The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

PHYSICAL SETTING

EARTH SCIENCE

Friday, June 15, 2012 — 1:15 to 4:15 p.m., only

Use your knowledge of Earth science to answer all questions in this examination. Before you begin this examination, you must be provided with the 2011 Edition Reference Tables for Physical Setting/Earth Science. You will need these reference tables to answer some of the questions.

You are to answer all questions in all parts of this examination. You may use scrap paper to work out the answers to the questions, but be sure to record your answers on your answer sheet and in your answer booklet. A separate answer sheet for Part A and Part B–1 has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet. Record your answers to the Part A and Part B–1 multiple-choice questions on this separate answer sheet. Record your answers for the questions in Part B–2 and Part C in your separate answer booklet. Be sure to fill in the heading on the front of your answer booklet.

All answers in your answer booklet should be written in pen, except for graphs and drawings, which should be done in pencil.

When you have completed the examination, you must sign the declaration printed on your separate answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet and answer booklet cannot be accepted if you fail to sign this declaration.

A four-function or scientific calculator and a copy of the 2011 Edition Reference Tables for Physical Setting/Earth Science must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part A

Answer all questions in this part.

Directions (1–35): For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Earth Science. Record your answers on your separate answer sheet.

1. A Foucault pendulum appears to change its direction of swing because Earth
 (1) is tilted on its axis
 (2) is spinning on its axis
 (3) has a curved surface
 (4) has a density of 5.5 g/cm³

2. The modern heliocentric model of planetary motion states that the planets travel around
 (1) the Sun in slightly elliptical orbits
 (2) the Sun in circular orbits
 (3) Earth in slightly elliptical orbits
 (4) Earth in circular orbits

3. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is
 (1) hotter than Rigel
 (2) more luminous than Rigel
 (3) closer than Rigel
 (4) larger than Rigel

4. The cross section below represents four locations on a mountain. The arrow indicates the prevailing wind direction.

Which location has the warmest and most arid climate?
 (1) A
 (2) B
 (3) C
 (4) D

5. The map below shows an eastern portion of North America. Points A and B represent locations on the eastern shoreline.

Which factor is primarily responsible for location A having a lower average yearly temperature than location B?
 (1) nearness to a large body of water
 (2) elevation
 (3) latitude
 (4) prevailing winds

6. El Cuy is a South American city located at 40° south latitude. The first day of winter at this location occurs on June 21. During which month would the coldest day of the year most likely occur at this location?
 (1) May
 (2) July
 (3) November
 (4) January
7 The map below shows a typical position and average velocity of the polar front jet stream during two different seasons.

![Map showing polar front jet stream - Summer (60 km/h) and Winter (125 km/h) in the United States.](image)

For the eastern United States, the change of the polar front jet stream from this summer position to this winter position causes

(1) warmer temperatures farther north and causes storms to move more slowly
(2) warmer temperatures farther north and causes storms to move more rapidly
(3) cooler temperatures farther south and causes storms to move more slowly
(4) cooler temperatures farther south and causes storms to move more rapidly

8 Which soil characteristic allows greater amounts of water retention?

(1) large-size particles
(2) small-size particles
(3) high-density particles
(4) low-density particles

9 A paved blacktop parking lot was built on what was once a soil-covered field. This area will now experience increased runoff when rain occurs because the paved parking lot has

(1) less capillarity
(2) less permeability
(3) greater infiltration
(4) greater porosity

10 Which processes of the water cycle return water vapor directly to the atmosphere?

(1) evaporation and transpiration
(2) infiltration and capillarity
(3) freezing and precipitation
(4) water retention and runoff

11 Evidence supports the idea that increases in carbon dioxide and methane in Earth’s atmosphere are major contributors to global warming. This is based primarily on the fact that carbon dioxide and methane are excellent absorbers of

(1) gamma rays
(2) microwaves
(3) visible light
(4) infrared radiation

12 The bedrock of the Adirondack Mountains was formed mainly by the

(1) cementation of clastic sediments and precipitates from seawater
(2) compaction and recrystallization of volcanic material
(3) regional metamorphism of sedimentary and igneous rocks
(4) contact metamorphism of unconsolidated gravels

13 Which element, found in both biotite mica and muscovite mica, makes up the greatest percent by volume of Earth’s crust?

