Subtraction of Rationals

227 ANS:
\[
x - \frac{20}{x} = 8
\]
\[
x^2 - 8x - 20 = 0
\]
\[
(x - 10)(x + 2) = 0
\]
\[
x = 10, -2
\]

PTS: 2 REF: 061916a1i NAT: A.CED.A.1 TOP: Modeling Rationals

228 ANS: 3 PTS: 2 REF: 061602a1i NAT: A.CED.A.1 TOP: Modeling Rationals

TOP: Modeling Rationals
229 ANS: 3 PTS: 2 REF: 061722aii NAT: A.CED.A.1 TOP: Modeling Rationals

230 ANS: 3 PTS: 2 REF: 061824aii NAT: A.CED.A.1 TOP: Modeling Rationals

\[
\frac{1}{8} + \frac{1}{6} = \frac{1}{t_b}; \quad \frac{24t_b}{8} + \frac{24t_b}{6} = \frac{24t_b}{t_b} \\
3t_b + 4t_b = 24 \\
t_b = \frac{24}{7} \approx 3.4
\]

231 PTS: 2 REF: 011827aii NAT: A.CED.A.1 TOP: Modeling Rationals

\[
J =\frac{1}{F} - \frac{1}{W} \\
\frac{1}{J} = \frac{W - F}{FW} \\
J = \frac{FW}{W - F}
\]

\[
x(x + 7) \left[\frac{3x + 25}{x + 7} - 5 = \frac{3}{x} \right] \\
x(3x + 25) - 5x(x + 7) = 3(x + 7) \\
3x^2 + 25x - 5x^2 - 35x = 3x + 21 \\
2x^2 + 13x + 21 = 0 \\
(2x + 7)(x + 3) = 0 \\
x = -\frac{7}{2}, -3
\]

\[\frac{2(x - 4)}{(x + 3)(x - 4)} + \frac{3(x + 3)}{(x - 4)(x + 3)} = \frac{2x - 2}{x^2 - x - 12} \]

\[2x - 8 + 3x + 9 = 2x - 2 \]

\[3x = -3 \]

\[x = -1 \]

\[x - \frac{4}{x - 1} = 2 \]

\[x(x - 1) - 4 = 2(x - 1) \]

\[x^2 - x - 4 = 2x - 2 \]

\[x^2 - 3x - 2 = 0 \]

\[\frac{2}{x} = \frac{4x}{x + 3} \]

\[2x + 6 = 4x^2 \]

\[4x^2 - 2x - 6 = 0 \]

\[2 \left(2x^2 - x - 3 \right) = 0 \]

\[(2x - 3)(x + 1) = 0 \]

\[x = \frac{3}{2}, -1 \]
\[
\frac{2}{3x+1} = \frac{1}{x} - \frac{6x}{3x+1} - \frac{1}{3} \text{ is extraneous.}
\]

\[
\frac{6x + 2}{3x + 1} = \frac{1}{x}
\]

\[6x^2 + 2x = 3x + 1\]

\[6x^2 - x - 1 = 0\]

\[(2x - 1)(3x + 1) = 0\]

\[x = \frac{1}{2}, -\frac{1}{3}\]

PTS: 2 REF: 011915aii NAT: A.REI.A.2 TOP: Solving Rationals

\[
x(x - 2) \left(\frac{10}{x^2 - 2x} + \frac{4}{x} = \frac{5}{x - 2} \right) \text{ 2 is extraneous.}
\]

\[10 + 4(x - 2) = 5x\]

\[10 + 4x - 8 = 5x\]

\[2 = x\]

PTS: 2 REF: 081915aii NAT: A.REI.A.2 TOP: Solving Rationals

KEY: rational solutions

\[\frac{2x}{x-2} \left(\frac{x}{x} - \frac{11}{x} \left(\frac{x-2}{x-2} \right) = \frac{8}{x^2 - 2x} \right)\]

\[2x^2 - 11x + 22 = 8\]

\[2x^2 - 11x + 14 = 0\]

\[(2x - 7)(x - 2) = 0\]

\[x = \frac{7}{2}, 2\]

PTS: 2 REF: 061719aii NAT: A.REI.A.2 TOP: Solving Rationals
240 \text{ANS:} \frac{1}{x} - \frac{1}{3} = \frac{1}{3x} \\
\frac{3 - x}{3x} = \frac{1}{3x} \\
3 - x = -1 \\
x = 4

PTS: 2 \quad \text{REF: 061625aii} \quad \text{NAT: A.REI.A.2} \quad \text{TOP: Solving Rationals} \quad \text{KEY: rational solutions}

241 \text{ANS:} \frac{3p}{p - 5} = \frac{p + 2}{p + 3} \\
3p^2 + 9p = p^2 - 3p - 10 \\
2p^2 + 12p + 10 = 0 \\
p^2 + 6p + 5 = 0 \\
(p + 5)(p + 1) = 0 \\
p = -5,-1

PTS: 4 \quad \text{REF: 081733aii} \quad \text{NAT: A.REI.A.2} \quad \text{TOP: Solving Rationals} \quad \text{KEY: rational solutions}

242 \text{ANS:} -6(x + 3) \left(\frac{-3}{x + 3} - \frac{x}{6} + 1 = 0 \right) \\
18 + x(x + 3) - 6(x + 3) = 0 \\
18 + x^2 + 3x - 6x - 18 = 0 \\
x^2 - 3x = 0 \\
x(x - 3) = 0 \\
x = 0,3

PTS: 2 \quad \text{REF: 081829aii} \quad \text{NAT: A.REI.A.2} \quad \text{TOP: Solving Rationals} \quad \text{KEY: rational solutions}
\[
\frac{7}{2x} - \frac{2}{x+1} = \frac{1}{4}
\]

\[
\frac{7x + 7 - 4x}{2x^2 + 2x} = \frac{1}{4}
\]

\[
2x^2 + 2x = 12x + 28
\]

\[
x^2 - 5x - 14 = 0
\]

\[
(x - 7)(x + 2) = 0
\]

\[
x = 7, -2
\]

PTS: 2 REF: 061926aii NAT: A.REI.A.2 TOP: Solving Rationals

KEY: rational solutions
Algebra II Regents Exam Questions by State Standard: Topic
Answer Section

