The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

LIVING ENVIRONMENT

Wednesday, January 23, 2013 — 9:15 a.m. to 12:15 p.m., only

Student Name __

School Name __

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.

A separate answer sheet for multiple-choice questions in Parts A, B–1, B–2, and D has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

You are to answer all questions in all parts of this examination. Record your answers for all multiple-choice questions, including those in Parts B–2 and D, on the separate answer sheet. Record your answers for all open-ended questions directly in this examination booklet. All answers in this examination booklet should be written in pen, except for graphs and drawings, which should be done in pencil. You may use scrap paper to work out the answers to the questions, but be sure to record all your answers on the answer sheet or in this examination booklet as directed.

When you have completed the examination, you must sign the declaration printed on your separate answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A four-function or scientific calculator must be made available for you to use while taking this examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
1. Which two cell structures work together in the process of protein synthesis?
 (1) nucleus and chloroplast
 (2) ribosome and vacuole
 (3) nucleus and ribosome
 (4) mitochondrion and cell membrane

2. Prions are proteins that act as an infectious agent. They cause a variety of diseases, including “Mad Cow” disease. Prions cannot produce more prions on their own, but cause the host organism to replicate more prions. Most scientists do not consider prions to be alive. A valid reason for accepting that prions are nonliving things is that
 (1) no living thing can cause a disease
 (2) proteins are inorganic molecules
 (3) prions contain all of the material needed to reproduce
 (4) prions cannot carry out reproduction independently

3. Which molecule can diffuse from the digestive tract into the human bloodstream without first being digested?
 (1) protein
 (2) starch
 (3) fat
 (4) glucose

4. The nucleus of a cell coordinates processes and activities that take place in the cell. Which two systems perform a similar function in the human body?
 (1) nervous and endocrine
 (2) digestive and reproductive
 (3) circulatory and respiratory
 (4) skeletal and muscular

5. The letters in the diagram below indicate some parts of a cell.

![Cell diagram]

 The function of which cell part is most similar to that of the human excretory system?
 (1) A
 (2) B
 (3) C
 (4) D

6. In the summer, the arctic fox appears brown because its cells produce a dark pigment. However, in the winter, the arctic fox appears white because the dark pigment is not produced. The color change is most likely due to the effect of
 (1) different genes produced in the different seasons
 (2) increased pollution on genetic mutations
 (3) environmental conditions on gene expression
 (4) poor nutrition on cell growth and development

7. Many years ago, a scientist grew pea plants that produced wrinkled peas. The peas from these plants produced new plants that also produced wrinkled peas. The scientist concluded that something in the parent plants was being transmitted to the next generation. This discovery is now known as
 (1) genetic engineering
 (2) biological evolution
 (3) heredity
 (4) natural selection
8 The process represented in the diagram below occurs in many cells.

The main function of this process is to
(1) provide an exact copy of the genetic code
(2) ensure genetic variation in a species
(3) synthesize cellular proteins
(4) produce antibodies to combat disease

9 The Old English Bulldog is extinct. To produce a new English Bulldog, dogs having the desired physical features, but not the aggressive nature of the old bulldogs, were mated. The result was a bulldog that was similar in appearance to the extinct bulldog, but without its fierce nature. Which technique was most likely used to develop this new variety of dog?
(1) cloning
(2) inducing mutations
(3) genetic engineering
(4) selective breeding

Base your answers to questions 10 and 11 on the diagram below and on your knowledge of biology. The diagram represents the human female reproductive system.

10 Structure A usually produces
(1) sperm and eggs
(2) testosterone and eggs
(3) estrogen, progesterone, and eggs
(4) estrogen, progesterone, and testosterone

11 The placenta forms from the combination of fetal tissue and tissue from structure
(1) A
(2) B
(3) C
(4) D

12 Which factor has the greatest influence on the development of new, inheritable characteristics?
(1) combinations of genes resulting from mitosis
(2) mutations of genes in reproductive cells
(3) sorting of genes during asexual reproduction
(4) recombining of genes during differentiation

13 In 2007, scientists broke open a fossil of a dinosaur bone and found some preserved tissues. Analysis showed that some proteins in these tissues are very similar to proteins found in modern chickens. The conclusion that these dinosaurs are related to modern chickens is based on
(1) molecular similarities
(2) natural selection
(3) similarities in behavior
(4) the occurrence of mutations
14 The diagram below represents the bone arrangements in the front limbs of three different species of mammals.

![Diagram of bone arrangements](image)

The similarities and differences in these limbs suggest that all three species developed from the same ancestor, but

(1) produced different numbers of offspring
(2) lived in different time periods
(3) adapted to different habitats
(4) migrated to similar habitats

15 For those individuals who have an allergic reaction to cats, a company in Los Angeles promises relief. They offer a new line of cats genetically modified to eliminate or reduce their allergy-causing properties. The development of this new line of cats most likely involved

(1) using natural selection to produce a new variety of cat
(2) altering the reproductive rate of cats
(3) changing the behavior of cats
(4) manipulating the DNA of cats

17 In 1970, a deadly disease spread through corn crops in the United States. Scientists discovered that 80 percent of the corn contained the gene that made the plants more likely to be infected with the disease. This problem might have been avoided if the cornfields across the country had had more

(1) large predators to control parasite populations
(2) selective mutations
(3) genetic diversity
(4) breeding of infected plants

18 According to the fossil record, which statement is accurate?

(1) Most of the species that have lived on Earth no longer exist.
(2) Most of the species that have lived on Earth still exist today.
(3) Fossils of species that never existed can be found.
(4) Fossils of species that never existed, but will exist in the future, can be found.