(1) nitrogen
(2) oxygen
(3) potassium
(4) silicon

14 The inferred temperature and pressure of Earth’s interior at a depth of 3,000 kilometers are approximately

(1) 1000°C and 0.5 million atmospheres
(2) 1000°C and 1.0 million atmospheres
(3) 5000°C and 1.5 million atmospheres
(4) 5000°C and 3.0 million atmospheres

15 Which agent of erosion most likely formed the drumlins and finger lakes in New York State?

(1) running water
(2) moving ice
(3) wave action
(4) mass movement

16 The longest portion of the Genesee River in New York State flows through which landscape region?

(1) Erie-Ontario Lowlands
(2) Tug Hill Plateau
(3) Allegheny Plateau
(4) St. Lawrence Lowlands
17 A model of Earth’s internal structure is shown below.

Analysis of which type of data led to the development of this model?
(1) seismic waves
(2) depth of Earth’s oceans
(3) electromagnetic radiation
(4) isobar gradients

18 What caused the interior of Earth to separate into layers?
(1) a decrease in the rate of rotation of Earth
(2) the gravitational pull on materials of varying densities
(3) variations in heating by the Sun due to Earth’s tilt
(4) collisions with meteors and comets

19 Which plate tectonic events occurred as the Iapetus Ocean closed?
(1) Taconian orogeny and Grenville orogeny
(2) Taconian orogeny and Acadian orogeny
(3) Alleghanian orogeny and Acadian orogeny
(4) Alleghanian orogeny and Grenville orogeny

20 Which mineral will scratch fluorite, galena, and pyroxene?
(1) graphite
(2) calcite
(3) olivine
(4) dolomite

21 Which radioactive isotope is most often used when determining the age of fossil bones found in sediments deposited during the Holocene Epoch?
(1) carbon-14
(2) potassium-40
(3) uranium-238
(4) rubidium-87

22 The photograph below shows index fossil shells found in bedrock in New York State.

These index fossil shells were most likely found in the surface bedrock of which landscape region?
(1) Adirondack Mountains
(2) the Catskills
(3) St. Lawrence Lowlands
(4) Tug Hill Plateau
23 The arrows on which map best represent the surface wind pattern around this low-pressure center?

24 Which map best represents the type of fronts and direction of movement of these fronts in relation to the low-pressure center?
25 A timeline from the origin of Earth until the present is shown below.

At which letter on the timeline did the Ediacaran fauna exist?

(1) A (2) B (3) C (4) D

26 The diagram below represents three identical beakers filled to the same level with spherical beads.

If the packing of the beads within each beaker is the same, which graph best represents the porosity within each beaker?
27 Which diagram correctly represents the curving of Earth's ocean currents and prevailing winds due to the Coriolis effect?

![Key]

<table>
<thead>
<tr>
<th></th>
<th>= Ocean currents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= Prevailing winds</td>
</tr>
</tbody>
</table>

(1)
(2)
(3)
(4)

28 A topographic map and an incorrectly constructed profile from point A to point H on the map are shown below.

![Topographic Map]

What mistake was made in the construction of this profile?

(1) using a contour interval of 10 feet
(2) plotting points A through H the same distance apart horizontally
(3) drawing a curved line instead of a straight line from point B to point C
(4) increasing the elevation from point F to point H
Base your answers to questions 29 and 30 on the map of the night sky below, which represents the apparent locations of some of the constellations that are visible to an observer at approximately 40° N latitude at 9 p.m. in April. The point directly above the observer is labeled zenith.

29 Which map best illustrates the apparent path of Virgo during the next 4 hours?

(1) (3) (2) (4)

30 Which motion causes the constellation Leo to no longer be visible to an observer at 40° N in October?

(1) spin of the constellation on its axis
(2) revolution of the constellation around the Sun
(3) spin of Earth on its axis
(4) revolution of Earth around the Sun

P.S./E. Sci.–June ’12
31 An earthquake occurs at 12:02 p.m. A seismic station records the first S-wave at 12:19 p.m. Which set of data shows the approximate arrival time of the first P-wave and the distance to the epicenter?

(1) 12:11:25 p.m. and 4000 km
(2) 12:11:25 p.m. and 6000 km
(3) 12:19:40 p.m. and 4000 km
(4) 12:19:40 p.m. and 6000 km

32 The cross section below represents a portion of Earth’s crust. Letters A through D are locations within the rock units.