244 ANS:

\[
\begin{align*}
\text{antibiotic } n(t) &= \frac{0+1}{0+5} + \frac{18}{0^2 + 8(0) + 15} = \frac{3}{15} + \frac{18}{15} = \frac{21}{15} = \frac{7}{5} \\
\text{d}(t) &= \frac{t+1}{t+5} + \frac{18}{t^2 + 8t + 15} = \frac{9}{t+3} \\
\end{align*}
\]

\[
\begin{align*}
\text{a}(t) &= \frac{9}{0+3} = 3 \\
\end{align*}
\]

\[
\begin{align*}
(t+1)(t+3) &= \frac{18}{(t+5)(t+3)} \\
(t+3) &= \frac{9(t+5)}{(t+3)(t+5)} \\
(9t+45) &= 9t + 45 \\
t^2 + 4t + 3 + 18 &= 9t + 45 \\
t^2 − 5t − 24 &= 0 \\
(t−8)(t+3) &= 0 \\
t &= 8
\end{align*}
\]

PTS: 6 REF: 012037aii NAT: A.REI.A.2 TOP: Solving Rationals
KEY: rational solutions

245 ANS: 4

\[
\begin{align*}
3x − (−2x + 14) &= 16 \\
3(6) − 4z &= 2 \\
5x &= 30 \\
−4z &= −16 \\
x &= 6 \\
z &= 4
\end{align*}
\]

PTS: 2 REF: 011803aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables

246 ANS: 2

Combining (1) and (3): −6c = −18
Combining (1) and (2): 5a + 3c = −1
Using (3): −(−2) − 5b − 5(3) = 2

\[
\begin{align*}
c &= 3 \\
5a + 3(3) &= −1 \\
2−5b−15 &= 2 \\
5a &= −10 \\
b &= −3 \\
a &= −2
\end{align*}
\]

PTS: 2 REF: 081623aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables

247 ANS: 2

\[
\begin{align*}
x + y − z &= 6 \\
2x + 2y − 2z &= 12 \\
5y − 4z &= 31 \\
x + 3 − (−4) &= 6 \\
−x + 4y − z &= 17 \\
2x − 3y + 2z &= −19 \\
5y − 2z &= 23 \\
x &= −1 \\
5y − 2z &= 23 \\
5y − 4z &= 31 \\
−2z &= 8 \\
z &= −4
\end{align*}
\]

PTS: 2 REF: 061923aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables
248 ANS: 1
\[x + y + z = 9\]
\[4 - y - z = -1\]
\[4 - 6 + z = 9\]
\[x - y - z = -1\]
\[4 - y + z = 21\]
\[\begin{align*}
2x &= 8 & -y - z &= -5 \\
x &= 4 & -y + z &= 17 \\
2y &= 12 & y &= -6
\end{align*}\]
\[z = 11\]

PTS: 2 REF: 012018aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables

249 ANS:
\[6x - 3y + 2z = -10\]
\[x + 3y + 5z = 45\]
\[4x + 10z = 64\]
\[4x + 4(7) = 20\]
\[6(-2) - 3y + 2(7) = -10\]
\[-2x + 3y + 8z = 72\]
\[6x - 3y + 2z = -10\]
\[4x + 4 + 20 = 20\]
\[4x = -8\]
\[-3y = -12\]
\[4x + 10z = 62\]
\[7x + 7z = 35\]
\[6z = 42\]
\[x = -2\]
\[y = 4\]
\[4x + 4z = 20\]
\[z = 7\]

PTS: 4 REF: spr1510aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables

250 ANS:
\[x + y + z = 1\]
\[x + y + z = 1\]
\[x + y + z = 1\]
\[-2z - z = 3\]
\[y - (-1) = 3\]
\[x + 2 - 1 = 1\]
\[x + 2y + 3z = 1\]
\[x + 2y + 3z = 1\]
\[-x + 3y - 5z = 11\]
\[-3z = 3\]
\[y = 2\]
\[x = 0\]
\[-x + 3y - 5z = 11\]
\[y + 2z = 0\]
\[4y - 4z = 12\]
\[z = -1\]
\[y = -2z\]
\[y - z = 3\]

PTS: 4 REF: 061733aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables

251 ANS:
\[4x + 6y - 8z = -2\]
\[4x + 6y - 8z = -2\]
\[4x - 8y + 20z = 12\]
\[y = 3 + 2\]
\[-4x + 5 + 3 = 16\]
\[4x - 8y + 20z = 12\]
\[-4x + y + z = 16\]
\[-4x + y + z = 16\]
\[6 = 2z\]
\[= 5\]
\[-4x = 8\]
\[-4x + y + z = 16\]
\[7y - 7z = 14\]
\[-7y + 21z = 28\]
\[z = 3\]
\[x = -2\]
\[y - z = 2\]
\[y - 3z = -4\]
\[y = 3z = -4\]
\[y = z + 2\]
\[y = 3z = -4\]

PTS: 4 REF: 081833aii NAT: A.REI.C.6 TOP: Solving Linear Systems
KEY: three variables
ANS:

\[a + 4b + 6c = 23\]
\[a + 2b + c = 2\]
\[8b + 3c = 16\]
\[2b + 5(4) = 21\]
\[\frac{1}{2}a + 6(4) = 23\]
\[a + 2b + 2c = 14\]
\[8b + 20c = 84\]
\[2b = 1\]
\[a + 24 = 23\]
\[a = -3\]

\[2b + 5c = 21\]
\[8b + 3c = 16\]
\[17c = 68\]
\[b = \frac{1}{2}\]
\[c = 4\]

PTS: 4

REF: 011933aii

NAT: A.REI.C.6

TOP: Solving Linear Systems

KEY: three variables

253 ANS: 4

\[y = g(x) = (x - 2)^2\]
\[(x - 2)^2 = 3x - 2\]
\[y = 3(6) - 2 = 16\]
\[x^2 - 4x + 4 = 3x - 2\]
\[y = 3(1) - 2 = 1\]
\[x^2 - 7x + 6 = 0\]
\[(x - 6)(x - 1) = 0\]
\[x = 6, 1\]

PTS: 2

REF: 011705aii

NAT: A.REI.C.7

TOP: Quadratic-Linear Systems

254 ANS: 3

\[(x + 4)^2 - 10 = 3x + 6\]
\[y = 3(-5) + 6 = -9\]
\[x^2 + 8x + 16 - 10 = 3x + 6\]
\[y = 3(0) + 6 = 6\]
\[x^2 + 5x = 0\]
\[x(x + 5) = 0\]
\[x = -5, 0\]

PTS: 2

REF: 061903aii

NAT: A.REI.C.7

TOP: Quadratic-Linear Systems

255 ANS: 3

\[x^2 + (2x)^2 = 5\]
\[y = 2x = \pm 2\]
\[x^2 + 4x^2 = 5\]
\[5x^2 = 5\]
\[x = \pm 1\]

