The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

PHYSICAL SETTING
CHEMISTRY

Friday, January 25, 2019 — 9:15 a.m. to 12:15 p.m., only

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

This is a test of your knowledge of chemistry. Use that knowledge to answer all questions in this examination. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry. You are to answer all questions in all parts of this examination according to the directions provided in this examination booklet.

A separate answer sheet for Part A and Part B–1 has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet. Record your answers to the Part A and Part B–1 multiple-choice questions on this separate answer sheet. Record your answers for the questions in Part B–2 and Part C in your separate answer booklet. Be sure to fill in the heading on the front of your answer booklet.

All answers in your answer booklet should be written in pen, except for graphs and drawings, which should be done in pencil. You may use scrap paper to work out the answers to the questions, but be sure to record all your answers on your separate answer sheet or in your answer booklet as directed.

When you have completed the examination, you must sign the statement printed on your separate answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet and answer booklet cannot be accepted if you fail to sign this declaration.

Notice. . .
A four-function or scientific calculator and a copy of the 2011 Edition Reference Tables for Physical Setting/Chemistry must be available for you to use while taking this examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
1. The results of the gold foil experiment led to the conclusion that an atom is
 (1) mostly empty space and has a small, negatively charged nucleus
 (2) mostly empty space and has a small, positively charged nucleus
 (3) a hard sphere and has a large, negatively charged nucleus
 (4) a hard sphere and has a large, positively charged nucleus

2. Atoms are neutral because the number of
 (1) protons equals the number of neutrons
 (2) protons equals the number of electrons
 (3) neutrons is greater than the number of protons
 (4) neutrons is greater than the number of electrons

3. In the ground state, valence electrons of a krypton atom are found in
 (1) the first shell
 (2) the outermost shell
 (3) both the nucleus and the first shell
 (4) both the first shell and the outermost shell

4. According to the wave-mechanical model of the atom, electrons are located in
 (1) orbitals
 (2) circular paths
 (3) a small, dense nucleus
 (4) a hard, indivisible sphere

5. Which electron configuration represents the electrons in an atom of sodium in the ground state at STP?
 (1) 2-8-1
 (2) 2-7-2
 (3) 2-8-6
 (4) 2-7-7

6. The elements on the Periodic Table of the Elements are arranged in order of increasing
 (1) atomic number
 (2) mass number
 (3) number of neutrons
 (4) number of valence electrons

7. Which element is malleable at STP?
 (1) chlorine
 (2) copper
 (3) helium
 (4) sulfur

8. At 298 K and 1 atm, which noble gas has the lowest density?
 (1) Ne
 (2) Kr
 (3) Xe
 (4) Rn

9. Which two terms represent types of chemical formulas?
 (1) empirical and molecular
 (2) polar and nonpolar
 (3) synthesis and decomposition
 (4) saturated and concentrated

10. Which quantities are conserved in all chemical reactions?
 (1) charge, pressure, and energy
 (2) charge, mass, and energy
 (3) volume, pressure, and energy
 (4) volume, mass, and pressure

11. Which term represents the sum of the atomic masses of the atoms in a molecule?
 (1) atomic number
 (2) mass number
 (3) formula mass
 (4) percent composition by mass
12 Which equation represents energy being absorbed as a bond is broken?

(1) \(H + H \rightarrow H_2 + \text{energy} \)
(2) \(H + H + \text{energy} \rightarrow H_2 \)
(3) \(H_2 \rightarrow H + H + \text{energy} \)
(4) \(H_2 + \text{energy} \rightarrow H + H \)

13 Which term is used to describe the attraction that an oxygen atom has for the electrons in a chemical bond?

(1) alkalinity
(2) electronegativity
(3) electron configuration
(4) first ionization energy

14 Which substance can not be decomposed by chemical means?

(1) C
(2) CO
(3) \(\text{CO}_2 \)
(4) \(\text{C}_3\text{O}_2 \)

15 A beaker contains a dilute sodium chloride solution at 1 atmosphere. What happens to the number of solute particles in the solution and the boiling point of the solution, as more sodium chloride is dissolved?