![Cross section of Earth's crust]

At which location is quartzite most likely found?

(1) A
(2) B
(3) C
(4) D

33 The diagram below represents a total solar eclipse as seen from Earth.

![Total solar eclipse diagram]

Which diagram correctly represents the relative positions of the Sun (S), Earth (E), and the Moon (M) in space during a total solar eclipse? [The diagrams are not drawn to scale.]

(1) M S E
(2) S E M
(3) S E M
(4) S M E
Base your answers to questions 34 and 35 on the diagram and data table below. The diagram shows the equipment used to determine the factors affecting the rate of erosion in a stream. The data table shows the time it took a 10-gram sample of quartz sand to move 100 centimeters down the rain gutter under various conditions.

![Diagram of erosion experiment](image)

<table>
<thead>
<tr>
<th>Data Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Gutter Slope</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5°</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10°</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20°</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

34. In this experiment, the water velocity could be increased by
 (1) decreasing the slope of the rain gutter
 (2) increasing the amount of water from the faucet
 (3) lowering the flexible hose
 (4) widening the rain gutter

35. What is the relationship between the water velocity and the rate of erosion?
 (1) If the water velocity decreases, the rate of erosion increases.
 (2) If the water velocity increases, the rate of erosion increases.
 (3) If the water velocity remains constant, the rate of erosion decreases.
 (4) If the water velocity remains constant, the rate of erosion increases.
36 Which statement best explains how global climate would most likely be affected after this large meteor impact?

1. Large quantities of ejecta in the atmosphere would block insolation and lower global temperatures.
2. An increase in vapor and ejecta would allow radiation to escape Earth’s atmosphere and lower global temperatures.
3. Ejecta settling in thick layers would increase the absorption of insolation by Earth’s surface and raise global temperatures.
4. Forest fires produced from the vapor and ejecta would raise global temperatures.

37 Many meteors are believed to be fragments of celestial objects normally found between the orbits of Mars and Jupiter. These objects are classified as

1. stars
2. asteroids
3. planets
4. moons
Base your answers to questions 38 through 41 on the diagram and data table below. The diagram represents the Sun’s apparent paths as viewed by an observer located at 50° N latitude on June 21 and March 21. The data table shows the Sun’s maximum altitude for the same two dates of the year. The Sun’s maximum altitude for December 21 has been left blank.

38 Which value should be placed in the data table for the Sun’s maximum altitude on December 21?
(1) 16.5° (2) 23.5° (3) 40° (4) 90°

39 Which graph best represents the relationship between the time of day and the length of a shadow cast by the observer on March 21?
40 Which statement best compares the intensity and angle of insolation at noon on March 21 and June 21?
(1) The intensity and angle of insolation are greatest on March 21.
(2) The intensity and angle of insolation are greatest on June 21.
(3) The intensity of insolation is greatest on June 21 and the angle of insolation is greatest on March 21.
(4) The intensity of insolation is greatest on March 21 and the angle of insolation is greatest on June 21.

41 Which diagram represents the approximate location of the Sun at 3 p.m. on March 21?

[Diagrams]

(1) [Diagram 1]
(2) [Diagram 2]
(3) [Diagram 3]
(4) [Diagram 4]
Base your answers to questions 42 through 45 on the laboratory experiment described below.

The weathering of four different rock samples with different masses was studied. Each rock sample was placed in a separate beaker containing 500 milliliters of a dilute acid for 10 minutes. Bubbling was observed in some of the beakers. The data table below shows the mass of each sample, in grams, before placement in the acid and after removal from the acid.

<table>
<thead>
<tr>
<th>Rock</th>
<th>Mass Before (g)</th>
<th>Mass After (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>limestone</td>
<td>19.72</td>
<td>19.64</td>
</tr>
<tr>
<td>granite</td>
<td>20.77</td>
<td>20.77</td>
</tr>
<tr>
<td>gneiss</td>
<td>26.83</td>
<td>26.83</td>
</tr>
<tr>
<td>marble</td>
<td>20.81</td>
<td>20.73</td>
</tr>
</tbody>
</table>

42 Which Earth process is being modeled in this experiment?

(1) physical weathering in the hydrosphere
(2) physical weathering in the mesosphere
(3) chemical weathering in the hydrosphere
(4) chemical weathering in the mesosphere

43 Which table correctly shows the classification of the rock samples based on the amount of weathering during this experiment?