19 An organism that reproduces asexually will have offspring that have

(1) the same genetic information as both of its parents
(2) different genetic information from either of its parents
(3) the same genes as its parent
(4) different genes from its parent

20 Some sea slugs store chloroplasts obtained from algae they have ingested. The chloroplasts continue to carry out photosynthesis within the slugs. What advantage would this activity be to these sea slugs?

(1) The slugs with chloroplasts can synthesize some of their own food.
(2) The slugs with chloroplasts no longer need to carry out respiration.
(3) The chloroplasts provide the slugs with camouflage that protects them from UV radiation.
(4) The chloroplasts contain enzymes that allow the slugs to digest starch.
21 The energy released when sugar molecules are broken down is stored in
(1) minerals (3) DNA
(2) ATP (4) wastes

22 Responses of the immune system to usually harmless environmental substances are known as
(1) antigen production
(2) chromosomal mutations
(3) pathogens
(4) allergies

23 People have been warned about the dangers of excessive exposure to radiation during certain medical procedures. The most likely reason for this warning is that radiation exposure might
(1) result in gene mutations and uncontrolled cell growth
(2) cause the rejection of transplanted organs
(3) increase body temperature by two to five degrees
(4) prevent the transport of materials into cells

24 A scientist was studying a population of fish in a pond over a period of 10 years. He observed that the population increased each year for 3 years, and then remained nearly constant for the rest of the study. The best explanation for this observation is that the population had
(1) stopped reproducing
(2) reached carrying capacity
(3) mutated into a different species
(4) run out of food and migrated to a different pond

25 Increased human population growth usually results in
(1) a decrease in the need for farming
(2) a need for stronger environmental protection laws
(3) lower levels of air and water pollution
(4) an increase in natural wildlife habitats

26 Four levels of an energy pyramid are represented below.

```
 4
 3
 2
 1
```

Which statement about this energy pyramid is correct?
(1) Organisms in level 4 receive their energy directly from the Sun.
(2) Organisms in level 2 are carnivores.
(3) Organisms in level 2 receive their energy from level 3.
(4) Organisms in level 1 are autotrophic.

27 Growing exotic (nonnative) plant species in parks and gardens could lead directly to an increase in the
(1) biodiversity of the autotrophs that feed on them
(2) populations of native carnivores
(3) competition between them and native producers
(4) breeding between them and native herbivores

28 Scientists have been concerned about the reduction of shark populations due to overfishing off the east coast of the United States. Sharks feed on rays, which feed on scallops. Scallops feed on microscopic algae, which they filter from seawater. Without sharks, the rays consume and eliminate scallop beds, harming the scallop fishing industry. This situation demonstrates that
(1) sharks are not important for the stability of this ecosystem
(2) reducing the shark population increases the quantity of scallops that can be harvested
(3) humans can upset ecosystem stability by removing species
(4) humans improve ecosystem diversity by removing predators
29 The diagram below represents changes in the sizes of openings present in leaves as a result of the actions of cells X and Y.

The actions of cells X and Y help the plant to
(1) maintain homeostasis by controlling water loss
(2) store excess heat during the day and remove the heat at night
(3) absorb light energy necessary for cellular respiration
(4) detect changes in the biotic factors present in the environment

30 The diagram represents the changes in an area over time.

This series of changes in the area over hundreds of years is known as
(1) evolution
(2) feedback
(3) ecological succession
(4) direct harvesting
31 How much water should be added to the graduated cylinder shown below to increase the volume to 15 milliliters?

Base your answers to questions 32 and 33 on the statement below and on your knowledge of biology.

Scientists have found a gene in the DNA of a certain plant that could be the key to increasing the amount of lycopene, a cancer-fighting substance, in tomatoes.

32 The process of inserting this gene into the DNA of a tomato plant is known as

(1) selective breeding (3) cloning
(2) genetic engineering (4) replication

33 The ability to produce increased amounts of lycopene will be passed on to new tomato cells as a direct result of

(1) recycling (3) enzyme action
(2) mitosis (4) gene expression

34 The graph below shows the changes in the number of individuals in a population who have a specific trait.

Which statement concerning this trait is a valid inference?

(1) As time passed, an increasing number of individuals with this trait survived and reproduced.
(2) Individuals can acquire new survival characteristics over time and pass them on to their offspring.
(3) The longer a species is in an environment, the less likely it is that mutations will occur within the species.
(4) The number of traits a species possesses has a direct relationship to the amount of time the species will exist.
35 This process represents a step in
 (1) asexual reproduction (3) photosynthesis
 (2) heterotrophic nutrition (4) diffusion

36 This process is essential to the survival of the ameba because it
 (1) provides materials used in cellular respiration (3) supplies the raw materials for photosynthesis
 (2) removes pathogens from the environment (4) protects the organism during development

37 Which two body systems allow humans to carry out the same life process as the ameba in the diagram?
 (1) endocrine and immune (3) digestive and circulatory
 (2) respiratory and reproductive (4) nervous and excretory

38 The diagram below represents how HIV, the virus that causes AIDS, interacts with a certain type of white
 blood cell called a helper T-cell.