PTS: 2

REF: 081916aii

NAT: A.REI.C.7

TOP: Quadratic-Linear Systems

256 ANS: 1

\[(x + 3)^2 + (2x - 4)^2 = 8\]
\[b^2 - 4ac\]
\[x^2 + 6x + 9 + 4x^2 - 16x + 16 = 8\]
\[100 - 4(5)(17) < 0\]
\[5x^2 - 10x + 17 = 0\]

PTS: 2

REF: 081719aii

NAT: A.REI.C.7

TOP: Quadratic-Linear Systems
257 ANS: 2
\[x^2 + 4x - 1 = x - 3 \quad y + 3 = -1 \]
\[x^2 + 3x + 2 = 0 \quad y = -4 \]
\[(x + 2)(x + 1) = 0 \]
\[x = -2, -1 \]

PTS: 2 REF: 061801aii NAT: A.REI.C.7 TOP: Quadratic-Linear Systems

258 ANS:

\[-2x + 1 = -2x^2 + 3x + 1 \]
\[2x^2 - 5x = 0 \]
\[x(2x - 5) = 0 \]
\[x = 0, \frac{5}{2} \]

PTS: 2 REF: fall1507aii NAT: A.REI.C.7 TOP: Quadratic-Linear Systems

259 ANS:

\[y = -x + 5 \quad y = -7 + 5 = -2 \]
\[(x - 3)^2 + (-x + 5 + 2)^2 = 16 \quad y = -3 + 5 = 2 \]
\[x^2 - 6x + 9 + x^2 - 14x + 49 = 16 \]
\[2x^2 - 20x + 42 = 0 \]
\[x^2 - 10x + 21 = 0 \]
\[(x - 7)(x - 3) = 0 \]
\[x = 7, 3 \]

PTS: 4 REF: 061633aii NAT: A.REI.C.7 TOP: Quadratic-Linear Systems
260 ANS:
\[x^2 + (x - 28)^2 = 400 \]
\[y = 12 - 28 = -16 \quad y = 16 - 28 = -12 \]
\[x^2 + x^2 - 56x + 784 = 400 \]
\[2x^2 - 56x + 384 = 0 \]
\[x^2 - 28x + 192 = 0 \]
\[(x - 16)(x - 12) = 0 \]
\[x = 12, 16 \]

PTS: 2 \quad REF: 081831aii \quad NAT: A.REI.C.7 \quad TOP: Quadratic-Linear Systems

261 ANS:
\[y = -x + 1 \quad y = -2 + 1 = -1 \quad (2, -1) \]
\[(x - 2)^2 + (-x + 1 - 3)^2 = 16 \quad y = 2 + 1 = 3 \quad (-2, 3) \]
\[x^2 - 4x + 4 + x^2 + 4x + 4 = 16 \]
\[2x^2 = 8 \]
\[x = -2, 2 \]

PTS: 4 \quad REF: 012035aii \quad NAT: A.REI.C.7 \quad TOP: Quadratic-Linear Systems

262 ANS: 3
\[-33t^2 + 360t = 700 + 5t \]
\[-33t^2 + 355t - 700 = 0 \]
\[t = \frac{-355 \pm \sqrt{355^2 - 4(-33)(-700)}}{2(-33)} \approx 3, 8 \]

PTS: 2 \quad REF: 081606aii \quad NAT: A.REI.D.11 \quad TOP: Quadratic-Linear Systems

263 ANS: 4 \quad PTS: 2 \quad REF: 061914aii \quad NAT: A.REI.D.11 \quad TOP: Other Systems

264 ANS: 1
\[1240(1.06)^x = 890(1.11)^x \]
\[x \approx 7 \]

PTS: 2 \quad REF: 061814aii \quad NAT: A.REI.D.11 \quad TOP: Other Systems
265 ANS: 2

266 ANS: 2

267 ANS: 1

268 ANS: 3

269 ANS: 4

270 ANS: 2
271 ANS: 2

PTS: 2 REF: 012021a1i NAT: A.REI.D.11 TOP: Other Systems

272 ANS: 4

PTS: 2 REF: 061622a1i NAT: A.REI.D.11 TOP: Other Systems

273 ANS: 2

PTS: 2 REF: 061705a1i NAT: A.REI.D.11 TOP: Other Systems

274 ANS: 2

PTS: 2 REF: 011716a1i NAT: A.REI.D.11 TOP: Other Systems
276 ANS:

\[
20e^{0.05t} = 30e^{0.03t} \\
\frac{2}{3}e^{0.05t} = e^{0.03t} \\
\ln \frac{2}{3} = -0.02t \\
\frac{2}{3} = -0.02t \ln e \\
\frac{2}{-0.02} = t \\
20.3 \approx t
\]
278 ANS:

\[A(t) = 800e^{-0.347t} \]
\[B(t) = 400e^{-0.231t} \]

\[
800e^{-0.347t} = 400e^{-0.231t} \quad 0.15 = e^{-0.347t}
\]
\[
\ln 2e^{-0.347t} = \ln e^{-0.231t} \quad \ln 0.15 = \ln e^{-0.347t}
\]
\[
\ln 2 + \ln e^{-0.347t} = \ln e^{-0.231t} \quad \ln 0.15 = -0.347t \cdot \ln e
\]
\[
\ln 2 - 0.347t = -0.231t \quad 5.5 \approx t
\]
\[
\ln 2 = 0.116t \quad 6 \approx t
\]

PTS: 6 REF: 061637aii NAT: A.REI.D.11 TOP: Other Systems

279 ANS:

At 1.95 years, the value of the car equals the loan balance. Zach can cancel the policy after 6 years.

PTS: 4 REF: 081737aii NAT: A.REI.D.11 TOP: Other Systems
280 ANS:

\[P(16) = \log(16 - 4) \approx 1.1, \quad 14000 \]

PTS: 6 REF: 061837a1i NAT: A.REI.D.11 TOP: Other Systems

281 ANS: 3 PTS: 2 REF: 011710a1i NAT: F.BF.A.1
TOP: Operations with Functions

282 ANS: 4

\[
m(c) = \frac{c + 1}{1 - c^2} = \frac{c + 1}{(1 + c)(1 - c)} = \frac{1}{1 - c}
\]

PTS: 2 REF: 061608a1i NAT: F.BF.A.1 TOP: Operations with Functions

283 ANS: 4 PTS: 2 REF: 081803a1i NAT: F.BF.A.1
TOP: Operations with Functions

284 ANS: 2

\[
x(30 - 0.01x) - (0.15x^3 + 0.01x^2 + 2x + 120) = 30x - 0.01x^2 - 0.15x^3 - 0.01x^2 - 2x - 120
\]

\[
= -0.15x^3 - 0.02x^2 + 28x - 120
\]