(1)
<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>limestone</td>
<td>marble</td>
</tr>
<tr>
<td>marble</td>
<td>gneiss</td>
</tr>
</tbody>
</table>

(2)
<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>limestone</td>
<td>granite</td>
</tr>
<tr>
<td>granite</td>
<td>gneiss</td>
</tr>
</tbody>
</table>

(3)
<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>limestone</td>
<td>granite</td>
</tr>
<tr>
<td>marble</td>
<td>gneiss</td>
</tr>
</tbody>
</table>

(4)
<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>limestone</td>
<td>marble</td>
</tr>
<tr>
<td>granite</td>
<td>gneiss</td>
</tr>
</tbody>
</table>

44 Approximately what percentage of the marble sample remained after the experiment?

(1) 0.4%
(2) 8.0%
(3) 20.7%
(4) 99.6%

45 Which property of the gneiss sample prevented it from weathering?

(1) crystalline texture
(2) mineral composition
(3) density
(4) cleavage
Base your answers to questions 46 through 48 on the topographic map below. Points A, X, and Y are reference points on the map.

46 What is a possible elevation of point A?
(1) 575 meters
(2) 600 meters
(3) 655 meters
(4) 710 meters

47 In which general direction does Flint Creek flow?
(1) southwest
(2) southeast
(3) northwest
(4) northeast

48 What is the approximate gradient along the straight dashed line between points X and Y?
(1) 50 m/km
(2) 100 m/km
(3) 150 m/km
(4) 300 m/km
Base your answers to questions 49 and 50 on the diagram below, which represents the current locations of two planets, A and B, orbiting a star. Letter X indicates a position in the orbit of planet A. Numbers 1 through 4 indicate positions in the orbit of planet B.

49 As planet A moves in orbit from its current location to position X, planet B most likely moves in orbit from its current location to position

(1) 1 (3) 3
(2) 2 (4) 4

50 If the diagram represents our solar system and planet B is Venus, which planet is represented by planet A?

(1) Mercury (3) Earth
(2) Jupiter (4) Mars
Part B–2

Answer all questions in this part.

Directions (51–65): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Earth Science.

Base your answers to questions 51 through 53 on the magnified views shown below of the minerals found in an igneous rock and in a metamorphic rock. The millimeter scale indicates the size of the crystals shown in the magnified views.

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibole</td>
</tr>
<tr>
<td>Plagioclase feldspar</td>
</tr>
<tr>
<td>Quartz</td>
</tr>
<tr>
<td>Biotite</td>
</tr>
<tr>
<td>Potassium feldspar</td>
</tr>
</tbody>
</table>

51 Identify the environment of formation of this igneous rock based on the size of its intergrown crystals. [1]

52 Based on the minerals present, identify the relative color and density of this igneous rock compared to mafic igneous rocks with the same crystal size. [1]

53 Describe the texture shown by this metamorphic rock that indicates it could be schist. [1]
Dinosaur Skull Offers Hints About Africa’s Past

A fossil skull was found in Africa among many dinosaur bones from the Late Cretaceous Epoch. This skull came from a dinosaur named *Rugops primus*, or “first wrinkle face.” This meat eater, believed to have been about 30 feet long and to have lived 95 million years ago, belonged to a group of dinosaurs called abelisaurids.

This fossil skull, unearthed in the Sahara Desert in 2000, provides new evidence that Africa split from other southern continents at a later time than previously thought. Before this discovery, abelisaurids from that period had been found only in South America, Madagascar, and India, but not in Africa. This new fossil, *Rugops primus*, found only in Africa, indicates that Africa was still connected to the other southern landmasses, at least by a land bridge, 100 million years ago.

54 During which geologic era is *Rugops primus* inferred to have lived? [1]

55 What evidence suggests that Africa was still attached to South America 100 million years ago? [1]

56 State the type of rock in which *Rugops primus* was most likely preserved. [1]

57 *Rugops primus* is not a good index fossil. Describe one characteristic of a good index fossil. [1]

58 Identify the type of tectonic plate movement that caused Africa to separate from South America. [1]
Base your answers to questions 59 through 61 on the map in your answer booklet, which represents two bridges that cross the Green River. Letters A, B, and C represent locations in the river. A ball was dropped from bridge 1 at location A and the distance and travel time to location B were recorded. The results are shown in the data table below.