What is one possible result of the cellular activity represented in the diagram?
 (1) Immune responses of an infected individual will be weakened.
 (2) The red blood cells of a person infected with AIDS will no longer be able to make antibodies.
 (3) This virus will strengthen future immune responses against blood-related diseases.
 (4) Immune responses will prevent the spread of AIDS in humans.
39 The diagram below represents the relationship between natural selection and variation. The arrow between them is labeled X.

Which phrase best indicates the meaning of the arrow labeled X?

- (1) is dependent on
- (2) increases the rate of
- (3) decreases the rate of
- (4) is independent of

40 The chart below summarizes the effect of commercial fishing on a local Atlantic cod population over an 9-year period.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Commercial Fishing Boats</th>
<th>Estimated Population of Atlantic Cod (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>4</td>
<td>14.0</td>
</tr>
<tr>
<td>1997</td>
<td>6</td>
<td>12.5</td>
</tr>
<tr>
<td>1999</td>
<td>12</td>
<td>11.5</td>
</tr>
<tr>
<td>2001</td>
<td>14</td>
<td>9.0</td>
</tr>
<tr>
<td>2003</td>
<td>17</td>
<td>4.5</td>
</tr>
</tbody>
</table>

According to the chart, it can be concluded that

- (1) the number of fishing boats has less effect on the local cod population than pollution
- (2) more fishing boats make the cod population estimates more accurate
- (3) an increase in fishing boats has had a positive impact on cod population growth
- (4) commercial fishing is having a negative effect on the local cod population
41 The diagram below represents some stages that occur in the formation of an embryo.

![Diagram of embryo stages](image)

Which statement best describes stage X?

1. Stage X is a zygote and contains half the number of chromosomes as the body cells of the parents.
2. Stage X is formed by the process of meiosis and is known as a gamete.
3. Stage X is a zygote and is formed as a result of the process of fertilization.
4. Stage X is formed by mitosis and is known as an egg cell.

42 The diagram below represents a sequence of events that occurs in the human body throughout the day.

![Diagram of insulin and glucagon secretion](image)

These events can best be described as an example of

1. an energy cycle
2. recycling of inorganic materials
3. a feedback mechanism
4. a learned behavior
The graph below shows the changes in the size of a population over a period of time.

Which environmental condition could have caused the change in the population size at A?

1. an increase in competition
2. a constant availability of shelter
3. a decrease in the size of its predators
4. an unlimited supply of its food
In order to determine the effect of a certain antibiotic on a species of microorganism, an investigation was carried out. A sample of a specific species of microorganism was added to 100 mL of a liquid culture medium. One mL of a solution of the antibiotic was then added to that culture medium. Each day at 10 a.m., 1 mL of the experimental culture medium was removed and the number of microorganisms in the 1-mL sample was determined. The 1 mL of experimental culture medium was replaced by 1 mL of new sterile culture medium to maintain a constant volume. The results are shown in the table below.

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Microorganisms in Sample</td>
<td>1000</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>40</td>
<td>200</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>
Directions (44–45): Using the information in the data table, construct a line graph on the grid, following the directions below.

44 Mark an appropriate scale, without any breaks, on each labeled axis. [1]

45 Plot the data from the table. Surround each point with a small circle and connect the points. [1]

Example:

![Graph Example]

46 Why was the 1 mL of experimental culture medium that was removed each day replaced by 1 mL of sterile culture medium? [1]

Note: The answer to question 47 should be recorded on your separate answer sheet.

47 The microorganisms present on day 5 were

(1) newly added from the sterile culture medium
(2) offspring of antibiotic-resistant individuals
(3) organisms that were all present on day 1
(4) offspring with no resistance to the antibiotic
48 The image of the specimen viewed using high power with this microscope will appear larger than when viewed using low power. State one other way the image of the specimen as seen using high power would differ from the image as seen using low power. [1]

49 What is the total magnification of this microscope using the high-power objective lens?

(1) 43x (3) 100x
(2) 53x (4) 430x
Base your answers to questions 50 and 51 on the graph below and on your knowledge of biology. The graph shows interactions of moose and wolf populations on Isle Royale.

Note: The answer to question 50 should be recorded on your separate answer sheet.

50 What is the relationship between a wolf and a moose?

(1) wolf–prey; moose–predator
(2) wolf–parasite; moose–host
(3) wolf–predator; moose–decomposer
(4) wolf–predator; moose–prey

51 State one possible reason for the change in the moose population between 1995 and 1997. [1]
Base your answers to questions 52 and 53 on the table below and on your knowledge of biology.

Species A, B, C, and D are all different heterotrophs involved in the same food chain in an ecosystem. The table below shows the population of each of these species on one summer day.

<table>
<thead>
<tr>
<th>Species</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>85</td>
</tr>
<tr>
<td>B</td>
<td>847</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>116</td>
</tr>
</tbody>
</table>

52 Which species is most likely an herbivore? Support your answer with data from the table. [1]

Species: ________________________________

53 There are groups of organisms that must be present in this ecosystem that are not shown in the table. Identify one of these groups of organisms and state the role of this group in this ecosystem. [1]

Group: ________________________________

Base your answers to questions 54 and 55 on the diagram below and on your knowledge of biology.