(1) The number of solute particles increases, and the boiling point increases.
(2) The number of solute particles increases, and the boiling point decreases.
(3) The number of solute particles decreases, and the boiling point increases.
(4) The number of solute particles decreases, and the boiling point decreases.

16 Which form of energy is transferred when an ice cube at 0°C is placed in a beaker of water at 50°C?

(1) chemical
(2) electrical
(3) nuclear
(4) thermal

17 The average kinetic energy of the particles in a sample of matter is expressed as

(1) density
(2) volume
(3) pressure
(4) temperature

18 At STP, which gas sample has the same number of molecules as 2.0 liters of \(\text{CH}_4 \)(g) at STP?

(1) 1.0 liter of \(\text{C}_2\text{H}_6 \)(g)
(2) 2.0 liters of \(\text{O}_2 \)(g)
(3) 5.0 liters of \(\text{N}_2 \)(g)
(4) 6.0 liters of \(\text{CO}_2 \)(g)

19 Given the equation:

\[\text{I}_2(s) \rightarrow \text{I}_2(g) \]

Which phrase describes this change?

(1) endothermic chemical change
(2) endothermic physical change
(3) exothermic chemical change
(4) exothermic physical change

20 Which term identifies a factor that will shift a chemical equilibrium?

(1) atomic radius
(2) catalyst
(3) decay mode
(4) temperature

21 According to which theory or law is a chemical reaction most likely to occur when two particles with the proper energy and orientation interact with each other?

(1) atomic theory
(2) collision theory
(3) combined gas law
(4) law of conservation of matter

22 Addition of a catalyst can speed up a reaction by providing an alternate reaction pathway that has a

(1) lower activation energy
(2) higher activation energy
(3) lower heat of reaction
(4) higher heat of reaction

23 Which compound is saturated?

(1) butane
(2) ethene
(3) heptene
(4) pentyne
24 An alcohol and an ether have the same molecular formula, C₂H₆O. These two compounds have
(1) the same functional group and the same physical and chemical properties
(2) the same functional group and different physical and chemical properties
(3) different functional groups and the same physical and chemical properties
(4) different functional groups and different physical and chemical properties

25 Which metal is most easily oxidized?
(1) Ag (3) Cu
(2) Co (4) Mg

26 Which substance is an Arrhenius acid?
(1) H₂ (3) KCl
(2) HCl (4) NH₃

27 Which statement describes an electrolyte?
(1) An electrolyte conducts an electric current as a solid and dissolves in water.
(2) An electrolyte conducts an electric current as a solid and does not dissolve in water.
(3) When an electrolyte dissolves in water, the resulting solution conducts an electric current.
(4) When an electrolyte dissolves in water, the resulting solution does not conduct an electric current.

28 Which type of reaction occurs when an Arrhenius acid reacts with an Arrhenius base to form a salt and water?
(1) combustion (3) neutralization
(2) decomposition (4) saponification

29 Compared to the energy released per mole of reactant during chemical reactions, the energy released per mole of reactant during nuclear reactions is
(1) much less (3) slightly less
(2) much greater (4) slightly greater

30 Which phrase describes a risk of using the radioisotope Co-60 in treating cancer?
(1) production of acid rain
(2) production of greenhouse gases
(3) increased biological exposure
(4) increased ozone depletion
Part B–1

Answer all questions in this part.

Directions (31–50): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry.

31 The three nuclides, U-233, U-235, and U-238, are isotopes of uranium because they have the same number of protons per atom and
 (1) the same number of electrons per atom
 (2) the same number of neutrons per atom
 (3) a different number of electrons per atom
 (4) a different number of neutrons per atom

32 Given the information in the table below:

<table>
<thead>
<tr>
<th>Two Forms of Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
</tr>
<tr>
<td>diamond</td>
</tr>
<tr>
<td>graphite</td>
</tr>
</tbody>
</table>

Diamond and graphite have different properties because they have different
 (1) crystal structures
 (2) electronegativities
 (3) numbers of protons per atom
 (4) numbers of valence electrons per atom

33 Given the equation representing a chemical reaction:

\[\text{NaCl(aq)} + \text{AgNO}_3(aq) \rightarrow \text{NaNO}_3(aq) + \text{AgCl(s)} \]