<table>
<thead>
<tr>
<th>Distance (cm)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,000</td>
<td>240</td>
</tr>
</tbody>
</table>

59 On the map in your answer booklet, place an X at the location between the bridges where the greatest amount of deposition is most likely occurring. [1]

60 Determine the rate at which the ball traveled, in centimeters per second, from location A to location B. [1]

61 After a thunderstorm, the velocity of the river at location C was 100 centimeters per second. What was the largest type of sediment transported by the river at this location? [1]
Base your answers to questions 62 through 65 on the diagram below. The diagram represents daytime and nighttime on Earth. Point X is a location on Earth’s surface. Earth’s rotational surface velocity is shown in miles per hour (mi/h) at specific latitudes.

62 What is Earth’s rotational surface velocity, in miles per hour, at 23.5° south latitude? [1]

63 Record, to the nearest hour, the duration of insolation at location X for one Earth rotation. [1]

64 On the grid in your answer booklet, draw a line to show the general relationship between distance from the equator and Earth’s rotational surface velocity. [1]

65 Identify the Northern Hemisphere season that is just beginning when Earth is at the position represented in this diagram. [1]
Part C

Answer all questions in this part.

Directions (66–85): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Earth Science.

Base your answers to questions 66 and 67 on the world map below. Points A through H represent locations on Earth’s surface.

66 Identify the two lettered locations from the map that are least likely to experience volcanic activity or earthquakes. [1]

67 Identify the tectonic feature responsible for the formation of the Hawaiian Islands. [1]
Base your answers to questions 68 and 69 on the data table below and on the partial weather station model for Oklahoma City, Oklahoma, in your answer booklet.

<table>
<thead>
<tr>
<th>Data Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
</tr>
<tr>
<td>Dewpoint</td>
</tr>
<tr>
<td>Wind Direction</td>
</tr>
<tr>
<td>Wind Speed</td>
</tr>
</tbody>
</table>

68 On the partial weather station model for Oklahoma City *in your answer booklet*, add the correct weather map symbols to indicate the weather conditions shown in the data table. [1]

69 State the actual barometric pressure at Oklahoma City. [1]
Base your answers to questions 70 through 72 on the geologic cross section below, which represents a portion of Earth’s crust. Some rock units contain index fossils. Box A indicates a missing portion of the cross section.

70 In the box that represents box A on the cross section in your answer booklet, draw both the volcanic ash layer and the basaltic intrusion to clearly show their relative age. [1]

71 Describe one piece of evidence which indicates that the horizontal rock layers are younger than the tilted rock layers. [1]

72 The meteor impact debris was deposited at the time trilobites became extinct. State the age, in million years, of this debris layer. [1]
Base your answers to questions 73 and 74 on the map in your answer booklet, which represents the center of a low-pressure system indicated by L. The 1000-millibar (mb) isobar is drawn around the center of this low-pressure system.

73 On the map in your answer booklet, draw two additional isobars around the outside of the 1000-mb isobar in a way that indicates that the strongest winds are west of the low-pressure center. [1]

74 Identify one factor that usually causes many low-pressure centers to generally move from west to east across the United States. [1]
Base your answers to questions 75 and 76 on the map below, which represents the geographic source regions of two air masses, X and Y. The arrows represent the convergence of these air masses, which may result in tornadoes.

75 Use the standard two-letter air-mass symbols to identify air-masses X and Y. [1]

76 A tornado watch or warning is issued for a location in the area labeled Tornado Alley. State one safety precaution that should be taken to avoid possible injury from this tornado. [1]
Base your answers to questions 77 through 82 on the calendar and data table below. The calendar shows the month of February 2007, indicating the dates when some lunar phases occurred. February 24 lists only the name of the Moon phase that occurred on that day. The data table shows the highest and lowest tides (in feet) recorded for the Hudson River at Kingston, New York, over a 2-day period in February 2007.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time of Day</th>
<th>Tide Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, February 2</td>
<td>1:30 a.m.</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>7:30 a.m.</td>
<td>–0.2</td>
</tr>
<tr>
<td></td>
<td>1:30 p.m.</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>8:00 p.m.</td>
<td>–0.4</td>
</tr>
<tr>
<td>Saturday, February 3</td>
<td>2:00 a.m.</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>8:30 a.m.</td>
<td>–0.2</td>
</tr>
<tr>
<td></td>
<td>2:00 p.m.</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>9:00 p.m.</td>
<td>–0.4</td>
</tr>
</tbody>
</table>
77 On the grid in your answer booklet, plot the tide height for each time of day listed in the data table. Connect the plots with a line. [1]