PTS: 2 REF: 061709a1i NAT: F.BF.A.1 TOP: Operations with Functions

285 ANS: 1

\[
p(x) = r(x) - c(x)
\]

\[
-0.5x^2 + 250x - 300 = -0.3x^2 + 150x - c(x)
\]

\[
c(x) = 0.2x^2 - 100x + 300
\]

PTS: 2 REF: 061813a1i NAT: F.BF.A.1 TOP: Operations with Functions

286 ANS: 3 PTS: 2 REF: 012002a1i NAT: F.BF.A.1
TOP: Operations with Functions

287 ANS:

\[
(2x^2 + x - 3) \bullet (x - 1) - \left[(2x^2 + x - 3) + (x - 1) \right]
\]

\[
(2x^3 - 2x^2 + x^2 - x - 3x + 3) - (2x^2 + 2x - 4)
\]

\[
2x^3 - 3x^2 - 6x + 7
\]

PTS: 4 REF: 011833a1i NAT: F.BF.A.1 TOP: Operations with Functions

288 ANS: 3 PTS: 2 REF: 061906a1i NAT: F.LE.A.2
TOP: Families of Functions
289 ANS: 1
2) linear, 3) quadratic, 4) cubic

PTS: 2 REF: 061920aii NAT: F.LE.A.2 TOP: Families of Functions

290 ANS: 1 PTS: 2 REF: 081903aii NAT: F.LE.A.2
TOP: Families of Functions

291 ANS: 4

The maximum of p is 5. The minimum of f is $-\frac{21}{4}$ ($x = -\frac{6}{2(4)} = -\frac{3}{4}$)

$$f\left(-\frac{3}{4}\right) = 4\left(-\frac{3}{4}\right)^2 + 6\left(-\frac{3}{4}\right) - 3 = 4\left(\frac{9}{16}\right) - 18 - 12 = -\frac{21}{4}$$. $\frac{20}{4} - \left(-\frac{21}{4}\right) = \frac{41}{4} = 10.25$

PTS: 2 REF: 011922aii NAT: F.IF.C.9 TOP: Comparing Functions

292 ANS: 2
$h(x)$ does not have a y-intercept.

PTS: 2 REF: 011719aii NAT: F.IF.C.9 TOP: Comparing Functions

293 ANS: 1 PTS: 2 REF: 081804aii NAT: F.IF.C.9
TOP: Comparing Functions

294 ANS:
$$\frac{f(4) - f(-2)}{4 - (-2)} = \frac{80 - 1.25}{6} = 13.125 \text{ } g(x) \text{ has a greater rate of change}$$

$$\frac{g(4) - g(-2)}{4 - (-2)} = \frac{179 - (-49)}{6} = 38$$

PTS: 4 REF: 061636aii NAT: F.IF.C.9 TOP: Comparing Functions

295 ANS:
$$0 = \log_{10}(x - 4) \text{ The x-intercept of } h \text{ is } (2,0). \text{ } f \text{ has the larger value.}$$

$$10^0 = x - 4$$

$$1 = x - 4$$

$$x = 5$$

PTS: 2 REF: 081630aii NAT: F.IF.C.9 TOP: Comparing Functions

296 ANS:
$q \text{ has the smaller minimum value for the domain } [-2,2]. \text{ } h \text{ 's minimum is } -1 \left(2(-1) + 1\right) \text{ and } q \text{ 's minimum is } -8.$

PTS: 2 REF: 011830aii NAT: F.IF.C.9 TOP: Comparing Functions

297 ANS: 4 PTS: 2 REF: 081817aii NAT: F.BF.B.3
TOP: Transformations with Functions

298 ANS: 3
$f(x) = -f(x), \text{ so } f(x) \text{ is odd. } g(-x) \neq g(x), \text{ so } g(x) \text{ is not even. } g(-x) \neq -g(x), \text{ so } g(x) \text{ is not odd. } h(-x) = h(x), \text{ so } h(x) \text{ is even.}$

PTS: 2 REF: fall1502aii NAT: F.BF.B.3 TOP: Even and Odd Functions
The graph of \(y = \sin x \) is unchanged when rotated \(180^\circ \) about the origin.

\[
f(x) = f(-x)
\]
\[
x^2 - 4 = (-x)^2 - 4
\]
\[
x^2 - 4 = x^2 - 4
\]

\[
j(-x) = (-x)^4 - 3(-x)^2 - 4 = x^2 - 3x^2 - 4 \quad \text{Since } f(x) = j(-x), \text{ the function is even.}
\]

\[
x = -\frac{3}{4}y + 2
\]
\[
-4x = 3y - 8
\]
\[
-4x + 8 = 3y
\]
\[
\frac{4}{3}x + \frac{8}{3} = y
\]

\[
x = \frac{y + 1}{y - 2}
\]
\[
xy - 2x = y + 1
\]
\[
xy - y = 2x + 1
\]
\[
y(x - 1) = 2x + 1
\]
\[
y = \frac{2x + 1}{x - 1}
\]
306 ANS: 2
\[x = -6(y - 2) \]
\[\frac{x}{6} = y - 2 \]
\[\frac{x}{6} + 2 = y \]

PTS: 2 REF: 011821aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: linear

307 ANS: 3
\[y = x^3 - 2 \]
\[x = y^3 - 2 \]
\[x + 2 = y^3 \]
\[\sqrt[3]{x + 2} = y \]

PTS: 2 REF: 061815aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: other

308 ANS: 2
\[y = \frac{1}{2}x + 8 \quad x = \frac{1}{2}y + 8 \]
\[2x = y + 16 \]
\[y = 2x - 16 \]

PTS: 2 REF: 081806aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: linear

309 ANS: 3 PTS: 2 REF: 011917aii NAT: F.BF.B.4
TOP: Inverse of Functions
KEY: other

310 ANS: 2
\[x = 4y + 5 \]
\[x - 5 = 4y \]
\[\frac{1}{4}x - \frac{5}{4} = y \]

PTS: 2 REF: 061909aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: linear
311 ANS: 2
\[x = \frac{y}{y+2} \]
\[xy + 2x = y \]
\[xy - y = -2x \]
\[y(x - 1) = -2x \]
\[y = \frac{-2x}{x-1} \]

PTS: 2 REF: 081924aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: other

312 ANS:
\[x = \left(y - 3\right)^3 + 1 \]
\[x - 1 = \left(y - 3\right)^3 \]
\[\sqrt[3]{x - 1} = y - 3 \]
\[\sqrt[3]{x - 1} + 3 = y \]
\[f^{-1}(x) = \sqrt[3]{x - 1} + 3 \]