54 Identify the type of building block represented by the letters A, B, and C. [1]

55 If the sequence of building blocks were changed, what effect could it most likely have on the protein? [1]

56. State the specific expected result of administering these vaccines to child B. [1]

57. Identify the system that will directly respond to these vaccines, and state the specific expected response. [1]

System: ________________________________

Response: ________________________________

58–59. Nutrients in a diet, such as proteins, carbohydrates, and minerals, play an important role in homeostasis within the human body. Lack of these nutrients can lead to malfunctions that disrupt this internal balance. Explain how diet can influence homeostasis. In your answer, be sure to:
- select a nutrient from the passage and write it on the line below and state one role this nutrient plays in the body [1]
- describe, using one specific example, how a decrease in this nutrient can alter homeostasis [1]

Nutrient: ________________________________

__

__

__

__
A student wants to bake the biggest loaf of bread in the local baking contest. Each contestant must use the same amounts of flour, sugar, and yeast, but is allowed to vary the type of sugar. Yeast is a microorganism that carries out cellular respiration, which produces carbon dioxide, making the bread rise. The student designs an experiment using the setup below to determine which sugar source (glucose, sucrose, or fructose) will cause the yeast to produce the most carbon dioxide and therefore, the biggest loaf of bread.

60 State one hypothesis this experiment would test. [1]

__

61 Describe the specific type of data to be collected. [1]

__
62 In addition to bottles A, B, and C, the student sets up a control bottle, D. Write the contents of bottle D on the blank line on the diagram below. [1]

```
<table>
<thead>
<tr>
<th>Balloon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottle</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>
```

63 State one assumption the student makes in deciding which type of sugar should be used to produce the biggest loaf of bread. [1]

64 Some owners of beautifully landscaped homes along the shores of the Finger Lakes use fertilizer on their lawns. When it rains, some fertilizer is washed into the lakes and causes increased plant growth in the lakes. State one effect that this increased plant growth could have on the aquatic ecosystem. [1]
Base your answers to questions 65 through 68 on the diagrams below and on your knowledge of biology. The diagrams represent how various populations interact in a forest environment.

65 Which diagram, A or B, most accurately represents interactions between biotic and abiotic factors in a forest environment? Support your answer. [1]

Diagram: ________________________________

66 State what would most likely happen to one other population in this food web if all the squirrels and rabbits were suddenly killed by a viral disease. Support your answer. [1]

__

67 If this forest community experienced a severe lack of rain throughout the spring and summer seasons, state what effect this drought could have on the grouse population. Support your answer. [1]

__

68 State one possible reason why the deer population could remain relatively constant, even though the number of berry bushes and berries varies from year to year. [1]

__
Base your answer to question 69–72 on the information and graph below and on your knowledge of biology.

At an observatory in Mauna Loa, Hawaii, scientists have been measuring and collecting data related to changes in the atmosphere since the 1950s. The remote location of the observatory makes it ideal for studying atmospheric conditions that can cause climate change. One specific measurement taken is the amount of atmospheric carbon dioxide. Information for a 7-year period is shown in the graph below.

69–72 Analyze the data shown in the graph. In your answer, be sure to:

- state the overall relationship between time and carbon dioxide levels [1]
- state one possible cause for the overall change in the carbon dioxide levels shown in the graph [1]
- identify the biological process that might account for the decreases in carbon dioxide levels [1]
- identify two actions carried out by humans that could lower carbon dioxide levels [1]
Base your answers to questions 73 and 74 on the information and diagram below and on your knowledge of biology.

Finches on the Galapagos Islands are thought to have originated from South America and to have evolved into new species over the last 10,000 years. Some of this evolution is represented in the diagram below.

Note: The answers to questions 73 and 74 should be recorded on your separate answer sheet.

73 The success of the finches on the Galapagos was most likely due to the
(1) large numbers of other birds competing for food
(2) mutations occurring in every offspring
(3) birds occupying the same island
(4) birds adapting to different niches

74 The seed-eating finch was most likely the
(1) largest finch
(2) common ancestor
(3) parent of the other finches
(4) most successful

Base your answers to questions 75 and 76 on the information below and on your knowledge of biology.

A student is opening and closing clothespins as part of a lab activity. The student begins to experience muscle fatigue, and the rate at which the student is opening and closing the clothespins slows.

Note: The answers to questions 75 and 76 should be recorded on your separate answer sheet.

75 The fatigue is due to
(1) an increase of metabolic waste products in the muscles
(2) an increase in the pulse rate of the student
(3) a decrease of metabolic waste products in the muscles
(4) a decrease in the pulse rate of the student

76 In order for the muscle fatigue to end, the muscle cells must be provided with
(1) oxygen
(2) nitrogen
(3) carbon dioxide
(4) amino acids
Base your answers to questions 77 and 78 on the information below and on your knowledge of biology.

The chart describes the beaks of various types of birds that live in a small island ecosystem containing flowering land plants, aquatic plants, many small mammals, amphibians, and several species of trees.