78 Predict the time of the first high tide on Sunday, February 4. Include a.m. or p.m. in your answer. [1]

79 On the diagram in your answer booklet, draw a small circle (O) on the Moon’s orbit to show the position of the Moon in its orbit on February 2. [1]

80 State the date of the next full Moon that occurred after February 2. [1]

81 In the circle in your answer booklet, shade the part of the Moon that appeared dark to an observer in New York State on February 24. [1]

82 Determine the altitude of Polaris at Kingston, New York, to the nearest degree. [1]

Base your answers to questions 83 through 85 on the passage below.

Mount Manaro Erupts!

Mount Manaro is a volcano on Ambae Island, about 1400 miles northeast of Australia. Ambae Island is located in the South Pacific Ocean at 15° south latitude, 168° east longitude.

After Mount Manaro had erupted in 1995, Ambae Island residents developed an evacuation plan. When Mount Manaro began erupting gas, steam, and ash on November 27, 2005, scientists and residents watched the volcano carefully.

The eruption became more severe on December 9, 2005, when steam and gases rose 1.8 miles up into the air. Rocks and ash began to fall on nearby farms and homes. Thousands of people left their homes, making it the largest evacuation ever on Ambae Island.

83 Name the highest layer of the atmosphere into which the steam from the volcanic eruption rose on December 9, 2005. [1]

84 Identify the ocean current off the northeast coast of Australia that most affects the climate of Ambae Island. [1]

85 On the diagram in your answer booklet, draw one arrow through point X and one arrow through point Y to indicate the direction of tectonic plate motion near Mount Manaro. [1]
Record your answers for Part B–2 and Part C in this booklet.

Part B–2

51 ____________________________

52 Color: ____________________________

 Density: ____________________________

53 ____________________________

54 ____________________________ Era

55 ____________________________

56 ____________________________

57 ____________________________

58 ____________________________
60 \[\text{cm/s} \]

61 \[\text{____________________} \]
Part C

66 __________ and __________

67 __________________________

68

69 __________ mb

70

71 __________________________

72 __________ million years
74

75 Air-mass X: __________________________

Air-mass Y: __________________________

76 __________________________
FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

PS–ES
PHYSICAL SETTING/EARTH SCIENCE

Friday, June 15, 2012 — 1:15 to 4:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:
Refer to the directions on page 2 before rating student papers.

Updated information regarding the rating of this examination may be posted on the New York State Education Department's web site during the rating period. Check this web site at: http://www.p12.nysed.gov/apda/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 . . . 2 . . .</td>
<td>36 . . . 1 . . .</td>
</tr>
<tr>
<td>2 . . . 1 . . .</td>
<td>37 . . . 2 . . .</td>
</tr>
<tr>
<td>3 . . . 3 . . .</td>
<td>38 . . . 1 . . .</td>
</tr>
<tr>
<td>4 . . . 4 . . .</td>
<td>39 . . . 4 . . .</td>
</tr>
<tr>
<td>5 . . . 3 . . .</td>
<td>40 . . . 2 . . .</td>
</tr>
<tr>
<td>6 . . . 2 . . .</td>
<td>41 . . . 4 . . .</td>
</tr>
<tr>
<td>7 . . . 4 . . .</td>
<td>42 . . . 3 . . .</td>
</tr>
<tr>
<td>8 . . . 2 . . .</td>
<td>43 . . . 1 . . .</td>
</tr>
<tr>
<td>9 . . . 2 . . .</td>
<td>44 . . . 4 . . .</td>
</tr>
</tbody>
</table>

Allow 1 credit for each correct response.
Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Regents Examination in Physical Setting/Earth Science. Additional information about scoring is provided in the publication Information Booklet for Scoring Regents Examinations in the Sciences.

Do not attempt to correct the student's work by making insertions or changes of any kind.

Allow 1 credit for each correct response.