This reaction is classified as a
 (1) synthesis reaction
 (2) decomposition reaction
 (3) single replacement reaction
 (4) double replacement reaction
34. What is the formula for iron(II) oxide?
 (1) FeO (2) FeO₂ (3) Fe₂O (4) Fe₂O₃

35. Given the reaction:
 \[2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g) \]
 How many moles of \text{KClO}_3 must completely react to produce 6 moles of \text{O}_2?
 (1) 1 mole (2) 2 moles (3) 6 moles (4) 4 moles

36. What is the number of moles of \text{CO}_2 in a 220. gram sample of \text{CO}_2 (gram-formula mass = 44 g/mol)?
 (1) 0.20 mol (2) 5.0 mol (3) 15 mol (4) 44 mol

37. A solution contains 25 grams of \text{KNO}_3 dissolved in 200. grams of \text{H}_2\text{O}. Which numerical setup can be used to calculate the percent by mass of \text{KNO}_3 in this solution?
 (1) \(\frac{25 \text{ g}}{175 \text{ g}} \times 100\) (3) \(\frac{25 \text{ g}}{225 \text{ g}} \times 100\)
 (2) \(\frac{25 \text{ g}}{200 \text{ g}} \times 100\) (4) \(\frac{200 \text{ g}}{225 \text{ g}} \times 100\)

38. What is the molarity of 0.50 liter of an aqueous solution that contains 0.20 mole of \text{NaOH} (gram-formula mass = 40. g/mol)?
 (1) 0.10 M (2) 0.20 M (3) 2.5 M (4) 0.40 M

39. A mixture consists of ethanol and water. Some properties of ethanol and water are given in the table below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Ethanol</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>boiling point at standard pressure</td>
<td>78°C</td>
<td>100.°C</td>
</tr>
<tr>
<td>density at STP</td>
<td>0.80 g/cm³</td>
<td>1.00 g/cm³</td>
</tr>
<tr>
<td>flammability</td>
<td>flammable</td>
<td>nonflammable</td>
</tr>
<tr>
<td>melting point</td>
<td>−114°C</td>
<td>0.°C</td>
</tr>
</tbody>
</table>

Which statement describes a property of ethanol after being separated from the mixture?
 (1) Ethanol is nonflammable.
 (2) Ethanol has a melting point of 0.°C.
 (3) Ethanol has a density of 0.80 g/cm³ at STP.
 (4) Ethanol has a boiling point of 89°C at standard pressure.

40. A rigid cylinder with a movable piston contains a sample of hydrogen gas. At 330. K, this sample has a pressure of 150. kPa and a volume of 3.50 L. What is the volume of this sample at STP?
 (1) 0.233 L (2) 1.96 L (3) 4.29 L (4) 6.26 L

41. Which numerical setup can be used to calculate the heat energy required to completely melt 100. grams of \text{H}_2\text{O}(s) at 0°C?
 (1) (100. g)(334 J/g)
 (2) (100. g)(2260 J/g)
 (3) (100. g)(4.18 J/g•K)(0°C)
 (4) (100. g)(4.18 J/g•K)(273 K)

42. During which phase change does the entropy of a sample of \text{H}_2\text{O} increase?
 (1) \text{H}_2\text{O}(g) \rightarrow \text{H}_2\text{O(ℓ)}
 (2) \text{H}_2\text{O}(g) \rightarrow \text{H}_2\text{O(s)}
 (3) \text{H}_2\text{O(ℓ)} \rightarrow \text{H}_2\text{O(g)}
 (4) \text{H}_2\text{O(ℓ)} \rightarrow \text{H}_2\text{O(s)}
43 Given the formula for a compound:

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{C} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{H} \
\end{array}
\]

What is a chemical name for this compound?
(1) 1-butanamide (3) 1-butanimine
(2) 4-butanamide (4) 4-butanimine

44 Given the equation for a reaction:

\[
\text{C}_4\text{H}_{10} + \text{Cl}_2 \rightarrow \text{C}_4\text{H}_9\text{Cl} + \text{HCl}
\]