PTS: 2 REF: fall1509aii NAT: F.BF.B.4 TOP: Inverse of Functions
KEY: other

313 ANS: 3
PTS: 2 REF: 061720aii NAT: F.LE.A.2
TOP: Sequences
KEY: explicit

314 ANS: 1
(2) is not recursive

PTS: 2 REF: 081608aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

315 ANS: 4
(1) and (3) are not recursive

PTS: 2 REF: 012013aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

316 ANS: 3
PTS: 2 REF: 081618aii NAT: F.LE.A.2
TOP: Sequences
KEY: recursive

317 ANS:
\[\frac{9}{6} = 1.5 \quad a_1 = 6 \]
\[a_n = 1.5 \cdot a_{n-1} \]

PTS: 2 REF: 061931aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive
318 ANS:
\[a_1 = 4 \quad a_8 = 639 \]
\[a_n = 2a_{n-1} + 1 \]

PTS: 2 REF: 081729aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

319 ANS:
\[a_1 = 4 \]
\[a_n = 3a_{n-1} \]

PTS: 2 REF: 081931aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

320 ANS:
\[a_n = x^{n-1}(x + 1) \quad x^{n-1} = 0 \quad x + 1 = 0 \]
\[x = 0 \quad x = -1 \]

PTS: 4 REF: spr1511aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

321 ANS:
Jillian’s plan, because distance increases by one mile each week. \[a_1 = 10 \quad a_n = n + 12 \]
\[a_n = a_{n-1} + 1 \]

PTS: 4 REF: 011734aii NAT: F.LE.A.2 TOP: Sequences
KEY: recursive

322 ANS: 2
\[121(b)^2 = 64 \quad 64\left(\frac{8}{11}\right)^2 \approx 34 \]
\[b = \frac{8}{11} \]

PTS: 2 REF: 011904aii NAT: F.IF.A.3 TOP: Sequences
KEY: explicit

323 ANS: 1
\[\frac{-12}{16} = \frac{9}{-12} = \frac{-6.75}{9} \]

PTS: 2 REF: 012017aii NAT: F.IF.A.3 TOP: Sequences
KEY: difference or ratio

324 ANS: 1
\[d = 18; \quad r = \pm \frac{5}{4} \]

PTS: 2 REF: 011714aii NAT: F.IF.A.3 TOP: Sequences
KEY: explicit
The scenario represents a decreasing geometric sequence with a common ratio of 0.80.

\[a_1 = 2.5 + 0.5(1) = 3 \]

\[d = 32(.8)^{b-1} \]

\[S_n = \frac{32 - 32(.8)^{12}}{1-.8} \approx 149 \]

\[S_{20} = \frac{.01 - .01(3)^{20}}{1-3} = 17,433,922 \]
340 ANS: 3
\[8r^3 = 216 \quad S_{12} = \frac{8 - 8(3)^{12}}{1 - 3} = 2125760\]
\[r^3 = 27\]
\[r = 3\]

PTS: 2 REF: 081902aii NAT: A.SSE.B.4 TOP: Series

341 ANS: 4
\[S_7 = \frac{85000 - 85000(1.06)^7}{1 - 1.06} \approx 713476.20\]

PTS: 2 REF: 061905aii NAT: A.SSE.B.4 TOP: Series

342 ANS: 2
\[S_n = \frac{33000 - 33000(1.04)^n}{1 - 1.04} \quad S_{15} = \frac{33000 - 33000(1.04)^{15}}{1 - 1.04} \approx 660778.39\]

PTS: 2 REF: 061724aii NAT: A.SSE.B.4 TOP: Series

343 ANS:
\[S_{10} = \frac{15 - 15(1.03)^{10}}{1 - 1.03} \approx 171.958\]

PTS: 4 REF: 061634aii NAT: A.SSE.B.4 TOP: Series

344 ANS:
\[a_n = 100(0.8)^n-1 \quad S_{20} = \frac{100 - 100(0.8)^{20}}{1 - 0.8} \approx 494 \quad \text{No, because 494 > 40 \times 12.}\]

PTS: 4 REF: 011929aii NAT: A.SSE.B.4 TOP: Series

345 ANS:
\[r = \frac{360}{300} = 1.2 \quad S_n = \frac{300 - 300(1.2)^n}{1 - 1.2} \quad S_{10} = \frac{300 - 300(1.2)^{10}}{1 - 1.2} \approx 7787.6\]

PTS: 2 REF: 012029aii NAT: A.SSE.B.4 TOP: Series

346 ANS:
\[20000 = PMT \left(\frac{1 - (1 + 0.00625)^{-60}}{0.00625} \right) \quad 21000 - x = 300 \left(\frac{1 - (1 + 0.00625)^{-60}}{0.00625} \right)\]
\[PMT \approx 400.76 \quad x \approx 6028\]

PTS: 4 REF: 011736aii NAT: A.SSE.B.4 TOP: Series
\[M = 172600 \cdot \frac{0.00305(1 + 0.00305)^{12 \cdot 15}}{(1 + 0.00305)^{12 \cdot 15} - 1} \approx 1247 \]

\[1100 = (172600 - x) \cdot \frac{0.00305(1 + 0.00305)^{12 \cdot 15}}{(1 + 0.00305)^{12 \cdot 15} - 1} \]

\[1100 \approx (172600 - x) \cdot (0.007228) \]

\[152193 \approx 172600 - x \]

\[20407 \approx x \]

\[M = \frac{(152500 - 15250) \left(\frac{0.36}{12} \right)^{360}}{1 + \left(\frac{0.36}{12} \right)^{360} - 1} \approx 624 \]

\[t^2 + \left(\frac{4}{7} \right)^2 = 1 \quad \sqrt{\frac{33}{7}} \]

\[t^2 + \frac{16}{49} = \frac{49}{49} \]

\[t^2 = \frac{33}{49} \]

\[t = \pm \sqrt{\frac{33}{7}} \]

\[\csc \theta = \frac{1}{\sin \theta}, \text{ and } \sin \theta \text{ on a unit circle represents the } y \text{ value of a point on the unit circle. Since } y = \sin \theta, \]

\[\csc \theta = \frac{1}{y}. \]
A reference triangle can be sketched using the coordinates \((-4,3)\) in the second quadrant to find the value of \(\sin \theta\).
If \(\cos \theta = \frac{7}{25} \), \(\sin \theta = \pm \frac{24}{25} \), and \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{24}{25}}{\frac{7}{25}} = -\frac{24}{7} \).

\[\sqrt{1 - \left(\frac{3}{4}\right)^2} = -\sqrt{\frac{16}{16} - \frac{9}{16}} = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \]