At least two science teachers must participate in the scoring of the Part B–2 and Part C open-ended questions on a student's paper. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score more than approximately one-half of the open-ended questions on a student's answer paper.

Students' responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide. On the student's separate answer sheet, for each question, record the number of credits earned and the teacher's assigned rater/scorer letter.

Fractional credit is not allowed. Only whole-number credit may be given for a response. Units need not be given when the wording of the questions allows such omissions.

For hand scoring, raters should enter the scores earned in the appropriate boxes printed on the separate answer sheet. Next, the rater should add these scores and enter the total in the space provided. The student's score for the Earth Science Performance Test should be recorded in the space provided. Then the student's raw scores on the written test and the performance test should be converted to a scale score by using the conversion chart that will be posted on the Department's web site at: http://www.p12.nysed.gov/apda/ on Friday, June 15, 2012. The student's scale score should be entered in the box labeled “Scale Score” on the student's answer sheet. The scale score is the student's final examination score.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student's final score.
Part B–2

Allow a maximum of 15 credits for this part.

51 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — intrusive
 — plutonic
 — underground

52 [1] Allow 1 credit if both the color and density are correct. Acceptable responses include, but are not limited to:
 Color:
 — lighter
 — whiter
 — pinker
 Density:
 — lower
 — less dense

53 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — foliated
 — mineral alignment
 — flattened crystals
54 [1] Allow 1 credit for Mesozoic Era.

55 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — Similar fossil remains are found in Africa and South America.
 — The fossil *Rugops primus*, found in Africa, is related to abelisaurids found in South America and India.
 — fossil evidence

56 [1] Allow 1 credit for sedimentary rock or any specific sedimentary rock, such as shale.

57 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — wide geographic distribution or widespread
 — lived a short period of geologic time or short lived
 — easily recognizable

58 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — divergence
 — rifting
 — seafloor spreading
59 [1] Allow 1 credit if the center of the X is located within the area indicated below.

Note: It is recommended that an overlay of the same scale as the student answer booklet be used to ensure reliability in rating.

60 [1] Allow 1 credit for 50 cm/s.

61 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 - pebbles
 - 2-cm to 3-cm-diameter particles
62 [1] Allow 1 credit for 955 mi/h.

63 [1] Allow 1 credit for 12 h.

64 [1] Allow 1 credit for a graph that shows an inverse relationship.

Examples of 1-credit graphs:

![Graph 1](Earth's Rotational Surface Velocity vs. Distance from the Equator)

![Graph 2](Earth's Rotational Surface Velocity vs. Distance from the Equator)

65 [1] Allow 1 credit for summer.
Part C

Allow a maximum of 20 credits for this part.

66 [1] Allow 1 credit for C and E.

67 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
 — Hawaii Hot Spot
 — mantle hot spot
 — volcano
 — a rising magma plume

68 [1] Allow 1 credit if all four weather variables from the data table are correctly recorded in the proper format. Allow credit if feathers are drawn on either side of the staff.

Example of a 1-credit response:

69 [1] Allow 1 credit for 1013.4 mb.
70 [1] Allow 1 credit for a response showing the basaltic intrusion cutting through the ash layer.

Example of a 1-credit response:

71 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

— The horizontal rocks are on top of the tilted layers.
— Fossils of the earliest grasses and large carnivorous mammals are more recent than *Manticoceras* and *Ctenocrinus*.
— The fossils in the tilted layers are older.

72 [1] Allow 1 credit for 251 million years.
73 [1] Allow 1 credit for correctly drawing the two isobars. The isobars should be closer together on the western side. If additional isobars are drawn, all must be correct to receive credit.

Example of a 1-credit response:

![Diagram of isobars](image)

74 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
- the prevailing southwest winds
- the jet stream
- planetary winds

75 [1] Allow 1 credit for a correct response for both air-mass symbols. Allow credit even if all uppercase letters are used.
- Air-mass X: cP or cA
- Air-mass Y: mT

Note: Do not allow credit if the letters are reversed, such as Pc.

76 [1] Allow 1 credit. Acceptable responses include, but are not limited to:
- go to the basement
- stay away from windows
- listen to emergency warnings broadcast on radio or TV
- go to a community emergency shelter
77 [1] Allow 1 credit if the centers of all eight plots are located within the circles shown below and are connected with a line that passes within each circle.