Which type of reaction is represented by the equation?
(1) addition (3) fermentation
(2) substitution (4) polymerization

45 Which half-reaction equation represents reduction?
(1) \(\text{Cu} \rightarrow \text{Cu}^{2+} + 2e^-\)
(2) \(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}\)
(3) \(\text{Ag} + e^- \rightarrow \text{Ag}^+\)
(4) \(\text{Ag}^+ \rightarrow \text{Ag} + e^-\)

46 Given the balanced ionic equation representing a reaction:

\[
\text{Zn(s)} + \text{Co}^{2+}(\text{aq}) \rightarrow \text{Zn}^{2+}(\text{aq}) + \text{Co(s)}
\]

Which statement describes the electrons involved in this reaction?
(1) Each Zn atom loses 2 electrons, and each Co\(^{2+}\) ion gains 2 electrons.
(2) Each Zn atom loses 2 electrons, and each Co\(^{2+}\) ion loses 2 electrons.
(3) Each Zn atom gains 2 electrons, and each Co\(^{2+}\) ion loses 2 electrons.
(4) Each Zn atom gains 2 electrons, and each Co\(^{2+}\) ion gains 2 electrons.

47 What are the two oxidation states of nitrogen in \(\text{NH}_4\text{NO}_2\)?
(1) +3 and +5 (3) –3 and +3
(2) +3 and –5 (4) –3 and –3

48 The table below shows the molar concentrations of hydronium ion, \(\text{H}_3\text{O}^+\), in four different solutions.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Molar Concentration of H(_3)O(^+) Ion (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>0.01</td>
</tr>
<tr>
<td>C</td>
<td>0.001</td>
</tr>
<tr>
<td>D</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Which solution has the highest pH?
(1) A (3) C
(2) B (4) D

49 Given the equation:

\[
^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{140}_{56}\text{Ba} + ^{93}_{36}\text{Kr} + ^{3}_{0}\text{n} + \text{energy}
\]

Which type of nuclear reaction is represented by the equation?
(1) fission (3) beta decay
(2) fusion (4) alpha decay

50 Which nuclear emission has the least penetrating power and the greatest ionizing ability?
(1) alpha particle (3) gamma ray
(2) beta particle (4) positron
Part B–2

Answer all questions in this part.

Directions (51–65): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry.

Base your answers to questions 51 through 54 on the information below and on your knowledge of chemistry.

The formulas and names of four chloride compounds are shown in the table below.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl₄</td>
<td>carbon tetrachloride</td>
</tr>
<tr>
<td>RbCl</td>
<td>rubidium chloride</td>
</tr>
<tr>
<td>CsCl</td>
<td>cesium chloride</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrogen chloride</td>
</tr>
</tbody>
</table>

51 Identify the noble gas that has atoms with the same electron configuration as the metal ions in rubidium chloride, when both the atoms and the ions are in the ground state. [1]

52 Explain, in terms of atomic structure, why the radius of a cesium ion in cesium chloride is smaller than the radius of a cesium atom when both are in the ground state. [1]

53 In the space in your answer booklet, draw a Lewis electron-dot diagram for a molecule of HCl. [1]

54 Explain, in terms of charge distribution, why a molecule of carbon tetrachloride is a nonpolar molecule. [1]
Base your answers to questions 55 through 57 on the information below and on your knowledge of chemistry.

Some isotopes of neon are Ne-19, Ne-20, Ne-21, Ne-22, and Ne-24. The neon-24 decays by beta emission. The atomic mass and natural abundance for the naturally occurring isotopes of neon are shown in the table below.

Naturally Occurring Isotopes of Neon

<table>
<thead>
<tr>
<th>Isotope Notation</th>
<th>Atomic Mass (u)</th>
<th>Natural Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne-20</td>
<td>19.99</td>
<td>90.48</td>
</tr>
<tr>
<td>Ne-21</td>
<td>20.99</td>
<td>0.27</td>
</tr>
<tr>
<td>Ne-22</td>
<td>21.99</td>
<td>9.25</td>
</tr>
</tbody>
</table>

55 Identify the decay mode of Ne-19. [1]

56 State the number of neutrons in an atom of Ne-20 and the number of neutrons in an atom of Ne-22. [1]

57 Show a numerical setup for calculating the atomic mass of neon. [1]

Base your answers to questions 58 through 60 on the information below and on your knowledge of chemistry.