Since \(\theta \) is in Quadrant II, \(\sin \theta = \sqrt{\frac{51}{2}} \) and \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{\frac{51}{2}}}{-0.7} \approx -1.02 \)

\[\sin^2 \theta = 0.51 \]
\[\sin \theta = \pm \sqrt{0.51} \]

\[\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{\sqrt{7}}{25}}{-\frac{24}{25}} \]

\[a = \frac{14 - 4}{2} = 5, \quad d = \frac{14 + 4}{2} = 9 \]

The cosine function has been translated +3. Since the maximum is 5 and the minimum is 1, the amplitude is 2.

\[\frac{\pi}{3} = \frac{2\pi}{b} \cdot \]
\[b = 6 \]
369 \text{ ANS: 4} \\
\text{period} = \frac{2\pi}{B} \\
\frac{1}{60} = \frac{2\pi}{B} \\
B = 120\pi

PTS: 2 \quad \text{REF: 061624aii} \quad \text{NAT: F.TF.B.5} \quad \text{TOP: Modeling Trigonometric Functions}

370 \text{ ANS: 3}

\[H(t) \text{ is at a minimum at } 70(-1) + 80 = 10 \]

PTS: 2 \quad \text{REF: 061613aii} \quad \text{NAT: F.IF.B.4} \quad \text{TOP: Graphing Trigonometric Functions}

\text{KEY: maximum/minimum}

371 \text{ ANS: 2} \quad \text{PTS: 2} \quad \text{REF: 011701aii} \quad \text{NAT: F.IF.B.4}

\text{TOP: Graphing Trigonometric Functions}

372 \text{ ANS: 4} \quad \text{PTS: 2} \quad \text{REF: 061706aii} \quad \text{NAT: F.IF.B.4}

\text{TOP: Graphing Trigonometric Functions}

373 \text{ ANS: 2} \quad \text{PTS: 2} \quad \text{REF: 081610aii} \quad \text{NAT: F.IF.B.4}

\text{TOP: Graphing Trigonometric Functions}

\text{KEY: increasing/decreasing}

374 \text{ ANS: 3} \quad \text{PTS: 2} \quad \text{REF: 081705aii} \quad \text{NAT: F.IF.B.4}

\text{TOP: Graphing Trigonometric Functions}

\text{KEY: increasing/decreasing}

375 \text{ ANS: 1}
\[-4(-1) - 3 = 1 \quad 8 = \frac{2\pi}{b} \]
\[b = \frac{\pi}{4} \]

PTS: 2 \quad \text{REF: 081820aii} \quad \text{NAT: F.IF.B.4} \quad \text{TOP: Graphing Trigonometric Functions}

\text{KEY: maximum/minimum}

376 \text{ ANS: 4} \quad \text{PTS: 2} \quad \text{REF: 012016aii} \quad \text{NAT: F.IF.B.4}

\text{TOP: Graphing Trigonometric Functions}

\text{KEY: increasing/decreasing}

377 \text{ ANS: 4}

<table>
<thead>
<tr>
<th>Bar Harbor</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>31.386</td>
</tr>
<tr>
<td>Midline</td>
<td>55.3</td>
</tr>
<tr>
<td>Maximum</td>
<td>79.214</td>
</tr>
<tr>
<td>Range</td>
<td>47.828</td>
</tr>
</tbody>
</table>

PTS: 2 \quad \text{REF: 061715aii} \quad \text{NAT: F.IF.B.4} \quad \text{TOP: Graphing Trigonometric Functions}

\text{KEY: maximum/minimum}
\[
\frac{h(2) - h(1)}{2 - 1} = -12, \quad h(t) = 0 \text{ at } t \approx 2.2, 3.8, \text{ using a graphing calculator to find where } h(t) = 0.
\]

379 ANS:
\[
250(1) + 2450 = 2700 \quad \text{The maximum lung capacity of a person is 2700 mL.}
\]

380 ANS: 3
(3) repeats 3 times over \(2\pi\).

381 ANS: 4
PTS: 2
REF: 081718aii
NAT: F.IF.C.7
TOP: Graphing Trigonometric Functions
KEY: amplitude

382 ANS: 2
\[
P = \frac{2\pi \cdot 45}{\pi} = 90
\]

383 ANS: 4

\[
\text{As the range is } [4,10], \text{ the midline is } y = \frac{4 + 10}{2} = 7.
\]

384 ANS: 1
The time of the next high tide will be the midpoint of consecutive low tides.

385 ANS: 4
PTS: 2
REF: 081912aii
NAT: F.IF.C.7
TOP: Graphing Trigonometric Functions
KEY: mixed

386 ANS:
Amplitude, because the height of the graph shows the volume of the air.

PTS: 2
REF: 081625aii
NAT: F.IF.C.7
TOP: Graphing Trigonometric Functions
KEY: mixed
\[
\frac{10.1 - (\frac{-2}{2}) - \frac{2.5 - 0.1}{2}}{2} = 6.05 - 1.3 = 4.75
\]

PTS: 2 REF: 081930aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: amplitude

388 ANS:
period is \(\frac{2}{3}\). The wheel rotates once every \(\frac{2}{3}\) second.

PTS: 2 REF: 061728aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: period

389 ANS:
Light wave C. The periods for A, B, and C are 280, 220 and 320.

PTS: 2 REF: 012030aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: period

390 ANS:

Part a sketch is shifted \(\frac{\pi}{3}\) units right.

PTS: 4 REF: 081735aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: graph

391 ANS:
392 ANS:
\[
y = 2 \sin 4x
\]

PTS: 2 REF: 061628aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: graph

393 ANS:

PTS: 4 REF: 081934aii NAT: F.IF.C.7 TOP: Graphing Trigonometric Functions
KEY: graph
The amplitude, 12, can be interpreted from the situation, since the water level has a minimum of −12 and a maximum of 12. The value of \(A \) is −12 since at 8:30 it is low tide. The period of the function is 13 hours, and is expressed in the function through the parameter \(B \). By experimentation with technology or using the relation \(P = \frac{2\pi}{B} \) (where \(P \) is the period), it is determined that \(B = \frac{2\pi}{13} \).

\[
f(t) = -12 \cos \left(\frac{2\pi}{13} t \right)
\]

In order to answer the question about when to fish, the student must interpret the function and determine which choice, 7:30 pm or 10:30 pm, is on an increasing interval. Since the function is increasing from \(t = 13 \) to \(t = 19.5 \) (which corresponds to 9:30 pm to 4:00 am), 10:30 is the appropriate choice.