Note: It is recommended that an overlay of the same scale as the student answer booklet be used to ensure reliability in rating.

![High and Low Tides Graph]

78 [1] Allow 1 credit for any time from 2 a.m. to 4 a.m.
79 [1] Allow 1 credit if the center of the student-drawn circle is within the brackets shown below.

80 [1] Allow 1 credit for March 3 or March 4.

81 [1] Allow 1 credit for shading half of the circle on the left side.

 Examples of 1-credit responses:

 ![Examples of 1-credit responses]

82 [1] Allow 1 credit for 42°.
Allow 1 credit for troposphere.

[1] Allow 1 credit. Acceptable responses include, but are not limited to:

- East Australia Current
- South Equatorial Current
- E. Australia C.

[1] Allow 1 credit if both arrows show the correct directions, even if the arrows do not pass through the dots.

Example of a 1-credit response:

![Diagram](image)
The Chart for Determining the Final Examination Score for the June 2012 Regents Examination in Physical Setting/Earth Science will be posted on the Department’s web site at: http://www.p12.nysed.gov/apda/ on Friday, June 15, 2012. Conversion charts provided for previous administrations of the Regents Examination in Physical Setting/Earth Science must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
June 2012 Physical Setting/Earth Science

<table>
<thead>
<tr>
<th>Key Ideas/Performance Indicators</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 1</td>
<td>44, 48, 60</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 2</td>
<td>26, 31, 35</td>
<td>39, 64</td>
<td>78</td>
</tr>
<tr>
<td>Math Key Idea 3</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 1</td>
<td>2, 12, 15, 18, 30</td>
<td>36, 45, 56, 57</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 3</td>
<td>14, 20</td>
<td>55, 56</td>
<td>82</td>
</tr>
<tr>
<td>Engineering Design Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Standard 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>8, 10</td>
<td>37</td>
<td>74</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>3, 4, 5, 6, 16, 17, 19, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34</td>
<td>36, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 59, 61, 62, 63, 64, 65</td>
<td>66, 67, 68, 69, 70, 71, 72, 73, 75, 79, 81, 83, 84, 85</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>25</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Standard 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>1, 2, 3, 8, 9, 10, 18, 21, 22, 25, 26, 27, 29, 30, 33</td>
<td>36, 37, 38, 41, 49, 50, 54, 55, 57, 62, 64, 65</td>
<td>70, 71, 72, 77, 78, 79, 80, 81, 82</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>4, 5, 6, 7, 11, 14, 15, 16, 17, 19, 23, 24, 28, 31, 34, 35</td>
<td>39, 40, 42, 43, 44, 46, 47, 48, 58, 59, 60, 61, 63</td>
<td>66, 67, 68, 69, 73, 74, 75, 76, 83, 84, 85</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>12, 13, 20, 32</td>
<td>45, 51, 52, 53, 56</td>
<td></td>
</tr>
<tr>
<td>Reference Tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESRT 2011 Edition (Revised)</td>
<td>3, 12, 13, 14, 16, 19, 20, 21, 22, 24, 25, 27, 31, 32</td>
<td>37, 48, 50, 51, 52, 54, 59, 60, 61</td>
<td>66, 67, 68, 69, 72, 74, 75, 82, 83, 84, 85</td>
</tr>
</tbody>
</table>
The State Education Department / The University of the State of New York

Regents Examination in Physical Setting/Earth Science – June 2012

Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

(Not to be used for the Braille Edition)

To determine the student’s final score, locate the student’s Total Performance Test Score across the top of the chart and the Total Written Test Score down the side of the chart. The point where the two scores intersect is the student’s final examination score. For example, a student receiving a Total Performance Test Score of 10 and Total Written Test Score of 71 would receive a final examination score of 90.

<table>
<thead>
<tr>
<th>Total Written Test Score</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>68</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>67</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>66</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>65</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>64</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>63</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>62</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>61</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>60</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>59</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>58</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>57</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>56</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>55</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>54</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>53</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>52</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>51</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>50</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>49</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>48</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>47</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>46</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>45</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>44</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>
Final Examination Scores
June 2012 Examination in Physical Setting/Earth Science – continued

<table>
<thead>
<tr>
<th>Total Performance Test Score</th>
<th>Total Written Test Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

P.S./Earth Science Conversion Chart - June '12

2 of 2