Periodic trends are observed in the properties of the elements in Period 3 on the Periodic Table. These elements vary in physical properties, such as phase, and in chemical properties, such as their ability to lose or gain electrons during a chemical reaction.

58 Identify the metals in Period 3 on the Periodic Table. [1]

59 Identify the element in Period 3 that requires the least amount of energy to remove the most loosely held electrons from a mole of gaseous atoms of the element in the ground state. [1]

60 State the general trend in atomic radius as the elements in Period 3 are considered in order of increasing atomic number. [1]
Base your answers to questions 61 through 63 on the information below and on your knowledge of chemistry.

A thiol is very similar to an alcohol, but a thiol has a sulfur atom instead of an oxygen atom in the functional group. The equation below represents a reaction of methanethiol and iodine, producing dimethyl disulfide and hydrogen iodide.

$$2 \left(\begin{array}{c} H \\ H \\ H \\ \end{array} \right) - \left(\begin{array}{c} C \\ S \\ H \end{array} \right) + I_2 \rightarrow \left(\begin{array}{c} H \\ H \\ H \\ \end{array} \right) - \left(\begin{array}{c} C \\ S \\ C \\ \end{array} \right) + 2HI$$

Methanethiol Dimethyl disulfide

61 State the number of electrons shared between the sulfur atoms in the dimethyl disulfide. [1]

62 Identify the polarity of an H–I bond and the polarity of an S–S bond. [1]

63 Explain, in terms of electron configuration, why sulfur atoms and oxygen atoms form compounds with similar molecular structures. [1]

Base your answers to questions 64 and 65 on the information below and on your knowledge of chemistry.

A student constructs an electrochemical cell. A diagram of the operating cell and the unbalanced ionic equation representing the reaction occurring in the cell are shown below. The blue color of the solution in the copper half-cell indicates the presence of Cu$^{2+}$ ions. The student observes that the blue color becomes less intense as the cell operates.

64 Identify the type of electrochemical cell represented by the diagram. [1]

65 State one inference that the student can make about the concentration of the Cu$^{2+}$ ions based on the change in intensity of the color of the Cu(NO$_3$)$_2$(aq) solution as the cell operates. [1]
Base your answers to questions 66 through 69 on the information below and on your knowledge of chemistry.

In a laboratory investigation, a student is given a sample that is a mixture of 3.0 grams of NaCl(s) and 4.0 grams of sand, which is mostly SiO₂(s). The purpose of the investigation is to separate and recover the compounds in the sample. In the first step, the student places the sample in a 250-mL flask. Then, 50. grams of distilled water are added to the flask, and the contents are thoroughly stirred. The mixture in the flask is then filtered, using the equipment represented by the diagram below.

66 Explain, in terms of solubility, why the mixture in the flask remains heterogeneous even after thorough stirring. [1]

67 Based on Table C, state evidence that all of the NaCl(s) in the flask would dissolve in the distilled water at 20.°C. [1]

68 Describe a procedure to remove the water from the mixture that passes through the filter and collects in the beaker. [1]

69 The student reports that 3.4 grams of NaCl(s) were recovered from the mixture. Show a numerical setup for calculating the student’s percent error. [1]
Base your answers to questions 70 through 73 on the information below and on your knowledge of chemistry.

In a laboratory activity, the volume of helium gas in a rigid cylinder with a movable piston is varied by changing the temperature of the gas. The activity is done at a constant pressure of 100. kPa. Data from the activity are plotted on the graph below.

70 Determine the temperature of the He(g) at a volume of 15.0 mL. [1]

71 Explain, in terms of particle volume, why the sample of helium can not be compressed by the piston to zero volume. [1]

72 State what happens to the average distance between the He atoms as the gas is heated. [1]

73 State a change in pressure that will cause the helium in the cylinder to behave more like an ideal gas. [1]
Base your answers to questions 74 through 76 on the information below and on your knowledge of chemistry.