The period of \(P \) is \(\frac{2}{3} \), which means the patient’s blood pressure reaches a high every \(\frac{2}{3} \) second and a low every \(\frac{2}{3} \) second. The patient’s blood pressure is high because 144 over 96 is greater than 120 over 80.
396 ANS:

\[\text{period} = \frac{2\pi}{0.8\pi} = 2.5. \text{ The wheel rotates once every 2.5 seconds.} \]

No, because the maximum of \(f(t) = 26 \).

397 ANS: 4

\[
4(x^2 - 6x + 9) + 4(y^2 + 18y + 81) = 76 + 36 + 324
\]

\[
4(x - 3)^2 + 4(y + 9)^2 = 436
\]

398 ANS:

sample: pails of oranges; population: truckload of oranges. It is likely that about 5% of all the oranges are unsatisfactory.

399 ANS:

Since there are six flavors, each flavor can be assigned a number, 1-6. Use the simulation to see the number of times the same number is rolled 4 times in a row.

400 ANS: 3

401 ANS:

No. \(0.499 \pm 2(0.049) \rightarrow 0.401 - 0.597. \) Since 0.43 falls within this interval, Robin’s coin is likely not unfair.

402 ANS: 3

403 ANS: 2

404 ANS:

138.905 \pm 2 \cdot 7.95 = 123 - 155. No, since 125 (50% of 250) falls within the 95% interval.

405 ANS:

29.101 \pm 2 \cdot 0.934 = 27.23 - 30.97. Yes, since 30 falls within the 95% interval.
II. Ninth graders drive to school less often; III. Students know little about adults; IV. Calculus students love math!

- Self selection causes bias.

 - Randomly assign participants to two groups. One group uses the toothpaste with ingredient X and the other group uses the toothpaste without ingredient X.

\[
\frac{450}{1000} = 45\%
\]
Yes. The margin of error from this simulation indicates that 95% of the observations fall within ± 0.12 of the simulated proportion, 0.25. The margin of error can be estimated by multiplying the standard deviation, shown to be 0.06 in the dotplot, by 2, or applying the estimated standard error formula, \[
\sqrt{\frac{p(1-p)}{n}} \approx 0.03 \text{ or } \frac{1}{\sqrt{n}} \approx 0.03
\] and multiplying by 2. The interval 0.25 ± 0.12 includes plausible values for the true proportion of people who prefer Stephen’s new product. The company has evidence that the population proportion could be at least 25%. As seen in the dotplot, it can be expected to obtain a sample proportion of 0.18 (9 out of 50) or less several times, even when the population proportion is 0.25, due to sampling variability. Given this information, the results of the survey do not provide enough evidence to suggest that the true proportion is not at least 0.25, so the development of the product should continue at this time.

The percent of users making in-app purchases will be within 8% of 35%.

$0.25 \pm 2(0.060) \rightarrow (0.134, 0.374)$
The mean difference between the students’ final grades in group 1 and group 2 is –3.64. This value indicates that students who met with a tutor had a mean final grade of 3.64 points less than students who used an on-line subscription. One can infer whether this difference is due to the differences in intervention or due to which students were assigned to each group by using a simulation to rerandomize the students’ final grades many (500) times. If the observed difference –3.64 is the result of the assignment of students to groups alone, then a difference of –3.64 or less should be observed fairly regularly in the simulation output. However, a difference of –3 or less occurs in only about 2% of the rerandomizations. Therefore, it is quite unlikely that the assignment to groups alone accounts for the difference; rather, it is likely that the difference between the interventions themselves accounts for the difference between the two groups’ mean final grades.

\[0.602 \pm 2 \cdot 0.066 = 0.47 – 0.73.\] Since 0.50 falls within the 95% interval, this supports the concern there may be an even split.

\[0.301 \pm 2(0.058) \rightarrow 0.185 – 0.417 \approx 0.23.\] It is not unusual because 0.23 falls within this interval.

\[0.506 \pm 2 \cdot 0.078 = 0.35 – 0.66.\] The 32.5% value falls below the 95% confidence level.

Some of the students who did not drink energy drinks read faster than those who did drink energy drinks.

\[17.7 – 19.1 = –1.4\] Differences of -1.4 and less occur \(\frac{25}{232}\) or about 10% of the time, so the difference is not unusual.

\[23 – 18 = 5, \bar{x} \pm 2\sigma = –3.07 – 3.13,\] Yes, a difference of 5 or more occurred three times out of a thousand, which is statistically significant.

John found the means of the scores of the two rooms and subtracted the means. The mean score for the classical room was 7 higher than the rap room (82-75). Yes, there is less than a 5% chance this difference occurring due to random chance. It is likely the difference was due to the music.
ANS:
Using a 95% level of confidence, $x \pm 2$ standard deviations sets the usual wait time as 150-302 seconds. 360 seconds is unusual.

PTS: 2 REF: 081629aiai NAT: S.I.C.B.6 TOP: Analysis of Data

ANS: 3
The pattern suggests an exponential pattern, not linear or sinusoidal. A 4% growth rate is accurate, while a 43% growth rate is not.

PTS: 2 REF: 011713aii NAT: S.I.D.B.6 TOP: Regression

KEY: choose model

ANS: 2 PTS: 2 REF: 061804aii NAT: S.I.D.B.6
TOP: Regression KEY: choose model

ANS:
$y = 4.168(3.981)^x$.

$100 = 4.168(3.981)^x$

$log \frac{100}{4.168} = log(3.981)^x$

$log \frac{100}{4.168} = x log(3.981)$

$log \frac{100}{4.168} = x log(3.981)$

$log \frac{100}{log(3.981)} = x$

$x \approx 2.25$

PTS: 4 REF: 081736aii NAT: S.I.D.B.6 TOP: Regression

KEY: exponential

ANS:
$D = 1.223(2.652)^4$

PTS: 2 REF: 011826aii NAT: S.I.D.B.6 TOP: Regression

KEY: exponential
439 ANS:
\[y = 101.523(0.883)^x \]
\[29 = 101.523(0.883)^x \]
\[
\frac{29}{101.523} = (0.883)^x
\]
\[
\log\frac{29}{101.523} = x \log(0.883)
\]
\[
\frac{\log 29}{\log(0.883)} = x
\]
\[x \approx 10.07 \]