<table>
<thead>
<tr>
<th>Beak Shape</th>
<th>Beak Type</th>
<th>Adaptation and Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cracker</td>
<td>Seed eaters like sparrows and cardinals have short, thick beaks for cracking seeds.</td>
</tr>
<tr>
<td></td>
<td>Shredder</td>
<td>Birds of prey like hawks and owls have sharp, curved beaks for tearing meat.</td>
</tr>
<tr>
<td></td>
<td>Chisel</td>
<td>Woodpeckers have beaks that are long and chisel-like for boring into wood to eat insects.</td>
</tr>
<tr>
<td></td>
<td>Probe</td>
<td>Hummingbirds have beaks that are long and thin for probing flowers for nectar.</td>
</tr>
<tr>
<td></td>
<td>Strainer</td>
<td>Some ducks have long, flat beaks that strain small plants and animals from the water.</td>
</tr>
</tbody>
</table>

77 Identify the beak type that would be characteristic of predators of small mammals. [1]

78 Identify one kind of bird that would show an immediate decrease in number if the flowering land plants were destroyed by an environmental change. Support your answer. [1]

79 To determine the effect of fatigue on the action of muscles, each of five boys was given a 12-cm clothespin and each of five girls was given a 10-cm clothespin. The students squeezed the clothespins for 30 seconds and recorded the results. After the first trial, the girls rested and the boys jogged in place for 1 minute. A second trial was then done to determine how many times each student could squeeze the clothespin in 45 seconds. Identify one error in the design of this experiment. [1]

The diagram below represents the results of chromatography of leaf pigments from four plant species, A, B, C, and D.

Which plant species has pigments most similar to those in A? Support your answer using data from the chromatogram. [1]

Plant species: ________________________________
Base your answers to questions 81 and 82 on the diagram below and on your knowledge of biology. The diagram represents a model cell setup. The locations of three different substances are indicated in the diagram.

Key

S = Starch
G = Glucose
I = Starch indicator

Note: The answers to questions 81 and 82 should be recorded on your separate answer sheet.

81 Which statement best describes what will most likely happen after several minutes?

(1) The contents of the model cell will change color.
(2) The liquid outside the model cell will change color.
(3) The model cell will shrink.
(4) The model cell will rupture.

82 Which row in the chart below best explains the movement of some molecules between the model cell and the solution in the beaker?

<table>
<thead>
<tr>
<th>Row</th>
<th>Direction of Flow of Molecules</th>
<th>Energy Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>from high to low concentration</td>
<td>without using cellular energy</td>
</tr>
<tr>
<td>(2)</td>
<td>from high to low concentration</td>
<td>using cellular energy</td>
</tr>
<tr>
<td>(3)</td>
<td>from low to high concentration</td>
<td>without using cellular energy</td>
</tr>
<tr>
<td>(4)</td>
<td>from low to high concentration</td>
<td>using cellular energy</td>
</tr>
</tbody>
</table>
Base your answers to questions 83 through 85 on the chart below and on your knowledge of biology. The DNA Sequences chart shows a portion of the code for insulin in humans and cows. These DNA sequences are repeated in the Human Insulin and Cow Insulin charts.

83 In the DNA Sequences chart, circle the number over each three-letter portion of the DNA that is different in humans and cows. [1]

<table>
<thead>
<tr>
<th>DNA Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>Human Insulin</td>
</tr>
<tr>
<td>Cow Insulin</td>
</tr>
</tbody>
</table>

84 For each number circled for the DNA sequences above, write the complementary mRNA base sequence in the Human Insulin and Cow Insulin charts that each of these circled portions would produce. Be sure to complete only the circled portions. [1]

<table>
<thead>
<tr>
<th>Human Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Sequence</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>CCA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cow Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Sequence</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>CCG</td>
</tr>
</tbody>
</table>
Use the Universal Genetic Code Chart below to determine the amino acid coded for by each mRNA base sequence written in the Human Insulin and Cow Insulin charts. [1]

Universal Genetic Code Chart
Messenger RNA Codons and the Amino Acids for Which They Code

<table>
<thead>
<tr>
<th>FIRST BASE</th>
<th>SECOND BASE</th>
<th>THIRD BASE</th>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UUU → PHE</td>
<td>UUC → LEU</td>
<td>U</td>
<td>UCU</td>
<td>UAU</td>
<td>UUG</td>
</tr>
<tr>
<td></td>
<td>UUC → LEU</td>
<td></td>
<td>C</td>
<td>CCC</td>
<td>CCA</td>
<td>CCG</td>
</tr>
<tr>
<td></td>
<td>UUA → LEU</td>
<td></td>
<td>A</td>
<td>ACC</td>
<td>AAA</td>
<td>ACG</td>
</tr>
<tr>
<td></td>
<td>UUG → LEU</td>
<td></td>
<td>G</td>
<td>GCC</td>
<td>GAA</td>
<td>GCG</td>
</tr>
<tr>
<td>F</td>
<td>CUC → LEU</td>
<td>CCA → PRO</td>
<td>U</td>
<td>CCA</td>
<td>CAA</td>
<td>CAG</td>
</tr>
<tr>
<td></td>
<td>CUA → PRO</td>
<td></td>
<td>C</td>
<td>CCG</td>
<td>CAC</td>
<td>CGG</td>
</tr>
<tr>
<td></td>
<td>CUG → PRO</td>
<td></td>
<td>A</td>
<td>ACC</td>
<td>AAA</td>
<td>ACG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>GCC</td>
<td>GAA</td>
<td>GCG</td>
</tr>
<tr>
<td>A</td>
<td>AAU → ILE</td>
<td>ACU → THR</td>
<td>U</td>
<td>GCU</td>
<td>GAU</td>
<td>UCG</td>
</tr>
<tr>
<td></td>
<td>AUC → ILE</td>
<td></td>
<td>C</td>
<td>GCC</td>
<td>GAC</td>
<td>UCC</td>
</tr>
<tr>
<td></td>
<td>AUA → ILE</td>
<td></td>
<td>A</td>
<td>GCA</td>
<td>GAA</td>
<td>UCA</td>
</tr>
<tr>
<td></td>
<td>AUG → ILE</td>
<td></td>
<td>G</td>
<td>GCN</td>
<td>GAG</td>
<td>UGG</td>
</tr>
<tr>
<td>G</td>
<td>GUU → VAL</td>
<td>GCU → ALA</td>
<td>U</td>
<td>GCU</td>
<td>GAT</td>
<td>UCG</td>
</tr>
<tr>
<td></td>
<td>GUC → VAL</td>
<td></td>
<td>C</td>
<td>GCC</td>
<td>GAT</td>
<td>UCC</td>
</tr>
<tr>
<td></td>
<td>GUA → VAL</td>
<td></td>
<td>A</td>
<td>GCA</td>
<td>GAT</td>
<td>UCA</td>
</tr>
<tr>
<td></td>
<td>GUG → VAL</td>
<td></td>
<td>G</td>
<td>GGC</td>
<td>GAT</td>
<td>UGG</td>
</tr>
</tbody>
</table>