The balanced equation below represents the reaction between a 5.0-gram sample of zinc metal and a 0.5 M solution of hydrochloric acid. The reaction takes place in an open test tube at 298 K and 1 atm in a laboratory activity.

\[\text{Zn(s)} + 2\text{HCl(aq)} \rightarrow \text{H}_2(\text{g}) + \text{ZnCl}_2(\text{aq}) + \text{energy} \]

74 State one change in reaction conditions, other than adding a catalyst, that will increase the rate of the reaction. [1]

75 On the labeled axes in your answer booklet, draw a potential energy diagram for this reaction. [1]

76 Explain why this reaction will not reach equilibrium. [1]

Base your answers to questions 77 through 79 on the information below and on your knowledge of chemistry.

Crude oil, primarily a mixture of hydrocarbons, is separated into useful components in a fractionating tower. At the bottom of the tower, the crude oil is heated to about 400°C. The gases formed rise and cool. Most of the gases condense and are collected as liquid fractions. The table below shows the temperature ranges for collecting various hydrocarbon fractions.

<table>
<thead>
<tr>
<th>Number of Carbon Atoms per Molecule</th>
<th>Temperature Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>below 40</td>
</tr>
<tr>
<td>5-12</td>
<td>40-200</td>
</tr>
<tr>
<td>12-16</td>
<td>200-300</td>
</tr>
<tr>
<td>16-20</td>
<td>300-370</td>
</tr>
<tr>
<td>>20</td>
<td>above 370</td>
</tr>
</tbody>
</table>

77 Determine the number of carbon atoms in one molecule of an alkane that has 22 hydrogen atoms in the molecule. [1]

78 State the temperature range for the fraction collected that contains octane molecules. [1]

79 Draw a structural formula for 3-ethylhexane. [1]
In a laboratory activity, a student titrates a 20.0-milliliter sample of HCl(aq) using 0.025 M NaOH(aq). In one of the titration trials, 17.6 milliliters of the base solution exactly neutralizes the acid sample.

80 Identify the positive ion in the sample of HCl(aq). [1]

81 Show a numerical setup for calculating the concentration of the hydrochloric acid using the titration data. [1]

82 The concentration of the base is expressed to what number of significant figures? [1]
Base your answers to questions 83 through 85 on the information below and on your knowledge of chemistry.

In the past, some paints that glowed in the dark contained zinc sulfide and salts of Ra-226. As the radioisotope Ra-226 decayed, the energy released caused the zinc sulfide in these paints to emit light. The half-lives for Ra-226 and two other radioisotopes used in these paints are listed on the table below.

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>Half-Life (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm-147</td>
<td>2.6</td>
</tr>
<tr>
<td>Ra-226</td>
<td>1599</td>
</tr>
<tr>
<td>Ra-228</td>
<td>5.8</td>
</tr>
</tbody>
</table>

83 Explain, in terms of half-lives, why Ra-226 may have been used more often than the other isotopes in these paints. [1]

84 Complete the nuclear equation in your answer booklet for the beta decay of Pm-147 by writing an isotopic notation for the missing product. [1]

85 What fraction of an original Ra-228 sample remains unchanged after 17.4 years? [1]
Record your answers for Part B–2 and Part C in this booklet.

Part B–2

51

52

53
Ne-20:

Ne-22:

56 Ne-20:

Ne-22:

57
H–I bond: ______________________

S–S bond: ______________________
77 __________

78 __________ °C to __________ °C

79

80 __________________________

81

82 __________
83

84 \(^{147}_{61}\text{Pm} \rightarrow ^0_{-1}\text{e} + \quad \)

85 \quad
FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

P.S.–CH PHYSICAL SETTING/CHEMISTRY

Friday, January 25, 2019 — 9:15 a.m. to 12:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:
Refer to the directions on page 2 before rating student papers.

Updated information regarding the rating of this examination may be posted on the New York State Education Department's web site during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

Part A and Part B–1
Allow 1 credit for each correct response.