PTS: 4
REF: 012036a1i
NAT: S.ID.B.6
TOP: Regression

KEY: exponential

440 ANS: 3
\[440 \times 2.3\% \approx 10 \]

PTS: 2
REF: 011807a1i
NAT: S.ID.A.4
TOP: Normal Distributions

KEY: predict

441 ANS: 2
\[x + 2\sigma \text{ represents approximately } 48\% \text{ of the data.} \]

PTS: 2
REF: 061609a1i
NAT: S.ID.A.4
TOP: Normal Distributions

KEY: percent

442 ANS: 3
\[496 \pm 2(115) \]

PTS: 2
REF: 081604a1i
NAT: S.ID.A.4
TOP: Normal Distributions

KEY: probability

443 ANS: 4
444 ANS: 1

445 ANS: 2

446 ANS: 1

84.1% \times 750 \approx 631

447 ANS: 1

448 ANS: 4

400 \times 0.954 \approx 380

449 ANS: 2

TOP: Normal Distributions
KEY: mean and standard deviation
\[1200 \cdot 0.784 \approx 941\]

\[\text{PTS: 2} \quad \text{REF: 081828aii} \quad \text{NAT: S.ID.A.4} \quad \text{TOP: Normal Distributions}\]

\[\text{KEY: predict}\]

\[
\text{normcdf}(510, 540, 480, 24) = 0.0994
\]

\[
z = \frac{510 - 480}{24} = 1.25 \quad 1.25 = \frac{x - 510}{20} \quad 2.5 = \frac{x - 510}{20} \quad 535-560
\]

\[
z = \frac{540 - 480}{24} = 2.5 \quad 535 \quad 560
\]

\[\text{PTS: 4} \quad \text{REF: fall1516aii} \quad \text{NAT: S.ID.A.4} \quad \text{TOP: Normal Distributions}\]

\[\text{KEY: probability}\]

\[0.125 = 0.5 \cdot 0.25\]

\[\text{If } P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = 0.25 + 0.5 - 0.125 = 0.625, \text{ then the events are not mutually exclusive}\]

\[\text{because } P(A \text{ or } B) = P(A) + P(B)\]

\[0.625 \neq 0.5 + 0.25\]

\[\text{PTS: 2} \quad \text{REF: 061714aii} \quad \text{NAT: S.CP.B.7} \quad \text{TOP: Theoretical Probability}\]

\[
P(S \cap M) = P(S) + P(M) - P(S \cup M) = \frac{649}{1376} + \frac{433}{1376} - \frac{974}{1376} = \frac{108}{1376}
\]

\[\text{PTS: 2} \quad \text{REF: 061629aii} \quad \text{NAT: S.CP.B.7} \quad \text{TOP: Theoretical Probability}\]

\[0.48 \cdot 0.25 = 0.12\]

\[\text{PTS: 1} \quad \text{REF: 061811aii} \quad \text{NAT: S.CP.A.2} \quad \text{TOP: Probability of Compound Events}\]

\[\text{KEY: probability}\]
ANS:
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
\[0.8 = 0.6 + 0.5 - P(A \cap B) \]
\[P(A \cap B) = 0.3 \]
\[0.3 = 0.6 \cdot 0.5 \]

This scenario can be modeled with a Venn Diagram:

Since
\[P(S \cup I) = 0.2, \quad P(S \cup I) = 0.8. \]
Then,
\[P(S \cap I) = P(S) + P(I) - P(S \cup I) \]
If \(S \) and \(I \) are independent, then the
\[= 0.5 + 0.7 - 0.8 \]
\[= 0.4 \]
Product Rule must be satisfied. However, \((0.5)(0.7) \neq 0.4 \). Therefore, salary and insurance have not been treated independently.

ANS: 2

\[\text{PTS: 4 REF: spr1513a}i \text{ NAT: S.CP.A.2 TOP: Probability of Compound Events} \]

ANS: 2

\[P(B) \cdot P(A | B) = P(A \text{ and } B) \]
\[P(B) \cdot 0.8 = 0.2 \]
\[P(B) = 0.25 \]

ANS: 2

\[\text{PTS: 2 REF: 081913a}i \text{ NAT: S.CP.A.3 TOP: Conditional Probability} \]

ANS: 1

The probability of rain equals the probability of rain, given that Sean pitches.

ANS: 2

\[(1) \ 0.4 \cdot 0.3 \neq 0.2, \ (2) \ 0.8 \cdot 0.25 = 0.2, \ (3) \ P(A | B) = P(A) = 0.2, \ (4) \ 0.2 \neq 0.15 \cdot 0.05 \]
\[0.2 \neq 0.2 \cdot 0.2 \]
\[P(A + B) = P(A) \cdot P(B|A) = 0.8 \cdot 0.85 = 0.68 \]

ANS:

\[\frac{47}{108} = \frac{1}{4} + \frac{116}{459} \]

\[P(M \text{ and } J) = \frac{31}{459} \]

PTS: 2

REF: 011928aii

NAT: S.CP.A.3

TOP: Conditional Probability

\[\frac{13}{13 + 11} = \frac{13}{24} \]

ANS: 4

PTS: 2

REF: 081607aii

NAT: S.C.P.A.4

TOP: Conditional Probability

Based on these data, the two events do not appear to be independent. \(P(F) = \frac{106}{200} = 0.53 \), while \(P(F|T) = \frac{54}{90} = 0.6 \), \(P(F|R) = \frac{25}{65} = 0.39 \), and \(P(F|C) = \frac{27}{45} = 0.6 \). The probability of being female are not the same as the conditional probabilities. This suggests that the events are not independent.

ANS:

No, because \(P(M/R) \neq P(M) \)

\[\frac{70}{180} \neq \frac{230}{490} \]

\[0.38 \neq 0.47 \]

ANS:

A student is more likely to jog if both siblings jog. 1 jogs: \(\frac{416}{2239} \approx 0.19 \). both jog: \(\frac{400}{1780} \approx 0.22 \)

ANS:

\[\frac{103}{110 + 103} = \frac{103}{213} \]

PTS: 2

REF: 061825aii

NAT: S.C.P.A.4

TOP: Conditional Probability
ANS:
\[P(F|L) = \frac{12}{27} \quad P(F) = \frac{22}{45} \] Since \(P(F|L) \neq P(F) \), the events are not independent.

PTS: 4 REF: 061936aii NAT: S.CP.A.4 TOP: Conditional Probability

ANS:
\[P(P/K) = \frac{P(P^K)}{P(K)} = \frac{1.9}{2.3} \approx 82.6\% \] A key club member has an 82.6% probability of being enrolled in AP Physics.

PTS: 4 REF: 011735aii NAT: S.CP.B.6 TOP: Conditional Probability

ANS:
\[P(W/D) = \frac{P(W^D)}{P(D)} = \frac{.4}{.5} = .8 \]

PTS: 2 REF: 081726aii NAT: S.CP.B.6 TOP: Conditional Probability

ANS:
\[\frac{165 + 66 - 33}{825} = \frac{198}{825} \]

PTS: 2 REF: 081925aii NAT: S.C.P.B.6 TOP: Conditional Probability