- PHE: Phenylalanine
- LEU: Leucine
- SER: Serine
- TYR: Tyrosine
- STOP: Stop
- CYS: Cysteine
- TRP: Tryptophan
- HIS: Histidine
- ARG: Arginine
- VAL: Valine
- ALA: Alanine
- ASP: Aspartic Acid
- GLU: Glutamic Acid
- GLY: Glycine
- MET: Methionine
- PRO: Proline
- ASN: Asparagine
- LYS: Lysine
- THR: Threonine
- SER: Serine
- GLN: Glutamine
- GLY: Glycine

Living Environment-Jan. '13
FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

LIVING ENVIRONMENT

Wednesday, January 23, 2013 — 9:15 a.m. to 12:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:

Refer to the directions on page 2 before rating student papers.

Updated information regarding the rating of this examination may be posted on the New York State Education Department’s web site during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

Multiple Choice for Parts A, B–1, B–2, and D
Allow 1 credit for each correct response.

<table>
<thead>
<tr>
<th>Part A</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
<td>9 4</td>
<td>17 3</td>
<td>25 2</td>
<td></td>
</tr>
<tr>
<td>2 4</td>
<td>10 3</td>
<td>18 1</td>
<td>26 4</td>
<td></td>
</tr>
<tr>
<td>3 4</td>
<td>11 3</td>
<td>19 3</td>
<td>27 3</td>
<td></td>
</tr>
<tr>
<td>4 1</td>
<td>12 2</td>
<td>20 1</td>
<td>28 3</td>
<td></td>
</tr>
<tr>
<td>5 1</td>
<td>13 1</td>
<td>21 2</td>
<td>29 1</td>
<td></td>
</tr>
<tr>
<td>6 3</td>
<td>14 3</td>
<td>22 4</td>
<td>30 3</td>
<td></td>
</tr>
<tr>
<td>7 3</td>
<td>15 4</td>
<td>23 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 1</td>
<td>16 2</td>
<td>24 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B–1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31 4</td>
<td>35 2</td>
<td>39 1</td>
<td>43 1</td>
<td></td>
</tr>
<tr>
<td>32 2</td>
<td>36 1</td>
<td>40 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 2</td>
<td>37 3</td>
<td>41 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 1</td>
<td>38 1</td>
<td>42 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B–2</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>47 2</td>
<td>49 4</td>
<td>50 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>73 4</td>
<td>75 1</td>
<td>81 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 2</td>
<td>76 1</td>
<td>82 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Regents Examination in Living Environment. Additional information about scoring is provided in the publication Information Booklet for Scoring Regents Examinations in the Sciences.

Do not attempt to correct the student’s work by making insertions or changes of any kind. If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Allow 1 credit for each correct response.

At least two science teachers must participate in the scoring of the Part B–2, Part C, and Part D open-ended questions on a student’s paper. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score more than approximately one-half of the open-ended questions on a student’s answer paper.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Fractional credit is not allowed. Only whole-number credit may be given for a response. If the student gives more than one answer to a question, only the first answer should be rated. Units need not be given when the wording of the questions allows such omissions.

For hand scoring, raters should enter the scores earned in the appropriate boxes printed on the separate answer sheet. Next, the rater should add these scores and enter the total in the box labeled “Total Raw Score.” Then the student's raw score should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Wednesday, January 23, 2013. The student's scale score should be entered in the box labeled “Scale Score” on the student's answer sheet. The scale score is the student's final examination score.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student’s final score.
44 [1] Allow 1 credit for marking an appropriate scale, without any breaks, on each labeled axis.

45 [1] Allow 1 credit for correctly plotting the data and connecting the points.

Example of a 2-credit graph for questions 44 and 45:

![Changes in Microorganism Population Size](image)

Note: Allow credit if the points are plotted correctly but not circled.

Do *not* assume the intersection of the x- and y-axes is the origin (0,0) unless it is labeled. An appropriate scale only needs to include the data range in the data table. Do *not* allow credit for plotting points that are not in the data table, e.g., (0,0), or for extending lines beyond the data points.

46 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- to maintain a constant volume in the container of experimental culture medium
- to lower the concentration of wastes
- so it did not add more microorganisms to it
- to replace nutrients that were removed

47 **MC on scoring key**
Allow 1 credit. Acceptable responses include, but are not limited to:
- More detail will be seen.
- You might not see the entire specimen in the field of view.
- The image might appear darker.