<table>
<thead>
<tr>
<th>Part A</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>16</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B–1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>4</td>
<td>36</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>37</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>38</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>39</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>40</td>
<td>3</td>
<td>45</td>
</tr>
</tbody>
</table>
Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Regents Examination in Physical Setting/Chemistry. Additional information about scoring is provided in the publication Information Booklet for Scoring Regents Examinations in the Sciences.

Do not attempt to correct the student’s work by making insertions or changes of any kind. If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Allow 1 credit for each correct response.

At least two science teachers must participate in the scoring of the Part B–2 and Part C open-ended questions on a student’s paper. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score more than approximately one-half of the open-ended questions on a student’s answer paper. Teachers may not score their own students’ answer papers.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge, as indicated by the examples in the rating guide. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Fractional credit is not allowed. Only whole-number credit may be given for a response. If the student gives more than one answer to a question, only the first answer should be rated. Units need not be given when the wording of the questions allows such omissions.

For hand scoring, raters should enter the scores earned in the appropriate boxes printed on the separate answer sheet. Next, the rater should add these scores and enter the total in the box labeled “Total Raw Score.” Then the student’s raw score should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Friday, January 25, 2019. The student’s scale score should be entered in the box labeled “Scale Score” on the student’s answer sheet. The scale score is the student’s final examination score.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student’s final score.
Part B–2

Allow a total of 15 credits for this part. The student must answer all questions in this part.

51 [1] Allow 1 credit for Kr or krypton.

52 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

A cesium atom loses its valence electron, making the cesium ion smaller.

The cesium atom has one more electron shell than the cesium ion.

A Cs\(^+\) ion has only 5 shells of electrons in the ground state and the Cs atom has 6 shells.

Examples of 1-credit responses:

\[
\begin{align*}
\text{H} & \cdot \text{Cl} \cdot \\
\text{H} & \cdot \text{Cl} \cdot \\
\text{H} & - \text{Cl}^+ \\
\text{Cl}^- & - \text{H}
\end{align*}
\]

54 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

The molecule is nonpolar because it has a symmetrical charge distribution.

The center of positive and negative charges coincide.

55 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

positron decay

\[\beta^+ \]

\[+1 \text{e} \]

\[+1 \beta \]

positron
56 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

Ne-20: 10
Ne-22: 12

57 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

\[
\frac{(19.99 \text{ u})(0.9048) + (20.99 \text{ u})(0.0027) + (21.99 \text{ u})(0.0925)}{100}
\]

Note: Do not allow credit for a numerical setup using mass numbers rather than isotopic masses.

58 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

Na, Mg, Al

aluminum, sodium, magnesium

59 [1] Allow 1 credit for Na or sodium.

60 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

As the atomic number of the elements in Period 3 increases, the atomic radius generally decreases.

The radius gets smaller.

61 [1] Allow 1 credit for 2 or two or 1 pair.

62 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

H–I bond: polar
S–S bond: nonpolar

H–I bond: polar covalent
S–S bond: nonpolar covalent
63 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

Sulfur and oxygen atoms both have 6 valence electrons.

Atoms of both elements need the same number of electrons to complete their outer shells.

64 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

voltaic cell

voltaic

Galvanic

65 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

The concentration of the Cu\(^{2+}\) ions decreases.

There are fewer copper ions in the solution.
Part C

Allow a total of 20 credits for this part. The student must answer all questions in this part.

66 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- The NaCl(s) dissolves in H₂O(ℓ), but sand does not dissolve.
- The sand is insoluble in water.
- After the stirring, the sand settles to the bottom of the flask.

67 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- According to Table G, the salt solution is unsaturated.
- The 3.0 g of salt dissolved in 50. g of H₂O has a concentration less than the solubility of NaCl on Table G at 20.°C.
- Table G indicates that the solubility of NaCl is greater than the amount in the sample.

68 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- Allow the water to evaporate.
- Heat the mixture until all of the water vaporizes.
- Boil off the water.

69 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

\[
\frac{3.4 \text{ g} - 3.0 \text{ g}}{3.0 \text{ g}} \times 100
\]

\[
\frac{(0.4)(100)}{3}
\]

Note: Do not allow credit if the fraction is not multiplied by 100.