MC on scoring key

MC on scoring key

Allow 1 credit. Acceptable responses include, but are not limited to:
- Disease killed large numbers of the moose.
- The moose population overgrazed its habitat, resulting in starvation.
- The moose population exceeded the carrying capacity of the environment.
- overhunting
- severe winter

Note: Do not allow credit for “the wolves ate more moose” or “they died.”

Allow 1 credit for B and supporting the answer. Acceptable responses include, but are not limited to:
- In a food pyramid, the largest population of heterotrophs would be the herbivores and B is the largest group.
- Most animals in an ecosystem are herbivores.
- In most ecosystems, herbivores outnumber other heterotrophs.

Allow 1 credit. Acceptable responses include, but are not limited to:
- producers; capture energy from the Sun
- producers; provide food for other organisms in the ecosystem
- decomposers; recycle the remains of dead organisms
- bacteria; recycle nutrients/raw materials
- fungi; decompose dead organisms

Allow 1 credit for amino acids or peptides.

Allow 1 credit. Acceptable responses include, but are not limited to:
- The shape of the protein could change.
- The function of the protein could be different.
- It might form a different protein.
Part C

56 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — Child B should be immune to both measles and polio.
 — Child B will form antibodies against both diseases.
 — Child B will not get measles or polio.

57 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 System:
 — Immune system
 Response:
 — make antibodies
 — increase white blood cell production
 — produces cells that engulf the virus/pathogen

Note: The student’s response to the bulleted items in question 58–59 need not appear in the following order.

58 [1] Allow 1 credit for stating one role this nutrient plays in the body. Acceptable responses include, but are not limited to:
 — Carbohydrates are a source of energy. They can be used to produce the ATP needed for carrying out body activities.
 — Proteins are necessary for growth and repair.
 — Minerals are needed for strong bones and teeth.

59 [1] Allow 1 credit for describing, using one specific example, how a decrease in this nutrient can alter homeostasis. Acceptable responses include, but are not limited to:
 — Decreased levels of carbohydrates might result in fatigue/less energy.
 — Lack of protein in the diet might lead to muscle loss/enzyme deficiency.
 — Lack of minerals might cause loss of bone density.
60 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

— If sucrose (or glucose or fructose) is the best sugar, then it will result in the greatest amount of carbon dioxide being produced.

— When yeast and sucrose (or glucose or fructose) are combined in a container with a balloon over it, the balloon will inflate the most.

— If sucrose (or glucose or fructose) is the sugar used, the loaf of bread produced will be the biggest.

Note: Do not allow credit for a hypothesis written in the form of a question.

61 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

— balloon size/circumference

— amount of carbon dioxide in the balloon

Note: The type of data must be measurable. Allow credit for an answer that is consistent with the student’s hypothesis.

62 [1] Allow 1 credit for writing the correct contents of bottle D.

Example of a 1-credit response:

![Diagram of a bottle with yeast solution or same solution without sugar or yeast and water](image)

63 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

— Yeast uses sugar for respiration.

— The type of sugar used will make a difference.

— When mixed in the bread dough, the yeast will undergo respiration the same as it does in the bottle.

— The sugar that results in the greatest amount of carbon dioxide production in the experiment will produce the biggest loaf of bread.

— It is the sugar that influences the size of the loaf of bread.

— Changing the kind of sugar would make a greater difference than changing the kind of flour.
64 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — Increased plant growth might block sunlight from penetrating the water, killing off other plant species.
 — Increased plant growth could disrupt the food chain by blocking light to the ecosystem.
 — There will be a change (increased/decreased) in the oxygen supply for fish.
 — There will be a change (decreased/increased) in the food supply for herbivores.
 — can result in more decaying material causing the lake to fill in
 — Excessive plant growth can limit animal movement/alter habitat.

65 [1] Allow 1 credit for A and for supporting the answer. Acceptable responses include, but are not limited to:
 — The diagram shows the Sun and living things.
 — There are both biotic and abiotic factors shown in diagram A.
 — Diagram A includes the Sun and raw materials.
 — There are no abiotic factors in food web B.
 — Diagram B does not show the original source of energy.
 — Diagram B is missing an energy source and raw materials from the soil.

66 [1] Allow 1 credit for stating what would most likely happen to one other population in this food web if all the squirrels and rabbits were suddenly killed by a viral disease and for supporting the answer. Acceptable responses include, but are not limited to:
 — The fox/weasel/cougar population would decrease because of less food.
 — The oak trees would increase because there would be more acorns.
 — The deer population might increase due to less competition for available food.
 — The deer population might decrease due to greater predation by cougars.
 — There would be more competition among foxes/weasels/cougars because of a decrease in food.

67 [1] Allow 1 credit for stating what effect this drought could have on the grouse population and for supporting the answer. Acceptable responses include, but are not limited to:
 — Lack of rain could cause plants to die off, decreasing the food available for the beetles, which would die off, causing the grouse population to also decrease.

68 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — If there are not enough berries, then the deer population can eat more acorns and Hickory nuts.
 — The deer have other food sources.
Note: The student's response to the bulleted items in question 69–72 need not appear in the following order.