70 [1] Allow 1 credit for any value from 334 K to 341 K, inclusive.

71 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- Unlike ideal gas particles, He particles have volume.
- Each atom of helium occupies space.
72 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- When the temperature increases, the distance between He atoms increases.
- As the helium is heated, the He atoms move farther apart.
- The average distance increases.

73 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- lower the pressure
- decrease pressure
- any pressure below 100. kPa

74 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- Increase the surface area of the zinc.
- Increase the temperature of the reaction.
- Use a more concentrated HCl(aq) solution.

75 [1] Allow 1 credit for showing that the PE of the products is lower than the PE of the reactants.

Example of a 1-credit response:

![Potential Energy vs Reaction Coordinate Diagram](image)
76 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

The H₂(g) can leave the open test tube.

The reaction is driven to completion because a gas is released.

Reaction not reversible.

77 [1] Allow 1 credit for 10 or ten.

78 [1] Allow 1 credit for 40°C to 200°C. Significant figures do not need to be shown.

79 [1] Allow 1 credit.

Examples of 1-credit responses:
80 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- hydronium ion \(H_3O^+ \)
- hydronium \(H^+ \)
- hydrogen ion \(H_3O^+(aq) \)
- hydrogen \(H^+(aq) \)
- proton

81 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

\[M_A(20.0 \text{ mL}) = (0.025 \text{ M})(17.6 \text{ mL}) \]

\[\frac{(0.025)(17.6)}{20} \]

82 [1] Allow 1 credit for 2 or two.

83 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

Paint with Ra-226 will glow for a longer time than paint containing the other isotopes because Ra-226 has the longest half-life of these isotopes.

The other isotopes have shorter half-lives, so paint containing them will not glow for as many years.

84 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- \(^{147}\text{Sm} \) (samarium-147)
- \(^{147}\text{Sm} \) (samarium-147)

85 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- \(\frac{1}{8} \)
- 0.125
- 12.5%
The Chart for Determining the Final Examination Score for the January 2019 Regents Examination in Physical Setting/Chemistry will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Friday, January 25, 2019. Conversion charts provided for previous administrations of the Regents Examination in Physical Setting/Chemistry must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
January 2019 Physical Setting/Chemistry
Question Numbers

<table>
<thead>
<tr>
<th>Key Ideas/Performance Indicators</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 1</td>
<td>36, 37, 38, 41, 57</td>
<td>67, 69, 70, 81, 82</td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Key Idea 3</td>
<td>35, 36, 40, 46, 47, 56</td>
<td>77, 84, 85</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 1</td>
<td>31, 50, 51, 52, 54, 55, 58, 60, 61, 62, 63, 64</td>
<td>66, 68, 71, 72, 73, 74, 76, 78, 80, 83</td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Inquiry Key Idea 3</td>
<td>31, 32, 33, 34, 39, 43, 44, 45, 47, 48, 49, 59, 61, 65</td>
<td>75, 76, 78</td>
<td></td>
</tr>
<tr>
<td>Engineering Design Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 4 Process Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>33, 35, 36, 38, 40, 42, 44, 56, 57, 58, 59, 60, 63, 64</td>
<td>67, 68, 71, 72, 79, 81</td>
<td></td>
</tr>
<tr>
<td>Key Idea 4</td>
<td>41, 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key idea 5</td>
<td>32, 51, 53, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28</td>
<td>31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 56, 57, 58, 59, 60, 63, 64, 65</td>
<td>66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82</td>
</tr>
<tr>
<td>Key Idea 4</td>
<td>41, 49, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Idea 5</td>
<td>12, 13, 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Tables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 Edition</td>
<td>2, 3, 5, 6, 7, 8, 14, 18, 24, 25, 26</td>
<td>31, 34, 36, 37, 38, 40, 41, 43, 47, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63</td>
<td>67, 69, 77, 78, 79, 80, 81, 83, 84</td>
</tr>
</tbody>
</table>
Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart change from one administration to another, it is crucial that for each administration the conversion chart provided for that administration be used to determine the student’s final score. The chart above is usable only for this administration of the Regents Examination in Physical Setting/Chemistry.