69 [1] Allow 1 credit for stating the overall relationship between time and carbon dioxide levels. Acceptable responses include, but are not limited to:
 — As time increased, the levels of carbon dioxide increased.
 — As time went by, the amount of carbon dioxide increased.
 — Carbon dioxide production fluctuated with the seasons.

70 [1] Allow 1 credit for stating one possible cause for the overall change in the carbon dioxide levels shown in the graph. Acceptable responses include, but are not limited to:
 — increase in human population
 — fewer photosynthetic organisms
 — deforestation
 — increased use of fossil fuels
 — increased volcanic activity

Note: Do not accept just “pollution” without a source or explanation.

71 [1] Allow 1 credit for identifying the biological process that might account for the decreases in carbon dioxide levels. Acceptable responses include, but are not limited to:
 — photosynthesis
 — autotrophic nutrition

72 [1] Allow 1 credit for identifying two actions carried out by humans that could lower carbon dioxide levels. Acceptable responses include, but are not limited to:
 — planting more trees
 — reducing the use of fossil fuels
 — car pool/use public transportation/reduce driving
 — recycling
 — using alternative energy sources
Part D

73 MC on scoring key

74 MC on scoring key

75 MC on scoring key

76 MC on scoring key

77 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — shredder
 — sharp, curved beak

78 [1] Allow 1 credit for identifying one kind of bird that would show an immediate decrease in number if the flowering land plants were destroyed by an environmental change and for supporting the answer. Acceptable responses include, but are not limited to:
 — hummingbirds—no flowers available to obtain nectar from
 — sparrows—no seeds available for food
 — birds with cracker beaks—no seeds available for food

79 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — Each trial should have more students.
 — The clothespins were of two different sizes.
 — The time intervals for the two trials were unequal.
 — The boys and girls should not have been in separate groups.

80 [1] Allow 1 credit for indicating plant C and for supporting the answer. Acceptable responses include, but are not limited to:
 — A and C have the most bands in common.
 — A and C have the same pigments.
 — Only A and C have yellow, orange, and green.
 — The same pigments moved the same distance in A and C.

81 MC on scoring key

82 MC on scoring key
83 [1] Allow 1 credit for circling 1, 3, and 8.

Note: All three differences must be circled to receive credit. Allow credit if the student circled the correct DNA sequences rather than just the number.

84 [1] Allow 1 credit for indicating the mRNA sequences for the DNA sequences indicated by the student for question 83.

Note: If additional mRNA sequences are filled in all must be correct to receive 1 credit.

85 [1] Allow 1 credit for indicating the amino acid coded for by each mRNA written for question 84.

Note: Allow credit based on the mRNA base sequence in question 84. If additional sequences are filled in, all must be correct to receive 1 credit.

Example of a 3-credit response for questions 83–85:

<table>
<thead>
<tr>
<th>DNA Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Human Insulin</td>
</tr>
<tr>
<td>CCA TAG CAC CTT GTT ACA ACG TGA</td>
</tr>
<tr>
<td>Cow Insulin</td>
</tr>
<tr>
<td>CCG TAG CAT CTT GTT ACA ACG CGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Sequence</td>
</tr>
<tr>
<td>CCA TAG CAC CTT GTT ACA ACG TGA</td>
</tr>
<tr>
<td>mRNA Sequence</td>
</tr>
<tr>
<td>GGU GUG</td>
</tr>
<tr>
<td>Amino Acid</td>
</tr>
<tr>
<td>GLY VAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cow Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Sequence</td>
</tr>
<tr>
<td>CCG TAG CAT CTT GTT ACA ACG CGA</td>
</tr>
<tr>
<td>mRNA Sequence</td>
</tr>
<tr>
<td>GGC GUA</td>
</tr>
<tr>
<td>Amino Acid</td>
</tr>
<tr>
<td>GLY VAL</td>
</tr>
</tbody>
</table>
The Chart for Determining the Final Examination Score for the January 2013 Regents Examination in Living Environment will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Wednesday, January 23, 2013. Conversion charts provided for previous administrations of the Regents Examination in Living Environment must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
Map to Core Curriculum

January 2013 Living Environment

<table>
<thead>
<tr>
<th>Standards</th>
<th>Question Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part A</td>
</tr>
<tr>
<td>Standard 1 — Analysis, Inquiry and Design</td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
</tr>
<tr>
<td>Appendix A (Laboratory Checklist)</td>
<td>31</td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>6, 7, 8, 9, 15</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>12, 13, 14, 17, 18</td>
</tr>
<tr>
<td>Key Idea 4</td>
<td>10, 11, 16, 19</td>
</tr>
<tr>
<td>Key Idea 5</td>
<td>20, 21, 22, 23, 29</td>
</tr>
<tr>
<td>Key Idea 6</td>
<td>24, 26, 30</td>
</tr>
<tr>
<td>Key Idea 7</td>
<td>25, 27, 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
</tr>
<tr>
<td>Lab 2</td>
</tr>
<tr>
<td>Lab 3</td>
</tr>
<tr>
<td>Lab 5</td>
</tr>
</tbody>
</table>
To determine the student’s final examination score, find the student’s total test raw score in the column labeled “Raw Score” and then locate the scale score that corresponds to that raw score. The scale score is the student’s final examination score. Enter this score in the space labeled “Scale Score” on the student’s answer sheet.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart change from one administration to another, it is crucial that for each administration the conversion chart provided for that administration be used to determine the student’s final score. The chart above is usable only for this administration of the Regents Examination in Living Environment.